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Abstract

A new parameter is introduced to extend the geometric distribution using Azzalini’s
method. Several important structural properties of the proposed two-parameter extended
geometric distribution are investigated. Characterizations including for the geometric
distribution, in terms of the proposed model, are established. Maximum likelihood es-
timation, method of moment estimation and relative frequency based estimation of the
parameters are discussed in detail. The likelihood ratio test regarding relevance of the
additional parameter is presented. Bayesian estimation of the parameters using STAN
is also discussed. The proposed model is compared with some recently introduced two-
parameter count models by analyzing two real-life datasets. The findings clearly indicate
superiority of the proposed model over the rest.

Keywords: skewed distribution, increasing failure rate, log-concave, unimodal, recurrence re-
lation.

1. Introduction

There are several existing methods of generating and generalizing continuous probability
distributions. In particular, skewed continuous distributions have been thoroughly examined
and extended by many researchers stemming from the popular skew normal distribution of
Azzalini (1985). The standard skew normal distribution with skewing parameter α ∈ (−∞,∞)
has the probability density function (pdf)

f(z) = 2φ(z)Φ(αz), z ∈ (−∞,∞). (1)

Here, φ and Φ denote the pdf and cumulative distribution function (cdf) of the standard
normal distribution. Let g and G denote pdf and cdf of a continuous distribution with
support S ⊂ (−∞,∞), respectively. Thus in general,

f(z) =
g(z)G(αz)∫
S g(t)G(αt)dt

, z ∈ S. (2)

Clearly, Azzalini’s method is a particular case of the above weighting mechanism with cdf
as the weighting function. While numerous continuous distributions are introduced in last
three decades with Azzalini’s method, such attempt with discrete distributions is unavailable.
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Thus, it is of interest to apply Azzalini’s method to a discrete distribution with compact cdf,
such as the geometric distribution. Extension of geometric distribution has attracted many
researchers over the years. For instance, Jain and Consul (1971), Philippou, Georghiou, and
Philippou (1983), Tripathi, Gupta, and White (1987), Makcutek (2008), Gómez-Déniz (2010)
and Nekoukhou, Alamatsaz, and Bidram (2012). Many of these generalizations rely on the
discretization of continuous distributions or extension using the Marshall-Olkin family of dis-
tributions. Recently, Chakraborty and Gupta (2015) proposed a generalization known as the
exponentiated geometric distribution and Bhati, Sastry, and Maha Qadri (2015) introduced
a weighted geometric distribution. The extended geometric distribution to be introduced in
this article by using Azzalini’s method, is different from the generalizations of the geomet-
ric distribution mentioned above. It is to be noted that the motivation behind the use of
Azzalini’s method, is for extending the geometric distribution, unlike skewing a symmetric
distribution.

In the next section, we introduce the extended geometric distribution. We investigate its
distributional properties in Section 3. In Section 4, we discuss a few related characterizations.
Section 5 is about estimation of the parameters in the model from both the frequentist and
Bayesian perspectives. Two real life applications of the proposed distribution are presented
in Section 6. We conclude the article by pointing out several scopes and some limitations of
the current work.

2. Proposed model

Consider the random experiment of tossing a coin independently until head appears. Let the
probability of obtaining head in each toss be p, 0 < p < 1. If Y denotes the number of tails
obtained before getting the first head, then Y has the following probability mass function
(pmf).

pY (y) = pqy, q = 1− p, y = 0, 1, 2, ... (3)

Here, Y is said to follow the geometric distribution with parameter p and we write Y ∼ G(p).
The cdf of Y is given below.

FY (y) = 1− qy+1 (4)

Since, Y has non-negative support, FY (αy) = 0 for α < 0. In analogy with (2), we propose
an extension of the geometric distribution with the following pmf.

pX(x) =
pY (x)FY (αx)∑∞
x=0 pY (x)FY (αx)

=
pqx(1− qαx+1)

W (p, α)
. (5)

Here, W (p, α) = (1 − qα+1 − pq)/(1 − qα+1), 0 < p < 1, α > 0 and x = 0, 1, 2, ... . The
distribution of X is named the extended geometric distribution and we write X ∼ EG(p, α).

Special cases:

• EG(p, 0) reduces to G(p).

• For α→∞,

pX(x) =

{
pqx

1−pq , x = 1, 2, ...
p2

1−pq , x = 0.

Remark 1. For large α, EG(p, α) can accommodate excess zeroes for p → 1. However, for
p→ 0, EG(p, α) turns out to be zero-deflated.

