Austrian Journal of Statistics
2025, Volume 54, 79-99.

http://www.ajs.or.at/ m | [ |
doi:10.17713/ajs.v64i5.2072 |

Time-Varying Correlations between Selected
Exchange Rates: A Robust DCC-GARCH Model
Approach

Bruno Dinga Jimbo Henri Claver Cletus Kwa Kum
Mathematics & Computer Science Dept. Applied Mathematics Dept. Mathematics Department
Faculty of Science SIUT Higher Teacher Training College Bambili
The University of Bamenda Uzbekistan The University of Bamenda
Cameroon Cameroon
Abstract

Effective diversification of global portfolios and risk management depends to a large
extent on the degree of correlation between the returns of financial assets. The Dynamic
Conditional Correlation Generalized Autoregressive Conditional Heteroscediency (DCC-
GARCH) model addresses the time-varying correlation and volatility among financial
assets. The model has a two-step process whereby the volatility of each individual asset
is first estimated using the univariate GARCH and the time-varying correlation between
those assets is then captured using the DCC framework. Although the DCC-GARCH
setup allows for the use of any univariate GARCH model for the variance of each financial
asset, when constructing a DCC-GARCH model, most researchers typically use only one
univariate GARCH model for all the returns of the financial asset. This study proposes
a robust DCC-GARCH model in analyzing the dynamics of time-varying correlations of
financial data in which the optimal univariate GARCH models (with the lowest informa-
tion criteria) for each financial asset are used to build up the DCC-GARCH model. An
empirical application of this model in analyzing the time-varying conditional correlation
between four exchange rates shows an improvement in results (relative to the information
criterion values) compared to the case where only one univariate GARCH model is used
to construct the DCC-GARCH model. Standardized residuals in the quasi maximum
likelihood estimation (QMLE) procedure for DCC-GARCH parameters, are typically as-
sumed to follow a multivariate Gaussian distribution. One stylized fact of financial data
returns is that the residuals are heavy-tailed. We consider the case where the standardized
residuals follow a multivariate Gaussian, and the case where they follow either a multi-
variate Student’s t-distribution or a multivariate Laplace distribution. Results show that
a robust DCC-GARCH model performs better when the standardized residuals follow a
multivariate Student’s t-distribution.

Keywords: multivariate GARCH, DCC-GARCH, time-varying correlation, exchange rates,
portfolio diversification.
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1. Introduction

The understanding and prediction of the temporal dependence in the second-order moments
of asset returns is of great importance in financial time series (Black 1976). This feature
is better recognized through a multivariate modeling framework, as it leads to more useful
empirical models than working with separate univariate models.

One of the applications of the Multivariate Generalized Autoregressive Conditional Het-
eroscedasticity (MGARCH) model is the study of correlations between assets. Extending
from making use of univariate models to multivariate models leads to better decision tools in
areas such as portfolio selection, asset pricing, hedging, and the forecasting of value-at-risk
(Orskaug 2009). A well-known multivariate volatility model within the class of multivariate
generalizations of GARCH models suitable for investigating the volatility of financial data and
the dynamic correlations of market interdependence is the Dynamic Conditional Correlation
(DCC) model of Engle (2002). Other models within this class include the Constant Con-
ditional Correlation (CCC) model of Bollerslev (1990), the Baba, Engle, Kraft, and Kroner
(BEKK) model of Engle and Kroner (1995), and the Exponentially Weighted Moving Average
(EWMA) model of Morgan (Morgan et al. 1997).

In our study, we choose the DCC model over the BEKK and EWMA models, given the
positive definiteness of the time-dependent conditional correlation matrix it guarantees at
every point in time. This model is also relatively parsimonious as the number of parameters
grows linearly with the number of assets, making the model suitable for a large set of financial
assets. The DCC-GARCH model, which parameterizes the conditional correlations directly,
is estimated in two steps. First, a series of univariate GARCH models are estimated for each
asset. Second, the model parameters of the correlation between the assets are estimated using
the standardized residuals obtained from the first step. In this way, the number of parameters
to be estimated in the correlation process becomes independent of the number of series to
be correlated, giving a clear computational advantage over other MGARCH models (Lestano
and Kuper 2016).

Even though the setup of the DCC-GARCH model allows the usage of any univariate GARCH
model for the variance of each financial asset, most researchers usually make use of just one
univariate GARCH model for all the financial asset returns in constructing the DCC-GARCH
model. Wu, Md Yusof, and Misiran (2024) used the DCC-GARCH model to study the correla~
tion between three trading daily stocks in the agricultural sector of the Chinese stock market.
They assumed, according to Bollerslev, Chou, and Kroner (1992), that the GARCH(1,1) was
the best model that defined the variance equation of the univariate GARCH models and used
it to build up the DCC-GARCH model. Similarly, Maharana, Panigrahi, Chaudhury, Uprety,
Barik, and Kulkarni (2025), in their paper on economic resilience in post-pandemic India,
used the GARCH(1,1) for each time series (index) as an estimate of the univariate GARCH
model that was used to build up a VAR-DCC-GARCH model. They, however, acknowledged
the need to further adjust the lag structure if the results of the GARCH(1,1) model diagnos-
tics for autocorrelation are not satisfied. Ampountolas (2022) used the DCC-GARCH model
to evaluate the price volatilities of a range of four cryptocurrencies. The sGARCH(1,1),
EGARCH(1,1), GJR-GARCH(1,1), and TGARCH(1,1) models were used arbitrarily to build
up the DCC-GARCH model going by the conclusion of Hansen and Lunde (2005). Burck-
hardt (2012) in his research on the correlation of foreign exchange rates also admitted the
need of not excluding the possibility of using several lags in the univariate GARCH models
that are used to build up the DCC-GARCH model. Irani, Al. Al. Hadood, Gékmenoglu, and
Athari (2025) equally used an autoregressive integrated moving average, the ARFIMA (2,d,1)
- GARCH (1,1) process, to build the DCC-GARCH model in their paper on the impact of
financial market uncertainty and financial crises on dynamic stock - foreign exchange market
correlations. In their article on the dynamic conditional correlation analysis of financial mar-
ket interdependence, Lestano and Kuper (2016) first applied the GARCH(1,1) with an AR(2)
filter to remove serial correlation and used the filtered series in estimating the DCC model.
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The use of a single univariate GARCH model for each time series, mostly the GARCH(1,1),
to build up the DCC-GARCH model excludes the possibility that each of the time series
could be properly described using different GARCH models.

