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Abstract: A generalization of the hyperbolic secant distribution which al-
lows for both skewness and leptokurtosis was given by Morris (1982). Re-
cently, Vaughan (2002) proposed another flexible generalization of the hyper-
bolic secant distribution which has a lot of nice properties but is not able to
allow for skewness. For this reason, Fischer and Vaughan (2002) additionally
introduced a skewness parameter by means of splitting the scale parameter
and showed that most of the nice properties are preserved. We briefly review
this class of distributions and apply them to financial return data. By means
of the Nikkei225 data, it will be shown that this class of distributions, the so-
called skew generalized secant hyperbolic distribution, provides an excellent
fit in the context of unconditional and conditional return models.

Zusammenfassung:Eine Generalisierung der Secans hyperbolicus Vertei-
lung, die sowohl Schiefe als auch Leptokurtosis erlaubt, ist in Morris (1982)
angegeben. Unlängst wurde in Vaughan (2002) eine weitere flexible Verall-
gemeinerung vorgeschlagen, die zwar eine Reihe angenehmer Eigenschaften
aufweist jedoch keine Schiefe erlaubt. Deshalb führten Fischer and Vaughan
(2002) durch Aufteilung des Skalenparameters einen zusätzlichen Schiefepa-
rameter ein und zeigten, dass die meisten angenehmen Eigenschaften dabei
erhalten bleiben. Wir besprechen nochmals kurz diese Klasse von Verteilun-
gen und wenden sie dann auf Ertragsdaten an. Bezüglich der Nikkei225
Daten wird gezeigt, dass diese Verteilungsklasse, die so genannte schiefe gen-
eralisierte Secans hyperbolicus Verteilung, bei bedingten und nicht-bedingten
Ertragsmodellen eine ausgezeichnete Anpassung aufweist.

Keywords: Hyperbolic Secant Distribution, SGSH Distribution, NEF-GHS
Distribution, Skewness, GARCH.

1 Introduction

The hyperbolic secant distribution, which was first studied by Baten (1934) and Talacko
(1956), seems to be an appropriate candidate as a starting point for financial return mod-
els. Firstly, it exhibits more leptokurtosis than the normal and even more than the logistic
distribution. Secondly, the cumulative distribution function admits a closed form imply-
ing that, for example, risk neutral probabilities of option prices can be calculated fast
and accurate. Thirdly, this distribution is reproductive (i.e., the class is preserved under
convolution), infinitely divisible with existing moment-generating function and has finite
moments. Since 1956, two generalization have been proposed which both incorporate
most of these properties, too and, in addition, allow for a more flexible form concerning
skewness and leptokurtosis.
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The first generalization was proposed by Morris (1982) in the context of natural expo-
nential families (NEF) with quadratic variance function (i.e., the variance is a quadratic
function of the mean). In this class consisting of six members, one distribution, the so-
called NEF-GHS distribution, is generated by the hyperbolic secant distribution. The
NEF-GHS distribution allows for skewness and arbitrarily high excess kurtosis. Mor-
ris (1982) showed that this class is again reproductive, infinitely divisible with existing
moment-generating function and existing moments. However, the corresponding cumu-
lative distribution function doesn’t admit a closed form.

Recently, Vaughan (2002) proposes a family of symmetric distributions, the so-called
generalized secant hyperbolic (GSH) distribution, with kurtosis ranging from1.8 to in-
finity. This family includes both the hyperbolic secant and the logistic distribution and
closely approximates the Student t-distribution with corresponding kurtosis. In addition,
the moment-generating function and all moments exist, and the cumulative distribution
is given in closed form. Unfortunately, this family does not allow for skewness. For this
purpose, Fischer and Vaughan (2002) introduce a skewness parameter by means of split-
ting the scale parameter according to Fernández et al. (1995). This method preserves the
closed form for the density, the cumulative distribution function and the inverse cumula-
tive distribution function.

It will be shown that this family, termed asskewed generalized secant hyperbolic
distribution (SGSH), provides an excellent fit to the Nikkei225 data. This is verified in
the context of unconditional and conditional return models. In particular, we compare the
results to other popular models for financial return data which have been proposed in the
literature in the past: Theα-stable distributions (see, e.g., Mittnik et al., 1998), the class
of generalized hyperbolic distributions (see, e.g., Prause, 1999), the generalized logistic
family of McDonald (1991) and a skewed generalized family of t-distributions of Grottke
(2001).