Now, we present a stochastic formulation of the EG(p, α) distribution considering the fol-
lowing coin tossing experiment. Consider two persons A and B tossing two different coins
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independently. Both the coins have same probability p of showing head. Let the number of
tails obtained by A and B before the first head be U and V , respectively. If V ≤ U is known,
then U is distributed as EG(p, 1). Generalizing this situation with an additional parameter
α ∈ {0, 1, 2, ...}, EG(p, α) can be viewed as the distribution of U when it is known that
V ≤ αU . The genesis of EG(p, 0) or G(p) is clear when we put α = 0 in the conditional
statement V ≤ αU . This formulation can be justified by the following. Clearly, U and V are
iid G(p). Then

P (U = u|V ≤ αU) =
P ({U = u} ∩ {V ≤ αU})

P (V ≤ αU)

=
P (U = u)P (V ≤ αu)

P (V ≤ αU)

=
pqu(1− qαu+1)∑∞
j=0 FX(αj)pX(j)

=
pqu(1− qαu+1)

W (p, α)
.

The converse is also true and we discuss it further in Section 4. Though the formulation given
above is for non-negative integer α, we study the proposed distribution with non-negative
real α as motivated from Azzalini’s mechanism. Remark 1 is justified by Figure 1. For larger
values of α and p = 0.5, the distribution has two modes, at 0 and 1. For smaller values
of p, the shape of the distribution changes from the J-shaped geometric distribution with
non-zero mode. For larger values of p, the distribution is able to accommodate outliers. The
distribution has longer tail for smaller values of p.

3. Distributional properties

The EG(p, α) model, proposed in the last section, is simple, having only two parameters,
flexible and has some useful shapes. Therefore in this section, we explore different properties
of the proposed model in detail.

3.1. Log-concavity and unimodality

A discrete distribution is said to be log-concave if its pmf f satisfies f2(k) ≥ f(k+1)f(k−1).
Note that, for k = 1, 2, ...

{pqk(1− qαk+1)}2 ≥ pqk+1(1− qα(k+1)+1)pqk−1(1− qα(k−1)+1)

=⇒ p2X(k) ≥ pX(k + 1)pX(k − 1).

Thus, EG(p, α) is is log-concave and hence by Theorem 3 of Keilson and Gerber (1971), it is
also strongly unimodal.

Remark 2. The EG(p, α) distribution has non-zero mode if α > log(2q− 1)/ log(q)− 2. For
example, the distribution has non-zero mode for p = 0.25 and α > 0.409. In case, when
α = log(2q − 1)/ log(q)− 2, we have two modes at x = 0 and 1. For p = 0.25 and α = 0.409,
unimodality, in the sense of having a unique modal region defined by the set {0, 1}, having the
same mass equal to the maximum. That is, pX(0) = pX(1) = maxx∈{0,1,...} pX(x).

3.2. Recurrence relation and tail length

Probability recurrence relation plays an important role in computing mass function and in
determining tail behaviour of a distribution. For fixed x,

pX(x+ 1)

pX(x)
=
q(1− qαx+α+1)

1− qαx+1
. (6)
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Figure 1: Probability mass function of EG(p, α) for p ∈ {0.1, 0.25, 0.50, 0.75} and α ∈
{0.5, 1, 5, 15}. The (i, j)-th plot corresponds to i-th value of p and j-th value of α for
i, j = 1, 2, 3, 4.
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From (6), we have the following two-term recurrence formula.

pX(x+ 1) =
q(1− qαx+α+1)

1− qαx+1
pX(x). (7)

The behaviour of the tail of the distribution may be studied from the ratio of probabilities
(Ong and Muthaloo 2012). As x → ∞ the RHS of (6) tends to q. Hence the distribution is
short or long tailed depending on the value of p. When p→ 1, we get a Poisson-type tail and
for p→ 0, a longer tail appears.

3.3. Cumulative distribution function

Using (5) in FX(x) =
∑x

j=1 pX(j), we have

FX(x) =
1

W (p, α)

x∑
j=0

pqj(1− qαj+1)

=
1

W (p, α)

 x∑
j=0

pqj −
x∑
j=0

pqαj+j+1


=

1

W (p, α)

[
(1− qx+1)− pq1− q(α+1)(x+1)

1− qα+1

]
. (8)

3.4. Random sample generation

As an explicit from of the cdf is available, one can use probability integral transform to
generate a random observation x from EG(p, α) by solving FX(x) = u for x, given the values
of p, α and u ∼Uniform(0, 1). Note that, FX(x) = u implies

1− uW (p, α) = qx+1 + C[1− q(α+1)(x+1)]. (9)

Here, C = pq/(1− qα+1). After some algebraic patchwork, from (9), we obtain

B = y[1− Cyα]. (10)

Here, B = 1 − C − uW (p, α) and y = qx+1. It is obvious from (10), for the proposed
distribution, a direct solution for x, as outlined above, is not feasible. Application of differ-
ent numerical routines, for solving (10), yield inconsistent and imprecise results. Note that,
y ∈ (0, 1) since q ∈ (0, 1). Thus, we prescribe the following exhaustive search based algorithm
that provides consistently precise output.

Algorithm 1

(For generating a sample of size n from EG(p, α))

• Step-1 : Input p and α.