We propose a more robust DCC-GARCH model in analyzing the dynamics of time-varying
correlations of financial data. Optimal univariate GARCH models are those that provide
the best fit and possibly the best forecasting performance for a given dataset. In this
study, an optimal univariate GARCH model will refer to one of the models; (GARCH(p, q),
EGARCH(p, q), and GJR-GARCH(p, q), with p,q € {1,2}) that has the lowest information
criterion. All the optimal univariate GARCH models for each financial asset are used to
build the DCC-GARCH model. This is in contrast to the situation where a single univariate
GARCH model is applied to all the financial assets.

The standardized residuals of the DCC-GARCH model are usually assumed to follow a multi-
variate Gaussian distribution. One of the empirical findings of the returns of financial data is
that the residuals are heavy-tailed and thus, non-Gaussian. When the residuals have a heavy-
tailed distribution, such as the Student’s t-distribution and Laplace distribution, QMLE can
be used to estimate the model parameters. This approach ensures that the volatility esti-
mates remain reliable and robust, despite the presence of extreme values in the data. We
analyze and compare results of the DCC-GARCH model with the assumption that the stan-
dardized residuals follow: (i) multivariate Gaussian distribution, (ii) multivariate Student’s
t-distribution, and (iii) the Laplace distribution.

The main contribution of this study is the analysis of the dynamics of the time-varying
correlation relationship between some selected exchange rates using the proposed robust DCC-
GARCH model. In terms of trading volume, the foreign exchange market is one of the largest
capital markets (Butt, Ramzan, Wong, Chohan, and Ramakrishnan 2023). Exchange rates are
a key macroeconomic variable that reflects the interdependence between national economies
and the international financial market (Brice and Jules 2024). Companies and investors
pay particular attention to exchange rates so as to manage exchange risk effectively and
diversify their portfolios, respectively. Speculators also look to the co-movement of exchange
rates in order to take advantage of market opportunities. The following exchange rates will
be considered in this study: USD/XAF, GBP/XAF, JPY/XAF, and CNY/XAF (where
USD=United States Dollar, GBP=Great British Pound, JPY=Japanese Yen, CNY=Chinese
Yuan, XAF=ISO symbol for the Franc of the Financial Community of Africa (FCFA)). The
euro has been left out since XAF is pegged to the euro. Even though some research has
been carried out on modeling the above exchange rates using univariate GARCH models (see
Oben (2018), Dinga, Claver, Kum, and Che (2023), Dinga, Claver, Kum, and Che (2025)), to
the best of our knowledge, the DCC-GARCH model, which is used to analyze the dynamics
of the correlation relationship between these exchange rates, has not been considered by
previous studies. This study also emphasizes the importance of making use of a heavy-tailed
multivariate standardized residual distribution in the implementation of the DCC-GARCH
model. It is hoped that the results from this study will lead to the understanding of the
foreign exchange market dynamics for effective diversification.

The rest of the paper is organized as follows: Section 2 introduces univariate and multivari-
ate Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models. Section 3
presents the data analysis and results, while the discussion of results and conclusion is found
in Section 4.

2. GARCH models

2.1. Preliminaries

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models are widely used
in time series analysis to model and forecast time-varying volatility. In studying GARCH
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models, the important preliminary concepts we require include an understanding of basic time
series concepts like stationarity, autocorrelations, heteroskedasticity, log returns, conditional
mean, and conditional variance. We equally have to be familiar with statistical tests that
check data suitability for GARCH modeling.

Most financial returns usually show similar statistical patterns, commonly referred to as
stylized facts (Francq and Zakoian 2019). Some stylized facts for daily returns include uncor-
related returns but auto-correlated squared returns, (heavy-tailed) residual distributions that
are non-normally distributed with non-zero skewness and a kurtosis that is greater than 3, and
volatility clustering, which suggests the presence of time-dependent variance (heteroscedas-
ticity) (Nelson 1991). Traditional models used in time series analysis, such as the ARMA
models, assume that the variance is time invariant (homoscedastic). GARCH models, on the
other hand, have the property of time-varying conditional variance and can therefore capture
volatility clusters and other stylized facts common to financial time series. GARCH models
may be either univariate or multivariate.

When applying the GARCH model to the price history of a financial asset, we make sure that
the data is in a consistent format and covers a significant period of time to capture patterns
of volatility. The price series are converted into return series as GARCH models are typically
applied to returns rather than prices. Supoose r; is the log return for a financial asset with
price P; at time t. Also, let P;,_1 be the price at the previous time step. Then the square of
the log return is

12 = (log P, — log Pr_1)?. (1)

Equation (1) is often used as a proxy in the modeling of volatility (o) given that volatility is
a latent variable (Poon 2005).

