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Editorial

This volume include five scientific papers.

The first contribution deals with the problem of estimating two ordered normal means
when variances are unknown and unequal. The authors provided R code, which has been
made available at http://www.ajs.or.at.

Multidimensional scaling is a very famous topic in statistics and the authors of the
second paper shows and solve some problems related to initial configurations and local
minima. The corresponding R code have been made available at the AJS website as well.

The third paper introduces new methods to estimate the parameters of a famous distri-
bution in life-time modelling under a censoring scheme.

The authors of the fourth contribution analyses trade flows structures using composi-
tional data analysis methods. The authors provide conviencing examples.

Transport statistics is in the main topic of the last contribution. The authors improve
distance estimations in order to provide more reliable estimates of transport volumes in
Austria.

Matthias Templ
(Editor-in-Chief)
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Rosenstrasse 3
CH-8400 Winterthur, Switzerland
E-mail: matthias.templ @ gmail.com
Winterthur, 12. Januar 2017


http://www.ajs.or.at
mailto:matthias.templ@gmail.com




Austrian Journal of Statistics
February 2017, Volume 46, 3—17.

http://www.ags.or.at/ m
doi:10.17713/ajs.v4612.446

Estimation of Order Restricted Normal Means
when the Variances Are Unknown and Unequal

Najmeh Pedram Abouzar Bazyari
Persian Gulf University Persian Gulf University

Abstract

In the present paper, two normal distributions with parameters p; and o2 where there
is an order restriction on the means when the variances are unknown and unequal are
considered. Under the squared error loss function, a necessary and sufficient condition for
the plug-in estimators to improve upon the unrestricted maximum likelihood estimators
uniformly is given. Also under the modified Pitman nearness criterion; a class of estima-
tors is considered that reduce to the estimators of a common mean when the unbiased
estimators violate the order restriction. It is shown that the most critical case for uniform
improvement with regard to the unbiased estimators is the one when two means are equal.
To illustrate the results, two numerical examples are presented.

Keywords: maximum likelihood estimator, order restriction, Pitman nearness, squared error
loss function.

1. Introduction

Let X;; be the j th observation of the i th population and be mutually independently dis-

tributed as N(u;,02) , i =1,2,---,k, j = 1,2,--- ,n;, where the order restriction on the

unknown parameters p;, ¢ = 1,2,--- , k is defined as
p <o <o < g (1)
We consider the following squared error loss function of the estimators of p;, ¢ =1,2,--- | k,
L, i) = (P — i) (2)

Then the risk is given by

R(pi, fri) = E[L (i, f1i)]- 3)
The estimator fi; uniformly improves upon the estimator fj;*, ¢ = 1,2,---,k, under the

squared error loss function (2) if and only if
R(pi, i7) < Rlpi, 477),

for all gy < po < --- < pg. Note that X; = 271:1 Xij/n; is the unrestricted maximum
likelihood estimator of y; and is distributed as N (u;, 02 /n;).
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Later, many authors, including Brown and Cohen (1974), Khatri and Shah (1974) and Bhat-
tacharya et al. (1980) have given a class of improved estimators of the form

f(y) = vX1 4+ (1 — )Xo,

where v is a function of s? and s3 .
Under the order restriction (1), the maximum likelihood estimator of y; is given by

n; X o;
minma;rjts—j/ (4)
A S

A possible alternative criterion to evaluate the goodness of estimators, mean squared error
(MSE), is Pitmam nearness.

For comparing two estimators T;, (i = 1,2) of a single parameter 6, Pitman (1937) proposed
the following criterion: 77 is said to be closer (better) than Ty if

1
PNQ(Tl,TQ):P{‘T2*9’> |T1*9|}>§, (5)

for all . The probability PNy(T1,T%) in (5) is usually called the Pitman nearness of Tj
relative to T5.
Lee (1981) showed that the estimator (4) uniformly improves upon X;. Rao (1980) discussed
the similarities and differences of MSE and PMN. Kelly (1989) strengthened Lee (1981)’s
result and showed that (4) universally dominates X;.
Nayak (1990) defined modified Pitman nearness of an estimator 7 of # relative to the other
estimator 75 by

MPNy(T1,To) = P{|Ty — 0| < |12 — 0||T1 # T>}. (6)
If MPNy(T1,T2) > 1/2 for any parameter value, then 77 is said to be closer to 6 than Tb.
Gupta and Singh (1992) have applied modified Pitman nearness to the estimation of ordered
means of two normal population with common variance and have shown that MLE is closer
than the unbiased estimator.
Hwang and Peddada (1994) showed that under arbitary order restriction on y;’s, (4) univer-
sally dominates X; to estimate yu; if y1; is a node and proposed estimation procedure also for
nonnodal means. (y; is said to be a node if, for any j, it is known that either p; < p; or

i < pi).