2 Generalizations of Hyperbolic Secant Distributions

2.1 (Generalized) Hyperbolic Secant distribution

A symmetric random variableX is said to follow ahyperbolic secant(HS)distribution if
its probability density function (with unit variance) is given by

fHS(x) =
1

2 cosh (πx/2)
, x ∈ R ,

or, equivalently, its cumulative distribution function is given by

FHS(x) =
1

2
+

1

π
arctan(sinh(πx/2)) .

This distribution is more leptokurtic than the normal, even more leptokurtic than the lo-
gistic distribution and has a kurtosis coefficient (measured by the fourth standardized mo-
ment) of5. Consequently, it seems to be a reasonable “starting point” as a distribution for
leptokurtic data, in particular for financial return data. In order to obtain higher “leptokur-
tic flexibility”, the λ-th convolution of a hyperbolic secant distribution can be considered.
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This was discussed, for example, by Harkness and Harkness (1968) or Jørgensen (1997).
The resulting distribution is commonly known asgeneralized hyperbolic secant(GHS)
distribution. However, GHS offers still no opportunity to take skewness into account.

2.2 NEF-GHS Distribution

The NEF-GHS distribution was originally introduced by Morris (1982) in the context of
natural exponential families(NEF) with specific quadratic variance functions. Densities
of natural exponential families are of the form

f(x; λ, θ) = exp{θx− ψ(λ, θ)}ζ(x, λ) . (1)

In the case of the NEF-GHS distribution,ψ(λ, θ) = −λ log(cos(θ)) andζ(x, λ) equals
the probability density function of a generalized hyperbolic secant (GHS) distribution.
Hence, the probability density function of the NEF-GHS distribution is given by

f(x; λ, θ) =
2λ−2

πΓ(λ)

∣∣∣∣Γ
(

λ + ix

2

)∣∣∣∣
2

︸ ︷︷ ︸
C(x)

exp {θx + λ log(cos(θ))} (2)

for λ > 0 and|θ| < π/2. Introducing a scale parameterδ > 0 and a location parameter
µ ∈ R, and settingβ ≡ tan(θ) ∈ R, equation (2) changes to

f(x) = C

(
x− µ

δ

)
exp

(
arctan(β)

x− µ

δ
+ λ log(cos(arctan(β)))

)
. (3)

The NEF-GHS distribution is a flexible class of distributions which allows for skewness
and excess kurtosis, which is infinitely divisible with existing moment-generating func-
tion and hence, existing moments. However, the cumulative distribution function and the
inverse cumulative distribution function is not available in a closed form. These properties
facilitate calculating risk measures, constructing multivariate copula-based distributions
(see, e.g., Fischer, 2003).

2.3 GSH distribution

Another generalization of the hyperbolic secant distribution, which is able to model both
thin and fat tails, was introduced by Vaughan (2002). This distribution family, the so-
called standardgeneralized secant hyperbolic(GSH) distribution with kurtosis parameter
t ∈ (−π,∞), has density

fGSH(x; t) = c1(t)
exp(c2(t)x)

exp(2c2(t)x) + 2a(t) exp(c2(t)x) + 1
, x ∈ R (4)

with

a(t) = cos(t), c2(t) =
√

(π2 − t2)/3, c1(t) = c2(t) sin(t)/t, for − π < t ≤ 0,

a(t) = cosh(t), c2(t) =
√

(π2 + t2)/3, c1(t) = c2(t) sinh(t)/t, for t > 0 .
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The density from (4) is chosen so thatX has zero mean and unit variance. The GSH
distribution includes the logistic distribution (t = 0) and the hyperbolic secant distribution
(t = −π/2) as special cases and the uniform distribution on(−√3,

√
3) as limiting case

for t → ∞. Vaughan (2002) derives the cumulative distribution function, depending on
the parametert, as

FGSH(x; t) =





1 + 1
t arccot

(
−exp[c2(t)x] + cos(t)

sin(t)

)
for t ∈ (−π, 0) ,

exp(πx/
√

3)

1 + exp(πx/
√

3)
for t = 0 ,

1− 1
t arccoth

(
exp[c2(t)x] + cosh(t)

sinh(t)

)
for t > 0 ,

and the inverse cumulative distribution function

F−1
GSH(u; t) =





1
c2(t)

log

(
sin(tu)

sin[t(1− u)]

)
for t ∈ (−π, 0) ,

√
3

π log
(

u
1− u

)
for t = 0 ,

1
c2(t)

log

(
sinh(tu)

sinh[t(1− u)]

)
for t > 0 .