• Step-2 : Compute: W = W (p, α), C = pq/(1− qα+1).

• Step-3 : Generate one u from Uniform(0, 1) distribution and compute B = 1−C −uW .

• Step-4 : For y = {0.0001, 0.0002, ..., 0.9999}, obtain y0 = miny{y − Cyα+1 −B}.

• Step-5 : Find x = blog(y0)/ log(q)c.
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• Step-6 : Repeat Step-2 to Step-5 n times.

3.5. Generating functions

Using (5) in PX(t) =
∑∞

j=0 t
jpX(j), we get the probability generating function (pgf) as

PX(t) =
1

W (p, α)

∞∑
j=0

p(tq)j(1− qαj+1)

=
1

W (p, α)
[H(t)− qH(qαt)] . (11)

Here, H(t) = p/(1− qt) is the pgf of G(p). Similarly, the moment generating function (mgf)
of X is readily obtained in terms of Q(t), the mgf of G(p), as follows

MX(t) =
1

W (p, α)
[Q(t)− qQ(qαt)] . (12)

3.6. Moments

The rth factorial moment can be obtained by differentiating the pgf in (11) r times with
respect to t and putting t = 1.

Now,

δr

δtr
H(t)|t=1 = r!

(
q

p

)r
δr

δtr
H(qαt)|t=1 =

r! pq(α+1)r

(1− qα+1)r+1
.

Therefore using (11), we get

E(X(r)) =
r!

W (p, α)

[(
q

p

)r
− pq(α+1)r+1

(1− qα+1)r+1

]
Where x(r) = x(x−1)...(x−r+1). Hence the first two raw moments of EG(p, α) are obtained
below.

E(X) =
1

W (p, α)

[
q

p
− pq(α+2)

(1− qα+1)2

]

=
q{1− 3qα+1 + 2qα+2 − qα+3 + q2α+2}

p(1− qα+1)(1− q + q2 − qα+1)
(13)

E(X(2)) =
2

W (p, α)

[(
q

p

)2

− pq2α+3

(1− qα+1)3

]
(14)

Variance follows immediately as

V ar(X) = E(X(2)) + E(X)− (E(X))2

=
q

p2
+

qα+1

(1− qα+1)2 − 2p+q2−qα+1

p+q2−qα+1

. (15)

Other higher order moments can be derived similarly. The index of dispersion (ID) is given
by

IDX =
V ar(X)

E(X)

=
1

p
+

1

1− qα+1
+

2{(q − 2)qα+1 − 1}
1 + q2(α+1) − qα+1{q(q − 2) + 3}

− p

q(qα − q + 1)
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From Figure 2, the distribution is over dispersed and the ID can be very high for small values
of p.
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Figure 2: Index of dispersion of EG(p, α) for p ∈ (0, 1) and α ∈ (0, 5)

3.7. Reliability properties

The reliability function of a discrete random variable T at time t is the probability that the
survival time T is at least t. From (8), the reliability function of EG(p, α) is given by

RX(x) = P (X ≥ x) = 1− 1

W (p, α)

[
(1− qx)− pq1− q(α+1)x

1− qα+1

]
. (16)

The hazard function of a discrete random variable T at time point t is defined as the condi-
tional probability of failure at t, given that the survival time T is at least t. Now, using (5)
and (16), the hazard function is obtained as follows.

hX(x) =
P (X = x)

P (X ≥ x)
=
pX(x)

RX(x)
=
p(1− qαx+1)(1− qα+1)

1− qα+1 − pqαx+1
(17)

From Figure 3, it is seen that EG(p, α) has monotonically increasing hazard rate.

4. Characterizations

We investigate three interesting stochastic characterizations of the proposed extension of the
geometric distribution through the following results.

Theorem 1. Let U and V are independently and identically distributed (iid) random variables
with support {0, 1, 2, ...}. For any α ∈ {0, 1, 2, ...}, the conditional distribution of U |V ≤ αU
follows EG(p, α) if and only if (iff) U, V ∼ G(p).
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Figure 3: Hazard function of EG(p, α) for p ∈ {0.1, 0.25, 0.50, 0.75} and α ∈ {0.5, 1, 5, 15}.
The (i, j)-th plot corresponds to i-th value of p and j-th value of α for i, j = 1, 2, 3, 4.
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Proof. If part : Discussed in Section 2.

Only if part : Note that,

P [U = u|V ≤ αU ] =
pqu((1− qαu+1)(1− qα+1))

1− qα+1 − pq

=⇒ P (U = u)FV (αu)

P (V ≤ αU)
=
pqu((1− qαu+1)(1− qα+1))

1− qα+1 − pq
.