The conditional mean of log returns is the expected value of the returns at time ¢ given all past
information up to time ¢ — 1 and is given by u; = E(r|F;—1), where F;_ is the information
available at time t — 1. On the other hand, the conditional variance of log returns is given by
0'252 = V&I‘(Tt’]:t_l) = E[(T‘t — /lt)2‘;t—l]'

We note that p; captures the predictable component of the returns (expected future return);
meanwhile, o7 captures the time-varying volatility of the returns. Squaring the log returns
helps capture the volatility (or variance) of the returns, as it emphasizes larger deviations.

2.2. Some univariate GARCH models

Engle (1982) noticed that the volatility of time series could be modeled using an ARMA-type
process which he referred to as the Autoregressive Conditional Heteroscedasticity (ARCH)
model. This model was subsequently generalized to the Generalized ARCH (GARCH) model
by Bollerslev (1986).

GARCH(p,q) model

Let z; ~ D(0,1) be a sequence of independent and identically distributed (i.i.d) random
variables which is assumed to be independent of the volatility o; and e;_j for £ > 0. Then &;
is called a GARCH(p, q) process if it has mean equation given by Equation (2) and variance
equation given by Equation (3) respectively where w > 0,a; > 0 and 3; > 0.

Tt = Wt + €, E¢ = Ot (2)
2 L 2 d 2
o =w+ Z Qigy_; + Z Biot_;- (3)
i=1 j=1

The GARCH (p, ¢) model assumes that the response of volatility to a shock depends on the
strength of the shock only ignoring information on the sign of £;_;. This suggests that ;_; has
the same effect on volatility irrespective of whether e;_; > 0 or €;_; < 0 as seen in Equation
(3). This is however not true as empirical evidence suggests that positive and negative values
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of ;—; of the same magnitude may sometimes lead to different responses in the volatility,
known as leverage effect (Lim and Sek 2013). Various extensions of the GARCH model have
therefore been developed in order to take into consideration this asymmetric characteristic of
volatility, some of which include;

EGARCH(p, q) model

This model was developed by Nelson (1991), and captures the asymmetric response of volatil-
ity by including an asymmetric parameter in the model. The mean equation is similar to
Equation (2) and the variance equation is given by,

log(o?) = w + Zp: (ozi itfl: + 6ti> + Zq: Bjlog (UtQ_j> ) (4)

i
i1 t—i Ot—i j=1

where o; measures the magnitude of the shock, §; measures the persistence in conditional
volatility of the shocks to the market while ; is the asymmetric parameter that measures the
leverage effect. The model is asymmetric when ~; # 0 and has leverage effect when ~; < 0.

GJR-GARCH (p,q) model

This model that was developed by Glosten, Jagannathan, and Runkle (1993) has variance
equation defined as,

p q
o =w—+ Y (o4 +vilimi)et_i+ > Biot s, (5)
i_1 j=1
where the indicator function I; = 0 if ¢;; > 0 and 1 otherwise. oy is positive when

w>0, a0 >0, ; >0, and o; +; > 0. The model is asymmetric when v; # 0 and
has leverage effect when ~; > 0 for g,_; < 0.

The parameters of univariate GARCH models are estimated using the QMLE procedure
wherein the Maximum Likelihood Estimation (MLE) procedure is used to estimate the param-
eters even when the assumption that the residuals are normally distributed is false (Christof-
fersen 2011).

2.3. Multivariate GARCH models

The multivariate GARCH models broaden the GARCH framework to encompass several time
series, enabling the modeling of time-varying volatilities and correlations between multiple
assets.

Portfolio allocation decisions are influenced by the degree of covariation of prices or volatility
following a shock. A negative covariance between two companies indicates the presence of
diversification opportunities since there is a trade off of the profit and loss between the two
companies. Investors and investment managers take particular interest in the co-movements
of financial assets as it provides insights into the potential for diversification. Diversification
opportunities between assets drop when the correlation between them is high (Solnik 1974).
These issues can be directly studied using a multivariate model. This raises the question of
the specification of the dynamics of the covariance and correlations between financial time
series.

DCC-GARCH model

The dynamic conditional correlation (DCC) model combines univariate GARCH models for
each time series with a dynamic correlation structure. The multivariate equivalent of univari-
ate GARCH models is used to model the volatility of a vector of assets where the important
variables are modeled together allowing for a dynamic and more realistic relationship be-
tween these variables. The DCC-GARCH model of Engle (2002) addresses the time-varying
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volatilities and correlations among financial assets (Ozdemir 2022). This model is an exten-
sion of the CCC-GARCH model of Bollerslev (1990). This extension was necessary because
empirical studies showed that the assumption of constant conditional heteroscedasticity in
the CCC-GARCH model was too restrictive. The DCC-GARCH model is a simple model
that can be used to identify the relationship between more than one univariate models by
parameterizing the conditional correlation between these univariate estimators. Given that
one of the statistical regularities of daily (log) returns is the fact that the distribution of the
residuals is heavy-tailed, a version of the DCC-GARCH model with a multivariate Student’s
t-distribution and multivariate Laplace residual distribution will be used in this study, in
comparison with that of the multivariate normal distribution, as suggested by Pesaran and
Pesaran (2007) and Shiferaw (2019). In this way, the robustness of the estimated values to
possible deviations from normality will be assessed.

