Skew Generalized Secant Hyperbolic Distributions: Unconditional and Conditional Fit to Asset Returns

Authors

  • Matthias Fischer Department of Statistics and Econometrics, University of Erlangen-Nuremberg

DOI:

https://doi.org/10.17713/ajs.v33i3.443

Abstract

A generalization of the hyperbolic secant distribution which allows for both skewness and leptokurtosis was given by Morris (1982). Recently, Vaughan (2002) proposed another flexible generalization of the hyperbolic secant distribution which has a lot of nice properties but is not able to allow for skewness. For this reason, Fischer and Vaughan (2002) additionally introduced a skewness parameter by means of splitting the scale parameter and showed that most of the nice properties are preserved. We briefly review
this class of distributions and apply them to financial return data. By means of the Nikkei225 data, it will be shown that this class of distributions, the socalled skew generalized secant hyperbolic distribution, provides an excellent fit in the context of unconditional and conditional return models.

References

Barndorff-Nielsen, O. E. (1977). Normal-inverse Gaussian processes and stochastic volatility modelling. Scandinavian Journal of Statistics, 24, 1-13.

Baten, W. D. (1934). The probability law for the sum of n independent variables, each subject to the law (1/2h)sech(πx/2h). Bulletin of the American Mathematical Society, 40, 284-290.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 302-327.

Bollerslev, T. (1987). A conditional heteroscedastic time series model for speculative price and rate of return. Review of Economics and Statistics, 9, 542-547.

Ding, Z., Engle, R. F., and Granger, C. W. J. (1993). A long memory property of stock markets returns and a new model. Journal of Empirical Finance, 1, 83-106.

Eberlein, E., and Keller, U. (1995). Hyperbolic distributions in finance. Bernoulli, 3, 281-299.

Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation. Econometrica, 50, 987-1007.

Fernández, C., Osiewalski, J., and Steel, M. F. J. (1995). Modelling and inference with ν-spherical distributions. Journal of American Statistical Association, 90, 1331-1340.

Fischer, M. (2002, June). The NEF-GHS option pricing model (Tech. Rep. No. 42). Universität Erlangen-Nürnberg: Lehrstuhl für Statistik und Ökonometrie.

Fischer, M. (2003, January). Tailoring copula-based multivariate skewed generalized secant hyperbolic distributions to financial return data: An empirical investigation (Tech. Rep. No. 47). Universität Erlangen-Nürnberg: Lehrstuhl für Statistik und

Ökonometrie.

Fischer, M., and Vaughan, D. (2002, December). Classes of skewed generalized secant hyperbolic distributions (Tech. Rep. No. 45). Universität Erlangen-Nürnberg: Lehrstuhl für Statistik und Ökonometrie.

Grottke, M. (2001). Die t-Verteilung und ihre Verallgemeinerungen als Modell für Finanzmarktdaten. Lothmar: Josef Eul Verlag.

Harkness,W. L., and Harkness, M. L. (1968). Generalized hyperbolic secant distributions. Journal of the American Statistical Association, 63, 329-337.

Jørgensen, B. (1997). The theory of dispersion models. Chapman & Hall.

Klein, I., and Fischer, M. (2002). Families of gh-transformed distributions. In S. Mittnik and I. Klein (Eds.), Contribution to modern econometrics. Kluwer.

McDonald, J. B. (1991). Parametric models for partial adaptive estimation with skewed and leptokurtic residuals. Econometric Letters, 37, 273-288.

Mittnik, S., Paolella, M. S., and Rachev, S. T. (1998). Unconditional and conditional distribution models for the Nikkei index. Asia-Pacific Financial Markets, 5, 99-128.

Morris, C. N. (1982). Natural exponential families with quadratic variance functions. The Annals of Statistics, 10, 65-80.

Prause, K. (1999). The generalized hyperbolic model: Estimation, financial derivatives and risk measures. Unpublished doctoral dissertation, Universität Freiburg, Freiburg.

Talacko, J. (1956). Perk’s distributions and their role in the theory of Wiener’s stochastic variables. Trabajos de Estadistica, 7, 159-174.

Vaughan, D. C. (2002). The generalized hyperbolic secant distribution and its application. Communications in Statistics – Theory and Methods, 31, 219-238.

Zakoian, J. M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics & Control, 18, 931-955.

Downloads

Published

2016-04-03

How to Cite

Fischer, M. (2016). Skew Generalized Secant Hyperbolic Distributions: Unconditional and Conditional Fit to Asset Returns. Austrian Journal of Statistics, 33(3), 293–304. https://doi.org/10.17713/ajs.v33i3.443

Issue

Section

Articles