In particular, for α = 1,

P (U = u)FV (u) = P (V ≤ U)
pqu((1− qαu+1)(1− qα+1))

1− qα+1 − pq
= Cqu(1− qu+1). (18)

Here, C is some constant, independent of u. Putting u = 0 in (18), we get

P (U = 0)P (V = 0) = C(1− q)
=⇒ [P (U = 0)]2 = C(1− q). (19)

Similarly, for u = 1,

P (U = 1)FV (1) = Cq(1− q2)
=⇒ P (U = 1)P (U = 0) + [P (U = 1)]2 = Cq(1− q2). (20)

Let, θk = P (U = k)/P (U = 0) for k = 1, 2, .... we get

θ1[P (U = 0)]2 + θ21[P (U = 0)]2 = Cq(1− q2)
=⇒ θ21 + θ1 − q(1 + q) = 0 (Using (19))

=⇒ θ1 = q or − 1− q. (21)

Hence,
P (U = 1) = qP (U = 0). (22)

Now, we claim that,
P (U = u) = quP (U = 0). (23)

We prove (23) by induction. Note that, (23) is true for u = 1, by (22). Let (23) be true
u = n. Now,

P (U = n+ 1)FV (n+ 1) = Cqn+1(1− qn+2) From (18)

=⇒ P (U = n+ 1){P (U = 0) + ...+ P (U = n+ 1)} = Cqn+1(1− qn+2)

=⇒ θn+1P (U = 0){P (U = 0) + ...+ qnP (U = 0) + P (U = n+ 1)} = Cqn+1(1− qn+2)

=⇒ θn+1[P (U = 0)]2{1 + q + ...+ qn + θn+1} = Cqn+1(1− qn+2)

=⇒ θ2n+1 + θn+1

n∑
j=0

qj − qn+1
n+1∑
j=0

qj = 0 Using (19)

=⇒ θn+1 = qn+1 or −
n+1∑
j=0

qj . (24)

Hence,

θn+1 =
P (U = n+ 1)

P (U = 0)
= qn+1

=⇒ P (U = n+ 1) = qn+1P (U = 0). (25)

Therefore P (U = u) = quP (U = 0) = pqu and thus, U ∼ G(p) and U, V being identical
V ∼ G(p).
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Theorem 2. Let X be any discrete random variable with support {0, 1, 2, ...}. For any α > 0,
X follows EG(p, α) iff

E
[
qX(1 + q)(1− qα+1)− pqX(α+1)+1|X ≥ k

]
= qk(1− qα+1 − pqαk+1). (26)

Proof. If part
We have seen that (26) can be written as∑

x≥k

[
qx(1− qα+1 − pqαx+1) + qx+1(1− qα+1 − pqα(x+1)+1)

] P (X = x)

P (X ≥ k)

= qk(1− qα+1 − pqαk+1).

(27)

From this we write∑
x≥k+1

[
qx(1− qα+1 − pqαx+1) + qx+1(1− qα+1 − pqα(x+1)+1)

] P (X = x)

P (X ≥ k + 1)

= qk+1(1− qα+1 − pqα(k+1)+1).

(28)

Taking difference of (27) and (28) we get[
qk(1− qα+1 − pqαk+1) + qk+1(1− qα+1 − pqα(k+1)+1)

]
P (X = k)

=
(qk(1− qα+1 − pqαk+1))2 − (qk+1(1− qα+1 − pqα(k+1)+1))2

1− qα+1 − pq

=⇒ P (X = k) =
(1− q)(1− qαk+1)(1− qα+1)

1− qα+1 − pq

Only if part

E
[
qX(1 + q)(1− qα+1)− pqX(α+1)+1(1 + qα+1)|X ≥ k

]
=

∑
x≥k

[
qx(1− qα+1 − pqαx+1) + qx+1(1− qα+1 − pqα(x+1)+1)

] P (X = x)

P (X ≥ k)
(29)

=
1

P (X ≥ k)

∑
x≥k

[
qx(1− qα+1 − pqαx+1) + qx+1(1− qα+1 − pqα(x+1)+1)

]
P (X = x)

=
1

P (X ≥ k)

∑
x≥k

(qx(1− qα+1 − pqαx+1))2 − (qx+1(1− qα+1 − pqα(x+1)+1))2

qx(1− qα+1 − pqαx+1)

=
{qk(1− qα+1 − pqαk+1)}2

qk(1− qα+1 − pqαk+1)

= qk(1− qα+1 − pqαk+1)

Theorem 3. Let X be any discrete random variable with support {0, 1, 2, ...}. For any α > 0,
X follows EG(p, α) iff

hX(x+ 1)− hX(x) =
pqαx+1(1− qα+1)(q − 2qα + q2α+1 + 2pqα)

(1− qα+1)2 − pqαx+1[(1 + qα)(1− qα+1) + pqα(x+1)+1]
, (30)

with initial condition

hX(0) =
p2(1− qα+1)

1− pq − qα+1
. (31)
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Proof. If part : From (30), it readily follows that∑k
x=0[hX(x+ 1)− hX(x)] =

∑k
x=0

pqαx+1(1−qα+1)(q−2qα+q2α+1+2pqα)

(1−qα+1)2−pqαx+1[(1+qα)(1−qα+1)+pqα(x+1)+1]

=⇒ hX(k + 1)− hX(0) =
∑k

x=0

{
p(1−qα(x+1)+1)(1−qα+1)

1−qα+1−pqα(x+1)+1 − p(1−qαx+1)(1−qα+1)
1−qα+1−pqαx+1

}
=⇒ hX(k + 1)− hX(0) = p(1−qα(k+1)+1)(1−qα+1)

1−qα+1−pqα(k+1)+1 − p2(1−qα+1)
1−pq−qα+1 .