According to Afuecheta, Okorie, Nadarajah, and Nzeribe (2024), let &y = (e14--en)’, be an
n X 1 vector of residuals from a portfolio with n financial assets and an n x 1 vector of log
returns ry . Then r¢ = py + &4, where py = E(7r¢|F;—1) and E(e¢|Fi—1) = 0 . In this paper,
pe is modeled as an ARMA series (see Francq and Zakoian (2019)). The vector of residuals
€t can be expressed as:

1
et = HP vy, (6)
where vy ~ N(0,1I,) is the standardized residual, H; is an n x n matrix of conditional
1

variances of ¢ at time ¢ and H2 is any n x n matrix at time ¢ that can be obtained from the
Cholesky factorization of Hy. In a DCC-GARCH model, H; is decomposed into a diagonal
matrix of time-varying standard deviations A; = diag(oi1¢,- - ,0nnt), and a time-varying
conditional correlation matrix R;. This decomposition is expressed as,

H, = A,R,A;. (7)

The matrix A; is obtained from a univariate GARCH model since the conditional variance
evolves according to some 0'2»22-715, i=1,2,--- ,n univariate GARCH process.

Many researchers usually use the GARCH (1,1) process according to Hansen and Lunde
(2005) and thus assume that,

Oy =wit oner, 1+ Biaoi 1. (8)
This assumption may not always be correct. It is possible that the optimal univariate model

is not the GARCH model or has more than one lag. Thus in this study, the optimal GARCH
model of Equation (9) as per AIC with P; € {1,2} and Q; € {1,2} will be considered.

P Qi
Ohi=wit Y ipfii Y BiqOii g i =1,2,-+ ,n. (9)
p=1 q=1
P Qi
Here, w; > 0, a;p >0, By > 0, and Z ap + Z Brg < 1 (Engle Robert and Kevin 2001).
p=1 q=1

EGARCH and GJR-GARCH will also be considered. From Equation (6), the standardized
residuals,
Ut = A;léft.

Ry is the time-varying conditional correlation matrix of the standardized residuals vy and is
given as;

R; = diag(Bt)fé By diag(Bt)iév

where
Bt = (1 —a— b)E + a'vt_lvé_l + bBt—17 (10)
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and a and b are non-negative real numbers such that,
a+b<1. (11)

The elements of R; are of the form,
dijt
Vit .t

Pijt =

B; and B are n x n positive-definite matrices representing the conditional and unconditional
variance-covariance matrices of vy resulting from the estimation of the univariate GARCH
models respectively.

B = Cov(vvy),

and a and b control the reaction to shocks and persistence respectively. If Equation (11)
is true, then R; varies over time because B; will change over time. R; is stationary and
positive definite. If Equation (11) does not hold, the DCC-GARCH model would converge to
the CCC-GARCH model with a constant conditional correlation matrix R (Gabauer 2020).

2.4. Estimating the parameters of the DCC - GARCH model
The parameters of the DCC-GARCH model are estimated using the QMLE procedure. We

consider cases where the standardized residuals are assumed to be: (i) normally distributed,
(ii) Student’s t-distributed, and (iii) Laplace distributed.

Multivariate normally distributed residuals

For vy ~ N(0,I,,) , the joint distribution of vy, --- ,vp is given by,

1
TL/Q exp _ivt’vt)

Il:jﬂ

1
We recall that e = H? vy . Through linear transformation of variables technique, the likeli-
hood function for the paramters of the model 8 is given by,

c(6) = [[(2n) % |, exp(_%egﬂglst). (12)

According to Engle Robert and Kevin (2001), the model parameters €, may be divided into
two groups; 6 = (¢,v), where ¢p; = (wi, 14, , i, fri- -+, Pgi); @ = 1,2,--- ,n, are the
univariate GARCH parameters for the ith time series. The parameters of B; in Equation
(10) are ¥»=(a,b). Substituting Hy = A;R:A: in Equation (12) and taking the logarithm,
we have,

log(L£(0)) = — [n log(2m) + log(|Hz|) + séH[let}

#
Il
—

N | =
M=

[n log(2m) + 2log(|A¢|) + log(|R¢|) + sQAt_lRt_lAt_let} . (13)

ﬁ
Il
—

I
o]
M=

The DCC model has a two stage estimation process: the estimation of the parameters ¢ of
the univariate GARCH models for each time series is done in the first stage and in the second
stage, the correctly specified log-likelihood function in Equation (13) given the parameter ¢
is used to estimate the parameters of 1. In stage one, the matrix R; in Equation (13) is
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replaced with the identity matrix I,, to give the quasi-likelihood function of Equation (14)
written as the sum of individual GARCH specification likelihoods as,

2": lTlog (2m) + Z <log o) + Z%)} . (14)

t=1 it

log(L1(¢

l\’)\}—t

The log(L1(¢)) function is maximized by separately maximizing each of the GARCH log
likelihood functions. From Equation (14), the parameters of ¢ and the conditional variance
U?i’t, i =1,2,---,n for each time series are estimated. The conditional variances are then
used to standardize the residuals obtained, from which the unconditional variance-covariance
matrix @Q, can be estimated.