The moment-generating function also depends ont and is given by

MGSH(u; 0, 1, t) =





π
t sin

(
tu

c2(t)

)
csc

(
uπ

c2(t)

)
for t ∈ (−π, 0) ,

√
3u csc(

√
3u) for t = 0 ,

π
t sinh

(
tu

c2(t)

)
csc(uπ/c2(t)) for t > 0 ,

wherecsc(·) denotes the cosecans function. Moments ofX can be deduced from the
last equation. Despite of its nice properties, the GSH distribution offers no possibility to
include skewness effects.

2.4 SGSH distributions

There are plenty of methods in the literature to make a symmetric distribution skew. As
the cumulative distribution function of the GSH distribution is explicitly known, Fischer
and Vaughan (2002) decided in favour of splitting the scale parameter, as it was done by
Ferńandez et al. (1995) for the skewed exponential power distribution.

Let γ > 1, I+(x) denote the indicator function forx on R+ and I−(x) denote the
indicator function forx onR−. Then it can be easily verified that

fSGSH(x; t, γ) =
2

γ + 1
γ

{
fGSH(x/γ) · I−(x) + fGSH(γx) · I+(x)

}
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=
2c1

γ + 1
γ

·
(

exp(c2x/γ) · I−(x)

exp(2c2x/γ) + 2a exp(c2x/γ) + 1
+

exp(c2γx) · I+(x)

exp(2c2γx) + 2a exp(c2γx) + 1

)

is a density function which is symmetric forγ = 1, skewed to the right forγ > 1 and
skewed to the left for0 < γ < 1. The corresponding distribution is termed asskewed
generalized secant hyperbolic distributionin the sequel. The effect of the skewness pa-
rameter on the density can be seen in Figure 1.

Figure 1: Effect of the skewness parameter.

It can also be shown (see, e.g., Grottke, 2001, p. 21) that the cumulative and the inverse
cumulative distribution functions admits a closed form, namely

FSGSH(x; t, γ) =
2γ2

γ2 + 1

(
FGSH (x/γ) I−(x) +

(
γ2 − 1 + 2FGSH(γx)

2γ2

)
I+(x)

)
,

F−1
SGSH(u; t, γ) = γF−1

GSH

(
u
γ2 + 1

2γ2

)
IA(u) +

1

γ
F−1

GSH

(
u
γ2 + 1

2
− γ2 − 1

2

)
IA(u) ,

with

IA(u) =





1, if u <
2γ2

1 + γ2

0, if u ≥ 2γ2

1 + γ2

and IA(u) = 1− IA(u) .

In addition, the power moments of a SGSH distribution can be deduced from that of a
GHS distribution by means of

E(Xr
SGSH) = E+(Xr

GSH)
2γ

γ2 + 1

[
(−1)rγr+1 + γ−r−1

]
,

with the partial positive expectation value

E+(Xr
GSH) =

∫ ∞

0

xrfGSH(x)dx .
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Note, thatfor evenr the expectation of the positive partE+(Xr
GSH) can be deduced from

E(Xr
GSH) by division with 2 as

E(Xr
GSH) = 2E+(Xr

GSH) .

Foroddr, the formula for the half momentsE+(Xr
GSH) is slightly more complicated. The

corresponding results are given by Fischer and Vaughan (2002).

3 Financial Application of the SGSH distribution

3.1 The data set

In order to adopt and compare estimation results for a great deal of distributions, in par-
ticular the stable distributions (STABLE), priority is given to the weekly returns of the
Nikkei from July 31, 1983 to April 9, 1995, withN = 608 observations. This series was
intensively investigated, for example, by Mittnik et al. (1998) because it exhibits typical
stylized facts of financial return data. Figure 2 illustrates the time series of levels and
corresponding log-returns.

(a) Levels (b) Returns

Figure 2: Levels and returns of Nikkei.

3.2 Unconditional fit to financial return data

Similar to Mittnik et al. (1998), four criteria are employed to compare the goodness-
of-fit of the different candidate distributions. The first is thelog-Likelihood value(LL)
obtained from the Maximum-Likelihood estimation. TheLL-value can be considered as
an “overall measure of goodness-of-fit and allows us to judge which candidate is more
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likely to have generated the data”. As distributions with different numbers of parameters
k are used, this is taken into account by calculating theAkaike criteriongiven by

AIC = −2LL+
2N(k + 1)

N − k − 2
.