Hence, from (31)

hX(k + 1) =
p(1− qα(k+1)+1)(1− qα+1)

1− qα+1 − pqα(k+1)+1
.

Only if part : Can easily be checked.

5. Estimation

Here, we discuss four different methods of estimating the parameters of the EG(p, α) model.
Consider a random sample X = (X1, X2, ..., Xn) from X ∼ EG(p, α). A realization on X is
denoted by x = (x1, x2, ..., xn). From the viewpoint of application, x is the working dataset.

5.1. Method of moment estimation

Let x̄ = (1/n)
∑n

i=1 xi be the sample mean of x. Also let s2x =
∑n

i=1(xi − x̄)2/(n− 1) be the
sample variance. Now, from (13), E(X) = µX(q, α), a function of q and α, is

µX(q, α) =
q(1− 3qα+1 + 2qα+2 − qα+3 + q2α+2)

(1− q)(1− qα+1)(1− q + q2 − qα+1)
.

Similarly from (15), V ar(X) = σ2X(q, α) is

σ2X(q, α) =
q

(1− q)2
+

qα+1

(1− qα+1)2 − 2(1−q)+q2−qα+1

1−q+q2−qα+1

.

Solving µX(q, α) = x̄ and σ2X(q, α) = s2x in q and α, directly is not feasible. Now, we rewrite
µX(q, α) and σ2X(q, α) by transforming α to β = qα for Algorithm 2.

µX(q, β) =
q(1− 3qβ + 2q2β − q3β + q2β2)

(1− q)(1− qβ)(1− q + q2 − qβ)

σ2X(q, β) =
q

(1− q)2
+

qβ

(1− qβ)2 − 2(1−q)+q2−qβ
1−q+q2−qβ

Algorithm 2

(For estimating (p, α) by method of moments)

• Step-1 : Compute x̄ and s2X from x.

• Step-2 : Fix q ∈ q = {0.0001, 0.0002, ..., 0.9999}.

• Step-3 : For each q ∈ q, find β ∈ β = {0.0001, 0.0002, ..., 0.9999, 1.0000} such that
D(q, β) = (µX(q, β)− x̄))2 + (σ2X(q, β)− s2X)2 is minimum.

• Step-4 : For each pair of (q, β) ∈ (q,β), obtained in Step-3, find (q̂M , β̂M ) for which
D(q, β) is minimum.

• Step-5 : Return p̂M = 1− q̂M and α̂M = log(β̂M )/ log(q̂M ).
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5.2. Estimation based on proportion of zeros and ones

Let f(0) =
∑n

i=1 I(xi = 0) and f(1) =
∑n

i=1 I(xi = 1), where I(A) = 1 if the statement A is
true and I(A) = 0, else. From (6),

k(x) =
pX(x+ 1)

pX(x)
=
q(1− qα(x+1)+1)

1− qαx+1
for x = 0, 1, ...

=⇒ k(0) =
q(1− qα+1)

1− q
. (32)

From (32), we get

α =
log
[
1− (1−q)k(0)

q

]
log(q)

− 1. (33)

Algorithm 3

(For estimating (p, α) by method of relative frequency)

• Step-1 : Compute f(0) and f(1) from x.

• Step-2 : Fix q ∈ q = {0.0001, 0.0002, ..., 0.9999}.

• Step-3 : For each q ∈ q, find α from (33), replacing k(0) by f(1)/f(0).

• Step-4 : For each pair of (q, α), obtained in Step-3, find (q̂F , α̂F ) for which (pX(0) −
f(0)/n)2 is minimum.

• Step-5 : Return p̂F = 1− q̂F and α̂F .

5.3. Maximum likelihood estimation

From (5), the log-likelihood function is

l(q, α|x) = n log(1−q)+n log(1−qα+1)−n log(1−q+q2−qα+1)+log q
n∑
i=1

xi+
n∑
i=1

log(1−qαxi+1).

By differentiating l(q, α|x) with respect to q we obtain a score function,

s1(q, α|x) = − n

1− q
− nq

α(1 + α)

1− qα+1
+ n

1− 2q + qα(1 + α)

1− q(1− q + qα)
+

n∑
i=1

xi
q
−

n∑
i=1

qαxi(1 + αxi)

1− qαxi+1
.