Given the estimated parameters (;7) in stage one, the parameters 1 are estimated in stage two
using the correctly specified log-likelihood function in Equation (13). Ignoring the constant
terms (including A; ) results in the second stage quasi-likelihood function is given by,

[log(|Re|) + vi Ry vy (15)

M\H
M=

log(La(v)) =

o
I

1

Multivariate Student’s t-distributed residuals

The joint distribution of the standardized residuals vy, - - - ,v; , when v; follows a multivariate
Student’s ¢ distribution is given by:

Fodw) = I L)
i1 D) (valw — 2)n(1 + 225

where T" is the gamma function, and w is the shaping parameter (degrees of freedom). The

(16)

1
likelihood function for e; = H v, is given by,

I NG
ELT(S) (/A (w = 2)

Similar to the case for multivariate normal distribution, the parameter is divided into two
groups: 0 = (¢7 d)) = (¢17 Tt 7¢n7 ¢)7 where d) = (wi7 QAT 7api7 Bli: o 75(]’5)77: - 17 27 R [
are the univariate GARCH parameters for the ith time series and ¥ = (a,b, w). By taking
the logarithm of Equation (17) and substituting Equation (10 ), the log-likelihood is given
by,

£(0) = (17)

IREETEEE

T
n 1
log(L —log F( ) — ) logm(w —2) — 3 log(| At Rt A¢l)],
t:l
which results to,
'A-IR1 A
log(£(0)) = —* 2" log(1 + LT B ) (1)

A two stage estimation procedure will equally be used to estimate the parameters just as
in the case where the distribution is Gaussian. Stage one is identical to that in which the
distribution is Gaussian, and the result is the quasi-likelihood function of Equation (14) as
per the principle of QMLE (Engle Robert and Kevin 2001). In stage two, A; is treated
as a constant term since conditioning is done on the parameters from Stage one. A; is
thus excluded from the log-likelihood estimator in Equation (18) to give the second stage
estimation which assumes that the residuals follow a multivariate Student’s t-distribution as

-1
w+nlog(1+ v R, vy
w—2

log(L2(v)) = — )- (19)
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Multivariate Laplace distributed residuals

1
The joint distribution of the residual vector e; = HZwv¢, when e; follows a multivariate
Laplace distribution (see Rossi and Spazzini (2010)) is given by,

2 exp (eth_lm> e H e w/2
. _ tty €t /-1 s pr—1
f(exsm, Hy) = (27r)"/2 |12 <2 gy t_l ) Ky <\/(2 +m/ H; m) (sth et)> ,

where the vector m is the location parameter and the matrix Hy is the scale parameter of
this distribution.

This distribution has mean m and conditional covariance matrix Hy +mm’. w = (2 —n) /2
and K, (u) = % [ et (12 — 1)1”_1/2 dt, w > —1/2 is the modified Bessel function
of the second kind as shown in Abramowitz (1964). The log-likelihood function is given by,

log £(0) = Z

t=1

e H 'm — %log |H¢| + % (log (egHt_lEt) — 2log (2 + m'Ht_lm))]

log Ko <\/ (2 + m/Ht_lm) (s;Ht—let)ﬂ . (20)

Then, following Equation (7), Equation (20) is written as,

T

2

t=1

1 w
sg(AthAt)_lm — 5 IOg |AthAt’ + 5 (log (E;(AthAt)_IEt))}

(—2 log(2 + m/(AthAt)lm))]

+3 [bg Ko <\/ 2+ m/ (A RiA) ') (e;(AthAt)let))] | (21)

We can now move on to maximize Equation (21) w.r.t. 6.
3. Data analysis and results

3.1. Data description and preliminary results

The datasets used in this study are the daily closing USD/XAF, GBP/XAF, JPY/XAF, and
CNY/XAF exchange rates. They were downloaded from Stock Market Quotes & Financial
News (2017). The time span under consideration was January 2, 2017, through September
30, 2022, and there were 1499 data points in each data set. The R software (Team 2020) and
RStudio 2022.12.0 (Team 2022) were used for data analysis in this work.

The number of units of one currency that exchanges for a unit of another currency is referred
to as the exchange rate (Dinga et al. 2023). A plot of these exchange rates is shown in Figure
1. The output is seen to be non-stationary with a non-constant mean and variance throughout
the sample period. A drop in all the exchange rates can be noticed around early 2020 as a
result of the COVID-19 pandemic.

The graphs for the daily returns for the selected currencies are shown in Figure 2. Clusters
of both large and small log return values appear on the graphs, demonstrating volatility
clustering. The year 2020 experienced significant volatility in the CNY/XAF exchange rate.
The significant fluctuations noted may likely be linked to the disruption brought on by the
COVID-19 pandemic. Furthermore, the log returns exhibit stationarity, as indicated by the
graphs.
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Figure 1: Daily exchange rates
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Figure 2: Daily exchange rate returns

Descriptive statistics

Summary information for the daily exchange rate returns is shown in Panel A of Table 1.
The minimum value for the daily log returns for each of the four exchange rates is negative.
The smallest log return value is —0.0508, and it is that for the CNY/XAF exchange rate.
The maximum values are all positive. The CNY/XAF value is 0.0503, and it is the largest
value. With the exception of the USD/XAF exchange rate, which has a positive mean return
of 0.0007, all others exhibit a mean return of zero. Regarding variability, USD/XAF has the
lowest standard deviation (0.0067), while CNY /XAF has the highest (0.0084). The skewness
of the returns is positive and significantly different from zero (with the exception of the
CNY/XAF returns), indicating that these series have asymmetric distributions. Apart from
GBP/XAF, the kurtosis values of the rest are greater than 3. Thus, the distributions are
leptokurtic, indicating non-Gaussian and heavy-tailed distributions of residuals, which is a
typical characteristic or stylized fact of financial returns (Cont 2001).