The third criterion is theKolmogorov-Smirnov distanceas a measure of the distance be-
tween the estimated parametric cumulative distribution function,F̂ , and the empirical
sample distribution,Femp. It is usually defined by

K = 100 sup
x∈R

|Femp(x)− F̂ (x)| . (5)

Finally, theAnderson-Darling statisticis calculated, which weights|Femp(x)− F̂ (x)| by

the reciprocal of the standard deviation ofFemp, namely
(
F̂ (x)(1− F̂ (x))

)1/2

, that is

AD0 = sup
x∈R

|Femp(x)− F̂ (x)|√
F̂ (x)(1− F̂ (x))

. (6)

Instead of just the maximum discrepancy, the second and third largest value, which are
commonly termed asAD1 andAD2, are also taken into consideration. WhereasK em-
phasizes deviations around the median of the fitted distribution,AD0, AD1 andAD2

allow discrepancies in the tails of the distribution to be appropriately weighted.
Estimation was performed not only for the two families of generalized hyperbolic

secant distributions (NEF-GHS and SGSH with symmetric counterparts GHS and GSH),
but also for distribution families which have became popular in finance in the last years:
Firstly, the generalized hyperbolic (GH) distributions which were discussed by Prause
(1999) and include, for example, the Normal-inverse Gaussian (NIG) distributions (see
Barndorff-Nielsen, 1977) as well as the hyperbolic (HYP) distributions (see Eberlein and
Keller, 1995) as special cases. Secondly, the exponential generalized beta of the second
kind (EGB2) distribution that was introduced by McDonald (1991) as a generalization of
the logistic (LOG) distribution and used in various financial applications, see also Fischer
(2002). Thirdly, a very flexible generalization of the generalized t-distribution (SGT2)
proposed by Grottke (2001). Finally, we performed calculations for the gh-transformed
normal (gh-NORM) distribution (see Klein and Fischer, 2002).

The estimation results are summarized in Table 1 and are as follows. Firstly, let us
focus on the fit of generalized hyperbolic secant families. There seems to be no difference
between the GSH distribution of Vaughan (2002) and the GHS distribution of Harkness
and Harkness (1968). This is not true if we consider the skewed pendants and compare
the NEF-GHS distribution of Morris (1982) with the SGSH distribution which exhibits
better goodness-of-fit values with respect to all five criteria. For that reason, we restrict
our considerations to the SGSH distribution. Concerning theLL-value, only the SGT2
distribution has a (slightly) higher value. The same is true if we compare theK-values. If
we take the number of parameters into account (i.e., focus on theAIC criterion), SGSH
even outperforms SGT2. The situation is a little bit different concerning the tail fit. Here,
gh-transformed distributions finished best, followed by SGT2, NIG, STABLE and SGSH
(Note, that the last three are close together).
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Table 1: Goodness-of-fit for the unconditional case: Nikkei225.

Distribution k LL AIC K AD0 AD1 AD2

NORM 2 -1428.3 2862.6 6.89 4.920 2.810 1.070
STABLE 4 -1393.2 2796.5 3.00 0.085 0.084 0.081

HS 2 -1393.4 2792.8 4.31 0.216 0.150 0.121
GHS 3 -1392.2 2794.6 4.15 0.140 0.117 0.114
NEF-GHS 4 -1388.1 2786.3 2.42 0.091 0.090 0.083
GSH 3 -1392.3 2794.8 4.17 0.142 0.117 0.114
SGSH 4 -1387.5 2785.2 2.18 0.088 0.087 0.080

LOG 2 -1398.1 2802.1 4.56 0.362 0.236 0.186
EGB2 4 -1388.1 2786.3 2.45 0.103 0.100 0.095

GH 5 -1388.0 2788.2 2.43 0.095 0.093 0.086
HYP 4 -1388.2 2786.5 2.50 0.106 0.103 0.098
NIG 4 -1388.2 2786.6 2.48 0.085 0.085 0.075

SGT2 5 -1387.4 2786.9 2.12 0.076 0.072 0.071
Student-t 3 -1392.2 2792.5 3.77 0.107 0.104 0.103

gh-NORM 4 -1388.7 2788.5 2.270.068 0.062 0.061

3.3 Conditional fit to financial return data

Assuming independent observations, as we did it in the last subsection, is not very realis-
tic. To capture dependency between different log-returns, generalized autoregressive con-
ditionally heteroscedastic (GARCH) models have proposed by Engle (1982) and Boller-
slev (1986) as models for financial return data. These models are able to capture the
distributional stylized facts (like thick tails or high peakedness), on the one hand, as well
as the time series stylized facts (like volatility clustering), on the other hand. The setting
for our GARCH framework is similar to Bollerslev (1986) assuming that the log-returns
Rt of financial data are given by