Similarly, by differentiating l(q, α|x) with respect to α, we obtain the other score function as

s2(q, α|x) = −nq
α+1 log q

1− qα+1
+

nqα+1 log q

1− q(1− q + qα)
−

n∑
i=1

qαxi+1xi log q

1− qαxi+1
.

It is not feasible to solve s1(q, α|x) = 0 and s2(q, α|x) = 0 in q and α explicitly. In absence of
closed form solutions, a common practice is to numerically maximize l(q, α|x) with respect to q
and α. For initialization, required for numerical optimization routines, the estimates discussed
in Section 5.1 and Section 5.2 are found suitable. However, Algorithm 3 is computationally
less intensive compared to Algorithm 2. If one can afford such exhaustive searching for mere
initialization, it is reasonable to employ similar exhaustive searching, directly for finding
maximum likelihood estimates. This will also remove the issue of instability that might creep
in numerical optimization routines. As in Section 5.1, transforming α to β = qα, we obtain

l(q, β|x) = n log(1− q)+n log(1− qβ)−n log(1− q+ q2− qβ)+ log q
n∑
i=1

xi+
n∑
i=1

log(1− qβxi).
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Algorithm 4

(For estimating (p, α) by method of maximum likelihood)

• Step-1 : Fix q ∈ q = {0.0001, 0.0002, ..., 0.9999}.

• Step-2 : For each q ∈ q, find β ∈ β = {0.0001, 0.0002, ..., 0.9999, 1.0000} such that
l(q, β|x) is maximum.

• Step-3 : For each pair of (q, β) ∈ (q,β), obtained in Step-2, find (q̂L, β̂L) for which
l(q, β|x) is maximum.

• Step-4 : Return p̂L = 1− q̂L and α̂L = log(β̂L)/ log(q̂L).

The second-order partial derivatives are given as follows.

∂2l(q, α|x)

∂q2
= − n

(1− q)2
−

n∑
i=1

xi
q2
− nα(1 + α)qα−1

1− qα+1
− nq2α(1 + α)2

1− q(α+1)2
+

n∑
i=1

αxi(1 + αxi)

q(q − q−αxi)

−
n∑
i=1

q2αxi(1+αxi)
2

(q1+αxi − 1)2
+
n(1− 2q + qα(1 + α))2

(1 + q(q − 1− qα))2
+
n(qαα(1 + α)− 2q)

q(1 + q(q − 1− qα))

∂2l(q, α|x)

∂α2
= (log q)2

[
n
q2+α(q − 1)(q − 1− q2 + q2+2α)

(q1+α − 1)2(q(1− q + qα)− 1)2
−

n∑
i=1

x2i q
1+αxi

(q1+αxi − 1)2

]
∂2l(q, α|x)

∂q∂α
=

n

q − q−α
+

n∑
i=1

xiq
αxi

q1+αxi − 1
− n(q1+2α(1 + α) log q)

(q1+α − 1)2
+
nqα(1 + α) log q

q1+α − 1

−
n∑
i=1

q1+2αxixi(1 + αxi) log q

(qαxi+1 − 1)2
+

n∑
i=1

xi(1 + αxi) log q

qαxi+1 − 1

+
nq1+α log q(1− 2q + qα(1 + α))

(q(1− q + qα)− 1)2
− nqα(1 + (1 + α) log q)

q(1− q + qα)− 1

The Fisher’s information matrix for (q, α) is

J =


−E

(
∂2l(q,α|x)

∂q2

)
−E

(
∂2l(q,α|x)
∂q∂α

)
−E

(
∂2l(q,α|x)
∂q∂α

)
−E

(
∂2l(q,α|x)

∂α2

)
.

This can be approximated as

Ĵ =


J11 = −E

(
∂2l(q,α|x)

∂q2

) ∣∣∣∣
q̂L,α̂L

J12 = −E
(
∂2l(q,α|x)
∂q∂α

) ∣∣∣∣
q̂L,α̂L

J21 = −E
(
∂2l(q,α|x)
∂q∂α

) ∣∣∣∣
q̂L,α̂L

J22 = −E
(
∂2l(q,α|x)

∂α2

) ∣∣∣∣
q̂L,α̂L

.

As n → ∞, the limiting distribution of
√
n(q̂L − q, α̂L − α) is bivariate normal with mean

vector (0, 0) and variance-covariance matrix

Ĵ−1 = 1
J11J22−J12J21

 J11 −J12

−J21 J22

.

From the relation p̂L = 1 − q̂L, it is evident that
√
n(p̂L − p, α̂L − α) asymptotically follows

bivariate normal distribution with mean vector (0, 0) and variance-covariance matrix
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D̂ = 1
J11J22−J12J21

 J11 J12

J21 J22

.