Jarque-Bera (JB) test for normality

The Jarque-Bera (JB) test for normality of Bera and Jarque (1981) with p-values less than
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Table 1: Descriptive statistics and Pearson correlation values

Panel A: Descriptive statistics
Returns USD/XAF GBP/XAF JPY/XAF CNY/XAF

Minimum -0.0399 -0.0370 -0.0448 -0.0508
Maximum 0.0365 0.0428 0.0466 0.0503
Mean 0.0007 0.0000 0.0000 0.0000
St. Dev. 0.0067 0.0080 0.0080 0.0084
Skewness 0.3374 0.2049 0.1932 -0.0367
Kurtosis 4.8688 2.4654 3.7036 5.0348
JB test 1514.5 392.12 869.63 1589.3
p-value <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

Panel B: Pearson (Unconditional) Correlation Coefficients

USD/XAF GBP/XAF JPY/XAF CNY/XAF
USD/XAF 1.000

GBP/XAF 0.7056 1.0000
JPY/XAF 0.7884 0.7204 1.0000
CNY/XAF 0.0338 -0.0164 -0.0621 1.0000

0.05 leads to the rejection of the null hypothesis that the data is normally distributed at the
5% level of significance. From Table 1, all the p-values are less than 0.05. Thus, all four
exchange rates are non-Gaussian, and therefore a non-Gaussian multivariate distribution,
such as the multivariate Student’s t-distribution and multivariate Laplace distribution, may
be more suitable in modeling the exchange rates.

Pearson’s correlation

Panel B of Table 1 presents Pearson’s unconditional correlation values between the exchange
rate returns. The values are both positive and negative, suggesting that the exchange rates
do not all move in the same direction. High positive Pearson’s correlation above 0.7 exists be-
tween the following pairs: USD/XAF and GBP/XAF, USD/XAF and JPY/XAF, GBP/XAF
and JPY/XAF. A low positive Pearson’s correlation of 0.03 exists between USD/XAF and
CNY/XAF. A low negative correlation of -0.02 and -0.06 exists between GBP/XAF and
CNY/XAF, and between JPY/XAF and CNY/XAF, respectively.

Pearson product-moment-based unweighted ordinary results of correlation values, however,
provide an average correlation without handling the variations in the correlations (Ozdemir
2022). Time-varying conditional correlation between pairs of exchange rates will be investi-
gated using the DCC-GARCH model.

Preliminary tests

Various preliminary stationary and diagnostic tests are required before the GARCH family
of models is used in modeling financial time series. In this study, the tests considered include
tests for stationarity, the Ljung-Box (LB) Q test of Ljung and Box (1978) that tests for serial
dependence on the first m lags of the time series returns, and Engle’s Lagrange Multiplier
(LM) test of Engle (1984) that tests for the presence of ARCH effects in the returns of the time
series. The tests for stationarity include the Augmented Dickey Fuller (ADF) test of Dickey
and Fuller (1979), the Phillips-Perron (PP) test of Phillips (1988), and the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test of Kwiatkowski, Phillips, Schmidt, and Shin (1992).

The results of the different tests are presented in Table 2. The ADF and PP tests test the
null hypothesis that the time series has a unit root (non-stationary), while the KPSS test
tests the null hypothesis that the time series is stationary. From Table 2, the null hypothesis
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is rejected at the 5% level of significance, following the ADF and PP test results, and it is
not rejected by the KPSS test. Thus, the returns are stationary. LB and LM tests at 5, 10
and 20 lags are statistically significant, leading to the rejection of the null hypothesis of no
serial correlation and constant variance, respectively. It can therefore be concluded that serial
correlation and ARCH effects are present in the time series returns, necessitating the use of
GARCH models.

Multivariate portmanteau tests, notably the rank-based and robust tests, which motivate the
use of multivariate heteroscedasticity models, are equally applied to the returns (Tsay 2013).
The results, reported in Table 2, show that all the multivariate Portmanteau tests reject the
null hypothesis of no conditional heteroscedasticity, implying the presence of ARCH effects.
Hence, the multivariate DCC-GARCH model can be used to model the time series.

Table 2: Preliminary test results

Unit root tests

Returns USD/XAF GBP/XAF JPY/XAF CNY/XAF
ADF -12.375 -12.71 -12.387 -12.98
p-value 0.01 0.01 0.01 0.01

PP test -1800.5 -1642 -1718.2 -1749
p-value 0.01 0.01 0.01 0.01
KPSS test 0.4533 0.0231 0.0628 0.1814
p-value 0.0542 0.100 0.100 0.100

Ljung-Box (LB) Test
USD/XAF GBP/XAF JPY/XAF CNY/XAF

LB(lag=5) 105.48 94.1 107.83 204.07
p-value <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16
LB(lag=10) 107.47 97.848 112.43 215.78
p-value <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16
LB(lag=20) 111.09 105 116.71 230.3
p-value 1.243e-14 1.587e-13 1.11e-15 <2.2e-16

Lagrange Multiplier (LM) Test
USD/XAF GBP/XAF JPY/XAF CNY/XAF

LM(lag=5) 85.065 42.905 60.698 272.97
p-value <2.2e-16 3.863e-08 8.719e-12  <2.2e-16
LM (lag=10) 93.083 47.106 63.136 277.32
p-value 1.308e-15 9.034e-07 9.199e-10 <2.2e-16
LM(lag=20) 106.67 53.314 70 289.83
p-value 7.934e-14 2.607e-05 1.822e-07  <2.2e-16
Multivariate tests

Test statistic p-value
Rank-based test 194.8498 < 0.05
Robust test 351.4052 2.2204e-16

3.2. Parameter estimation

Optimal univariate GARCH model for the variance of each exchange rate time series

The Akaike Information Criteria (AIC) is used to determine the best univariate model that
describes the variance of each of the exchange rates. The optimal model is the one with the
lowest AIC. Our focus is on the GARCH, EGARCH, and GJR-GARCH models.
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In financial time series analysis, choosing the right error distribution is crucial for accu-
rately modeling and forecasting data. The Normal, Skewed Normal, Student’s t-Distribution
(STD), Skewed Student’s t-Distribution (SSTD), Generalized Error Distribution (GED), and
the Skewed Generalized Error Distribution (SGED) are assumed as error distributions. We
consider ARMA(p, §), where p,§ = 0,1,2, and GARCH(p, q), where p,q = 1, 2.