Θm(L)Rt = µ + Ut

with

Ut|Ft−1 ∼ D(0, h2
t , η) or Ut|Ft−1 = htεt with εt ∼ D(0, 1, η) ,

whereΘm(L) is a polynomial in the lag operatorL of orderm. For reasons of simplicity,
assume thatΘm(L) ≡ 1 andµ ≡ 0. The residuals{Ut} are assumed to follow a GARCH-
D process. That means they follow a distribution1 D with shape parameterη and time-
varying varianceh2

t . In the GARCH(1, 1)-Normal specification from Bollerslev (1986) it

1Although GARCH models with conditionally normally distributed errors imply unconditionally lep-
tocurtic distributions, there is evidence (see, e.g., Bollerslev, 1987) that starting with leptocurtic and possi-
bly skewed (conditional) distribution will achieve better results. For that reason, alternative error distribu-
tions are used.
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is given by

h2
t = α0 + α1R

2
t−1 + β1h

2
t−1 = α0 + α1h

2
t−1ε

2
t−1 + β1h

2
t−1 . (7)

Note, that settingβ1 = 0 results in the ARCH model of Engle (1982). The estimation
results for the standard GARCH setting are summarized in Table 2.

Table 2: Goodness-of-fit for GARCH(1, 1)-models: Nikkei225.

Distribution k LL AIC K AD0 AD1 AD2

NORM 4 -1358.7 2727.8 4.31 > 10 0.890 0.141
STABLE 6 -1340.8 2695.8 3.76 0.253 0.092 0.093

HS 4 -1342.8 2695.6 4.54 0.427 0.126 0.125
GHS 5 -1342.3 2698.7 4.01 0.679 0.122 0.122
NEF-GHS 6 -1334.6 2683.4 2.25 0.461 0.083 0.076
GSH 5 -1341.3 2696.8 3.71 0.914 0.155 0.116
SGSH 6 1333.0 2680.2 1.98 0.504 0.069 0.068

LOG 4 -1344.0 2698.2 3.55 0.966 0.151 0.112
EGB2 6 -1335.6 2685.4 2.60 0.973 0.086 0.062

GH 7 -1331.3 2678.8 2.27 0.150 0.062 0.061
HYP 6 -1333.3 2680.9 2.21 0.834 0.079 0.063
NIG 6 -1332.5 2679.1 2.19 0.466 0.065 0.064

SGT2 7 -1331.1 2678.4 2.32 0.172 0.057 0.056
Student-t 5 -1340.3 2692.7 3.81 0.267 0.119 0.118

Again, the SGSH distribution outperforms most of its competitors and even has the
lowestK-value. Concerning theLL-value, only SGT2 and GH produce slightly higher
values. The same is true forAD0.

GARCH models have been generalized in many different ways. In order to capture
leverage effects, Zakoian (1994) proposed the threshold (T)-GARCH model with standard
deviation given by

ht = α0 + α+
1 R+

t−1 − α−1 R−
t−1 + β1ht−1 , (8)

whereR+
t = max{Rt, 0} andR−

t = min{Rt, 0}. Imposing a Box-Cox-transformation
on the conditional standard deviation process and the asymmetric absolute returns lead to
the asymmetric power (AP-ARCH) specification of Ding et al. (1993), namely

hλ
t = α0 + α1(|Rt−1| − cRt−1)

λ + β1h
λ
t−1 . (9)

Equation (9) reduces to (8) forλ = 1, α1 = α−1 /(2− α+
1 ) andc = 1− α+

1 (2− α+
1 )/α−1 .

Moreover, equation (7) is achieved forλ = 2 andc = 0.
To take also asymmetric effects into account, we end up with an AP-ARCH(1, 1)-D

specification whereD is chosen as in the GARCH(1, 1) specification. Again, the results
are summarized and given in Table 3. Note that AP-ARCH(1, 1) estimation results for
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Table 3: Goodness-of-fit for AP-ARCH(1, 1)-models: Nikkei225.