5.4. Bayesian estimation

When prior information are available, the Bayesian method of estimation with informative
prior distributions on the parameters, proves to be efficient in many applications. However,
in absence of the reasonable prior guess, one may assume non-informative flat priors on the
parameters and compute the posteriors. Here, the two parameters are p with support (0, 1)
and α with support (0,∞). For the informative case, beta prior on p and gamma prior on
α are reasonable. Unfortunately, with these prior choices, the posterior and hence the full
conditionals though proper, are not in any identifiable family of distributions. Thus, for
sampling from the marginal posteriors, the hamiltonian markov chain technique implemented
in STAN (Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, and
Riddell 2017) is a viable alternative. Obviously, the proposed model is not available in STAN
as a standard model. First, we present the function for writing the proposed model in STAN
below.

functions{

real EG log (vector x , real p , real alpha ){
vector [num elements ( x ) ] prob ;
real lprob ;
for ( i in 1 :num elements ( x ) ){

prob [ i ] <− p∗(1−p)ˆ x [ i ]∗(1−(1−p )ˆ( alpha ∗x [ i ]+1))∗
(1/((1 −p∗(1−p)−(1−p )ˆ( alpha +1))/(1−(1−p )ˆ( alpha +1) ) ) ) ;

}
lprob=sum( log ( prob ) ) ;
return lprob ;

}
}

For both the informative and non-informative cases, the above code for the data-model re-
mains same. For the informative case, we set

p ∼ Beta (δ0, τ0) and

α ∼ Gamma (α0, β0).

Now, we present the remaining part of the STAN code below, comprising of the ‘data’ part
containing information on the hyper-parameters.

data{
int<lower=0> n ;
vector [ n ] y ;
real<lower=0> alpha0 ;
real<lower=0> beta0 ;
real<lower=0> de l ta0 ;
real<lower=0> tau0 ;

}
parameters{

real<lower=0,upper=1> p ;
real<lower=0> alpha ;

}
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model{
p˜beta ( de l ta0 , tau0 ) ;
alpha g̃amma( alpha0 , beta0 ) ;
y˜EG(p , alpha ) ;

}

The information required for the data-block are to be supplied through R, interfacing STAN
with R by the RStan library. For the non-informative case, we set π(p, α) ∝ 1, where π
denotes the prior density. For this case, the remaining part of the STAN code is given below.

data{
int<lower=0> n ;
vector [ n ] y ;

}
parameters{

real<lower=0,upper=1> p ;
real<lower=0> alpha ;

}
model{

y˜EG(p , alpha ) ;
}

After obtaining the posterior samples through specified number of chains, usually initial half
of the samples are discarded and the estimates of p and α, namely p̂B and α̂B are obtained
by averaging the corresponding posterior samples.

6. Applications

Here, two datasets are considered for modelling application. The first dataset records the
number of claims made by automobile insurance policy holders (Klugman, Panjer, and Will-
mot 2012). The second one records the number of ticks counted on sheeps (Fisher 1941). For
comparing the proposed model, we consider the following discrete distributions with the same
support.

• NB(r, q): The negative binomial distribution discussed in Johnson, Kemp, and Kotz
(2005) having the following mass function.(

r + x− 1

x

)
qr(1− qx)

• ND(α, θ): The new discrete distribution discussed in Gómez-Déniz, Sarabia, and Ojeda
(2011) having the following mass function.

log(1− αθx)− log(1− αθx+1)

log(1− α)

• NGPL(α, θ): The new generalized Poisson-Lindley distribution discussed in Bhati et al.
(2015) having the following mass function.

θ2

(θ + α)(1 + θ)x+1

(
1 +

α(x+ 1)

1 + θ

)
• WG(α, q): The weighted geometric distribution discussed in Bhati and Savitri (2018)

having the following mass function.

(1− α)(1− αq+1)αx
(1− αq(x+1))

1− αq
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Table 1: Number of claims in automobile insurance

Claims Frequency EG(p, α) NB(r, q) ND(α, θ) NGPL(α, θ) WG(α, q)

0 1563 1564.68 1564.54 1563.70 1564.57 1564.27
1 271 263.32 264.58 266.15 264.28 265.12
2 32 38.48 39.44 38.75 39.69 39.05
3 7 5.57 5.66 5.50 5.59 5.62
4 2 0.96 0.78 0.90 0.87 0.94

1875 1875 1875 1875 1875 1875

(χ2,df) (2.742,2) (3.786,2) (3.002,2) (3.486,2) (2.938,2)
p-value 0.2538 0.1510 0.2230 0.1760 0.2300
MLE (0.145,3.577) (1.309,0.871) (-0.454,0.141) (8.835,7.874) (0.873,0.143)

Variance (0.0002,1.618) (1.081,0.214) (0.495,0.019) (2.601,0.439) (0.683,0.022)
AIC 1990.58 1991.00 1990.78 1991.18 1990.77

Table 2: Number of ticks on sheep

Ticks Frequency EG(p, α) NB(r, q) ND(α, θ) NGPL(α, θ) WG(α, q)