Using the arfima function in the R software, optimal values for ARMA(p, ) that describe
the mean equation for the exchange rate returns are shown in Table 3. By the AIC, the
optimal values for the univariate ARMA (p, §)—GARCH(p, ¢) models that describe the mean
and volatility equations for each of the exchange rates together with the corresponding error
distribution are also given.

We used the Multivariate normal (MVN), Multivariate Student’s t (MVT), and Multivariate
Laplace (MVL) distributions in constructing the DCC-GARCH model. Their results were
compared, as per the values of the information criteria. FEach of the optimal univariate
models My, My, M3 and M4 was used in constructing the DCC-GARCH model. All the
optimal univariate GARCH models were also used to construct the DCC model. The results
with the corresponding Akaike Information Criteria (AIC), Bayesian Information Criteria
(BIC), Shibata (SH), Hannan-Quinn (HQ), and log-likelihood (LL) values are shown in Table
4.

Table 3: Optimal ARMA(p, §)—GARCH(p, ¢) models

USD/XAF ARMA(0,1) M; = ARMA(0,1)- GJR-GARCH(1,1)-SGED
GBP/XAF ARMA(0,2) Ms = ARMA(0,2)- EGARCH(1,1)-SSTD
JPY/XAF ARMA(1,1) M= ARMA(1,1)- GARCH(1,1)-SSTD
CNY/XAF ARMA(1,1) My = ARMA(1,1)- GJIR-GARCH(2,2)-SGED

Innovation

From Table 4, the lowest values for AIC, BIC, SH, and HQ occur when models M; to My are
used to build the DCC-GARCH model with the multivariate Student’s t-distribution. In this
case, all the optimal univariate GARCH models, M7 to My, are first applied to the data to
remove serial correlation, and the standardized residuals of the filtered series are used in the
estimation of the DCC model. This is an innovation given that the use of just one univariate
GARCH model is common practice. The most commonly used is the standard GARCH(1,1),
for all the time series returns in constructing the DCC-GARCH model (Mohammed, Mwambi,
and Omolo 2024).

It is apparent that for all models, M; to My, and a combination of all, the information
criteria with the multivariate Student’s t and Laplace distributions is lower than that for the
multivariate normal distribution. In Table 4, models with the lowest information criteria are
marked with an asterisk (*). Thus, models with heavy-tailed residual distributions perform
better when they are used to model exchange rates. The suitability of the multivariate
Student’s t-distribution in modeling the residuals of the DCC-GARCH model is consistent
with the results obtained by Boudt, Galanos, Payseur, and Zivot (2019).

The estimated results for the univariate GARCH and DCC models with multivariate Stu-
dent’s t-distribution for the residual terms are shown in Table 5. The estimates of the DCC
correlation parameters a and b are all statistically significant, and a + b < 1. This suggests
that By, and hence Ry, vary over time, and they are stationary and positive definite.

Time-varying correlation between pairs of exchange rates

The graphs of the daily conditional volatility are shown in Figure 3, and those of the dynamic
correlation coefficient of the pairwise combinations of the four exchange rates are shown in
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Table 4: Information Criteria and Log-likelihood Values of DCC Models
Univariate
Model AIC-MVN BIC-MVN SH-MVN HQ-MVN LL-MVN
My —29.746 —29.619 —29.747 —29.699 22315.99
Moy —29.619 —29.477 —29.621 —29.566 22224.80
Ms —29.711 —29.583 —29.712 —29.663 22289.30
My —29.776 —29.592 —29.778 —29.707 22354.37
My, Mo, Mz, My —29.864* —29.744* —29.865"  —29.819* 22402.23
AIC-MVT BIC-MVT SH-MVT HQ-MVT LL-MVT
My —30.161 —30.029 —30.162 —30.112 22627.30
Moy —30.091 —29.946 —30.093 —30.037 22579.37
Ms —30.148 —30.016 —30.149 —30.099 22617.49
M,y —30.185 —29.997 —30.187 —30.115 22661.46
My, Mo, Mz, M, —30.209* —30.084* —30.210*  —30.162* 22661.20
AIC-MVL BIC-MVL SH-MVL HQ-MVL LL-MVL
M, —30.058 —29.930 —30.059 —30.010 22549.10
Mo —29.996 —29.854 —29.997 —29.943 22507.09
Ms —30.046 —29.918 —30.047 —29.998 22540.17
My —30.087* —29.902 —30.089* —30.018  22586.91
My, Mo, Ms, My —30.081 —29.960* —30.082 —30.036"  22564.39

(*) Model with the lowest AIC value among competing models

Figure 4. The heteroscedastic nature of the exchange rate conditional volatility is shown in
Figure 3. Before mid-2019, the CNY/XAF exchange rate was the least volatile compared
to the other exchange rates. The onset of the COVID-19 pandemic made the CNY/XAF
exchange rate very volatile. From Figure 4, it can be seen that currency correlations are
non-stationary, dynamic, and time-varying with pronounced apparent structural changes in
the correlation process as equally reported in Engle (1990). An analysis of the daily volatility
and correlation relationships confirms the findings of most scholars that high volatility of
markets is directly linked with strong correlations between them such that markets tend to
behave as one during times of crisis (Junior and Franca 2012). This can be seen somewhere
between 2017-2018 and 2020-2021. In 2017, the rise of Donald Trump as US president and his
declaration of Jerusalem as Israel’s capital, Theresa May of the UK negotiating Brexit, and
extreme weather events such as Hurricane Harvey and Hurricane Irma in the US, contributed
to the high volatility and strong positive correlations between the exchange rates. The global
spread of the COVID-19 pandemic around March 2020 also had a similar effect. The recovery
from the pandemic, coupled with the 2020 oil price war between Russia and Saudi Arabia,
caused an energy crisis and high global inflation in 2021, as seen in the graphs.