Distribution k LL AIC K AD0 AD1 AD2

NORM 6 -1352.8 2719.8 4.28 > 10 0.473 0.125
HS 6 -1339.7 2693.5 3.98 0.489 0.133 0.128
GHS 7 -1338.6 2695.5 3.52 1.045 0.119 0.120
NEF-GHS 8 -1333.7 2685.7 2.08 0.500 0.079 0.077
GSH 7 -1337.3 2693.0 3.31 1.093 0.117 0.115
SGSH 8 1331.8 2681.9 1.89 0.543 0.073 0.067

LOG 6 -1339.6 2693.4 3.08 1.183 0.113 0.112
EGB2 8 -1334.6 2687.5 2.46 1.011 0.078 0.077

GH 9 ** ** ** ** ** **
HYP 8 -1332.5 2683.2 2.09 0.899 0.078 0.073
NIG 8 -1331.6 2681.8 2.07 0.502 0.087 0.075

SGT2 9 -1329.8 2679.9 2.26 0.192 0.065 0.062
Student-t 7 -1336.1 2688.3 3.28 0.398 0.108 0.105

stable distribution were not available. Moreover,∗∗ indicates problems with respect to
convergence.

It can be observed that for most of the distributions theK-values improve (compared
to the GARCH(1, 1)-fit) whereas theAD-values become worse. SGT2 and SGSH seem
to dominate the other distributions. Except ofAD0, SGSH is close to SGT2. Again,
SGSH achieves the smallestK-value.

4 Conclusions

Two generalizations of the hyperbolic secant distribution have been proposed in the last
years which seem to be encouraging as model for financial return data: The NEF-GHS
distribution of Morris (1982) and the SGSH distribution of Fischer and Vaughan (2002).
Both incorporate skewness and leptokurtosis. Within this work we applied them to the
weekly log-returns of the Japanese stock index. Firstly, results of the unconditional fit
were calculated as a benchmark. In a second step, volatility cluster are taken into account
by means of a GARCH(1, 1)-model. Finally, we also tried to take care of leverage effects
and estimated an AP-ARCH(1, 1)-model. For the Nikkei data, we found that the skew
generalized secant hyperbolic (SGSH) distribution provides an excellent fit in all cases.
It dominates the NEF-GHS distribution as well as the EGB2 distribution. Furthermore,
it approves as flexible but numerically easier to implement as the generalized hyperbolic
family. Only SGT2, for which neither the cumulative distribution function nor the inverse
cumulative distribution function are known, slightly outperforms SGSH.
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Grottke, M. (2001).Die t-Verteilung und ihre Verallgemeinerungen als Modell für Fi-
nanzmarktdaten. Lothmar: Josef Eul Verlag.

Harkness, W. L., and Harkness, M. L. (1968). Generalized hyperbolic secant distributions.
Journal of the American Statistical Association, 63, 329-337.

Jørgensen, B. (1997).The theory of dispersion models. Chapman & Hall.
Klein, I., and Fischer, M. (2002). Families of gh-transformed distributions. In S. Mittnik

and I. Klein (Eds.),Contribution to modern econometrics.Kluwer.
McDonald, J. B. (1991). Parametric models for partial adaptive estimation with skewed

and leptokurtic residuals.Econometric Letters, 37, 273-288.
Mittnik, S., Paolella, M. S., and Rachev, S. T. (1998). Unconditional and conditional

distribution models for the Nikkei index.Asia-Pacific Financial Markets, 5, 99-
128.

Morris, C. N. (1982). Natural exponential families with quadratic variance functions.The
Annals of Statistics, 10, 65-80.

Prause, K. (1999).The generalized hyperbolic model: Estimation, financial deriva-
tives and risk measures. Unpublished doctoral dissertation, Universität Freiburg,
Freiburg.



304 Austrian Journal of Statistics, Vol. 33 (2004), No. 3, 293–304

Talacko, J. (1956). Perk’s distributions and their role in the theory of Wiener’s stochastic
variables.Trabajos de Estadistica, 7, 159-174.

Vaughan, D. C. (2002). The generalized hyperbolic secant distribution and its application.
Communications in Statistics – Theory and Methods, 31, 219-238.

Zakoian, J. M. (1994). Threshold heteroskedastic models.Journal of Economic Dynamics
& Control, 18, 931-955.

Author’s address:

Dr. Matthias Fischer
Lehrstuhl f̈ur Statistik undÖkonometrie
Universiẗat Erlangen-N̈urnberg
Lange Gasse 20
D-90403 N̈urnberg

Tel. +60 911 5320271
Fax +60 911 5320277
E-mail: matthias.fischer@wiso.uni-erlangen.de
http://www.statistik.wiso.uni-erlangen.de