0 4 3.17 5.26 5.46 7.61 5.36
1 5 7.89 7.35 7.12 7.66 7.72
2 11 9.21 8.03 7.75 7.53 8.41
3 10 8.99 7.96 7.76 7.25 8.21
4 9 8.15 7.48 7.40 6.83 7.57
5 11 7.12 6.80 6.81 6.31 6.75
6 3 6.10 6.04 6.12 5.72 5.90
7 5 5.16 5.28 5.40 5.10 5.08

8-10 7 11.01 11.77 12.12 11.69 11.10
11-14 9 7.88 8.69 8.94 8.84 8.16
≥ 15 8 7.32 7.36 7.16 7.45 7.74

82 82 82 82 82 82

(χ2,df) (7.203,8) (9.124,8) (9.844,8) (12.666,8) (8.476,8)
p-value 0.5148 0.3320 0.2761 0.1239 0.3884
MLE (0.833,2.786) (1.777,0.271) (1.276,0.311) (2.312,0.808) (0.834,1.759)

Variance (0.0003,0.0422) (0.1211,0.0034) (0.1600,0.0038) (0.6839,0.0010) (0.0008,2.5250)
AIC 477.92 479.92 480.88 483.44 478.98



140 Extended Geometric Distribution

The method of maximum likelihood estimation has been employed for estimating (p, α) of the
proposed distribution for modelling the datasets. The results regarding modelling the number
of claims and the number of ticks are presented in Table 1 and Table 2, respectively.

As pointed out earlier in Section 2, the geometric distribution is a particular case of the
proposed extended geometric distribution when α = 0. Thus, for a given dataset, a natural
question regarding the necessity of the additional parameter can be settled by testing the
following hypothesis.

H0 : α = 0 versus H1 : α > 0 (34)

For testing the hypothesis in (34), we adopt the likelihood ratio test (LRT). The correspond-
ing test-statistic, Λ = −2(l(p̃, 0)− l(p̂L, α̂L)) ∼ χ2 distribution with degree of freedom (df) 1.
Here, p̃ = 1/(1 + x̄), is the maximum likelihood estimate of p, under H0. H0 is rejected at 5%
level of significance when Λ exceeds 3.841. For the dataset in Table 1, Λ = 1.2502 and for the
dataset in Table 2, Λ = 10.434. Thus, for the first dataset, the additional parameter has no
significant role. Still, from Table 1, it is observed that, the proposed model marginally beats
its closest competitors in terms of χ2 and AIC. On the contrary, for the second dataset, the
additional parameter in the proposed model, plays an important role. Thus, from Table 2, it
is also seen that, the proposed model beats its closest competitors in terms of χ2 and AIC,
substantially.

Now we consider estimation of p and α for the two datasets under the Bayesian framework.
We do not have any prior guess about the parameters for both the datasets. Thus, for the
sake of demonstration only, we estimate p and α from Bayesian perspective using the flat
prior. The flat prior considered here is π(p, α) ∝ 1, a non-informative prior, mentioned in
Section 5.4. For a detailed elicitation on the choice of priors, one may refer to Robert (2007).
For both the applications, we set the number of iterations to be 5000 and warm-up length
to be 2500. The ‘iteration’ and ‘warm-up’ are two important arguments of the stan function
in R. While the former indicates the number of samples to be generated for each one of the
Markov chains, the later stands for the size of the initial sample to be discarded. Multiple
Markov chains are simulated simultaneously to analyze issues related to convergence. We fix
the number of chains to be 4 and note that the Rhat value in both the cases turn out to be
1. Rhat is a measure of convergence diagnostic. Rhat compares the between- and within-
chain estimates for model parameters. Rhat exceeding 1 is an indication of the chains not
being mixed up well. Thus, it is warranted that the posteriors are proper and the chains are
convergent. For the dataset in Table 1, we obtain p̂B = 0.187 and α̂B = 7.411. For the datset
in Table 2, we obtain p̂B = 0.726 and α̂B = 3.424. The within chain variability of α̂B is found
to be higher compared to p̂B.

7. Remarks

Azzalini’s skewing technique is used for the first time for generalizing a discrete distribution
in this work, by considering the geometric distribution as baseline. Additionally, we have
also presented a genesis of the proposed extension. The proposed model is very flexible
and possesses compact forms for pmf, cdf, survival function, probability generating function
and moments. It is an over dispersed distribution and can be long tailed, zero inflated,
zero deflated for appropriate choices of the parameters. Three useful characterizations of
the new distribution have been proved. Parameter estimation is discussed in detail and the
performance is found to be satisfactory in applications. Thus, it is envisaged that the proposed
two-parameter model will find its application in count data modelling. Of course, the idea
can be used for other count distributions as well. Further work on numerical comparison
of performances of different estimation procedures is warranted. Modelling count data with
covariates using appropriate re-parameterized version of the proposed model will also be taken
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up in a follow-up work.
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