A Functional Central Limit Theorem for Kernel Type Density Estimators

Authors

  • István Fazekas University of Debrecen, Hungary
  • Peter Filzmoser Vienna University of Technology, Austria

DOI:

https://doi.org/10.17713/ajs.v35i4.351

Abstract

Kernel type density estimators are studied for random fields. A functional central limit theorem in the space of square integrable functions is proved if the locations of observations become more and more dense in an increasing sequence of domains.

References

Asmussen, S. (1987). Applied Probability and Queues. New York: Wiley.

Billingsley, P. (1968). Convergence of Probability Measures. New York: Wiley.

Bosq, D., Merlevède, F., and Peligrad, M. (1999). Asymptotic normality for density kernel estimators in discrete and continuous time. Journal of Multivariate Analysis, 68, 78-95.

Cressie, N. A. C. (1991). Statistics for Spatial Data. New York: Wiley.

Devroye, L., and Györfi, L. (1985). Nonparametric Density Estimation. The L1 View. New York: Wiley.

Doukhan, P. (1994). Mixing. Properties and Examples (Vols. 85, Lecture Notes in Statistics). New York: Springer.

Fazekas, I. (2003). Limit theorems for the empirical distribution function in the spatial case. Statistics & Probability Letters, 62, 251-262.

Fazekas, I., and Chuprunov, A. (2004). A central limit theorem for random fields. Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 20(1), 93-104.

Fazekas, I., and Chuprunov, A. (2005). Asymptotic normality of kernel type density estimators for random fields. Accepted by Statistical Inference for Stochastic Processes.

Fazekas, I., and Kukush, A. G. (2000). Infill asymptotics inside increasing domains for the least squares estimator in linear models. Statistical Inference for Stochastic Processes, 3, 199-223.

Grinblat, L. S. (1976). A limit theorem for measurable random processes and its applications. Proceedings of the American Mathematical Society, 61, 371-376.

Guyon, X. (1995). Random Fields on a Network. Modeling, Statistics, and Applications. New York: Springer.

Hille, E., and Phillips, R. S. (1957). Functional Analysis and Semi-Groups. Providence: American Mathematical Society.

Ivanov, A. V. (1980). On convergence of distributions of functionals of measurable random fields. Ukrainean Journal of Mathematics, 32(1), 27-34.

Lahiri, S. N. (1999). Asymptotic distribution of the empirical spatial cumulative distribution function predictor and prediction bands based on a subsampling method.

Probability Theory and Related Fields, 114, 55-84.

Lin, Z., and Lu, C. (1996). Limit Theory for Mixing Dependent Random Variables. Dordrecht: Kluwer Academic Publishers.

Oliveira, P. E., and Suquet, C. (1998). Weak convergence in Lp(0; 1) of the uniform empirical process under dependence. Statistics & Probability Letters, 39(4), 363-

Prakasa Rao, B. L. S. (1983). Nonparametric Functional Estimation. New York: Academic Press.

Zorich, V. A. (1984). Mathematical Analysis. (In Russian.) (Vol. II). Moscow: Nauka.

Downloads

Published

2016-04-03

Issue

Section

Articles

How to Cite

A Functional Central Limit Theorem for Kernel Type Density Estimators. (2016). Austrian Journal of Statistics, 35(4), 409–418. https://doi.org/10.17713/ajs.v35i4.351