For ease of explanation, let us denote U=USD/XAF, G=GBP/XAF, J=JPY/XAF, and
C=CNY/XAF. There is empirical evidence of time-varying correlation between U and G
and between U and J within the range [0.2,0.8]. Another piece of evidence is between U and
C and between G and C, within the range [—0.2,0.4]. The next is between G and J, in the
range [0.3,0.8], and the last is between J and C, in the range [—0.2,0.2]. High and positive
co-movements can be identified between the following three pairs of exchange rates: U and
G, U and J, and G and J. This means that there are fewer opportunities for diversification
between these currency pairs. A very low correlation exists between U and C, G and C, and



Table 5: Parameter estimates for DCC-GARCH model, using M; to My as univariate GARCH
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USD/XAF GBP/XAF JPY/XAF CNY/XAF
Parameter Estimate p-value Estimate p-value Estimate p-value Estimate p-value
I 0.0001  0.2424  -0.0000 0.3685 0.0000 0.6566  —0.0000  0.6621
ary 0.1154 0.2947 0.1255  0.0601
may 0.2290 < 0.05 -0.3061 < 0.05 —0.4095 0.0001 -0.4938 < 0.05
mag -0.0749 < 0.05
w 0.0000 < 0.05 -0.8895 0.1541 0.0000 < 0.05 0.0000  0.3307
aq 0.1145 < 0.05 -0.0127  0.6640 0.1135 < 0.05 0.0441  0.0376
b1 0.8266 < 0.05 0.9078 < 0.05 0.7794 < 0.05 0.8844 < 0.05
Y -0.0476 0.2593 0.2338 < 0.05 0.0779  0.1117
Correlation Parameters

Estimate p-value
a 0.0526 < 0.05
b 0.8598 < 0.05

J and C. A low correlation is a good indication for portfolio diversification. Thus, the 6 pairs
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of exchange rate returns fall into two groups: 3 pairs with high co-movements and correlation
between them and 3 pairs with very little co-movements and correlation between them, as
shown in Figure 5.

Figure 3: Daily USD/XAF, GBP/XAF, JPY/XAF and CNY/XAF conditional volatility
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Prediction of time-varying correlation between pairs of exchange rates

Figure 6 shows the fitted and predicted conditional correlation between the pairs of exchange
rates using the DCC-GARCH model. All of the data is plotted, and a one day ahead rolling
prediction is carried out for each pair of exchange rates with a prediction window of 100 days.
In this figure, the black line is the fitted conditional correlation, and the orange line is the
predicted conditional correlation. It can be observed that the fitted correlation fluctuates
around the unconditional correlation, and in the long run, the predicted values of the condi-
tional correlation appear to converge to the value of the unconditional correlation (as shown
in Panel B of Table 1).
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Figure 4: DCC time-varying correlations between pairs of exchange rates
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Figure 5: Combined DCC time-varying correlations between pairs of exchange rate returns

4. Discussion and conclusion

The DCC-GARCH is a powerful multivariate volatility model within the GARCH multivariate
class of models, which is suitable for investigating the volatility of financial data and dynamic
correlations in financial markets.

The objective of this study was to propose a robust DCC-GARCH model that is constructed
using standardized residuals from all optimal univariate GARCH models for each time series.
The robust DCC-GARCH model is then used to analyze the dynamics of the time-varying
correlation relationship between selected exchange rates, in particular USD/XAF, GBP/XAF,
JPY/XAF, and CNY/XAF. It was found that if all the optimal univariate GARCH models
(with lowest AIC values) for each exchange rate return are used to construct a DCC-GARCH
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Figure 6: Fitted (in black) and Predicted (in orange) DCC time-varying correlations between
pairs of exchange rates

model, the resulting multivariate model has the lowest information criterion and is therefore
more efficient than if individual GARCH models are used. Second, the resulting model is
better if the standardized residuals are assumed to follow a heavy-tailed distribution, that
is, the multivariate Student’s t-distribution in this case, compared to if we assumed that
they follow the Gaussian distribution. Although there are a few studies that use heavy-tailed
residual distributions to construct a DCC-GARCH model, to the best of our knowledge, no
study has used the approach presented in this paper.

Empirical evidence of the time-varying correlation relationship between the selected exchange
rates is also of the utmost importance for foreign-exchange investors. Understanding these
time-related correlations will help investors to optimize their portfolio allocation by investing
in pairs of exchange rates with low correlation and co-movement between them, and consider
alternative strategies such as sector rotation in periods of high correlation.

For further research, other heavy-tailed residual distributions, such as the multivariate gener-
alized error distribution, may also be used as standardized residual distributions. The results
obtained should be compared with those where the standardized residuals are assumed to
follow the multivariate Student’s t-distribution, Laplace, or Gaussian distributions. Hybrid
models such as Copula-DCC-GARCH can also be used to analyze the time-varying correla-
tions between exchange rates and compare the results with the DCC-GARCH model.
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