In this paper, we consider the estimation of two normal means when they are subject to
the order restriction

p1 < i, (7)

and 02,7 = 1,2 are unknown and possibly unequal. If o7’s are known, from (7) the restricted
maximum likelihood estimators of u;’s are given by

L BXieng
pp = mn Xlaﬁ ) (8)

and

ﬂ; = max <X2, O'lm—m (9)

But, if we suppose that 02’s are unknown, so we estimate o2 by s? = > (Xij —X)?%/(n;—1)
and replace o7 with s? in (8) and (9) and obtain the plug-in estimators as follows

n v
—QX
51

X
> : (10)

@
) m‘g N w‘w

_ +Z
11 = man | Xq,
M1 1 o

HM\H
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and

ny no
=+ =
51 82

COMX 4+ B
fo = max | Xo, +——72—|. (11)
? proposed another type of plug-in estimators /i, obtained by replacing s? with Z;‘;l(Xij —
X;)?/n; given in (10) and (11) and proposed results when p; = pp. Chang and Shinozaki
(2012) have considered a class of estimators of p;, i = 1,2 of the form

fi1(7) = min{X1,7X1 + (1 — )Xz}, (12)

and
fiz () = maz{X2,vX1 + (1 - 7) X2} (13)

Bazyari (2015) considered the estimators of the monotonic mean vectors for two dimensional
normal distributions and compare those with the unrestricted maximum likelihood estimators
under two different cases. One case is that covariance matrices are known, the other one is
that covariance matrices are completely unknown and unequal.

To illustrate the usefulness of order restriction we have taken the following examples.
Example 1. An experiment was conducted to evaluate the effect of exercise on the age at
which a child starts to walk. Let Y denote the age (in months) at which a child starts to walk,
the data on Y are given in Tabel 1. (The original experiment consisted of another treatment,
however, here we consider only two treatments for simplicity.)

Table 1: The age at which a child first walks.

Treatment (i) Age (in months) n; i i
1 9.00 950 9.75 10.00 13.00 9.50 6 10.1256 1y
2 11.00 10.00 10.00 11.75 10.50 15.00 6 11.375 o

The first treatment group received a special walking exercise for 12 minutes per day beginning
at age 1 week and lasting 7 weeks. The second group received daily exercises but not the
special walking exercises. For treatment i (i=1, 2), let u; be the mean age (in months) at
which a child starts to walk. However, suppose that the researcher was prepared to assume
that the walking exercises would not have negative effect of increasing the mean age at which
a child starts to walk, and it was desired that this additional information be incorporated to
improve on the statistical analysis. In this case, we have that p; < ps.

Example 2. An experiment was done to evaluate the discrimination of men from women.
Four psychological test scores, pictorial absurdities, paper form board, tool recognition and
vocabulary were given to two different groups of 32 men and 32 women. The data on men and
women are for 32 applicants for a professional position requiring 10 or more years of successful
schooling (the completion of second-year high school in Ontario, up to a University degree).
The 4 tests were each scored according to the number of questions answered successfully. The
mean vectors of the two samples are

X; = (15.7,15.91,27.19,22.75), X = (12.34,13.91,16.66,21.94)".

Let p; = (u41, iz, pis, itia) for @ = 1,2, denotes the mean variable for it" group, where Hij,
j = 1,2,3,4, denotes the j element of mean vector p;. Suppose that the researcher is
prepared to assume that the elements of mean vectors of two populations are subject to the
order restriction

po1 < p1,  po2 < p12, 23 < @13, M4 < 14 .

The rest of this paper is organized as follows. In section 2, we show that the plug-in estimator
p; uniformly improves upon X; if and only if for all JZZ’S the risk difference X; and ji; is
nonnegative when p; = pg. In section 3, with respect to modified Pitman nearness, we
show that the estimator fi;(7) improves upon X; uniformly imporoves upon the X; if and
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only if MPN,,(ju(7), Xi) > % when p1 = po, which is the most critical case for uniform
improvement. Further, it is shown that fi;(y) improves upon X; if and only if /() improves
upon X; for the same 7 in estimating a common mean. To illustrate the results two numerical
examples are presented in section 4. Concluding remarks are given in section 5.

2. Uniformly improved estimator of each of two ordered normal means

We show that the most critical case for fi; to improve upon X; if and only uniformly is the
one when (1 = po.

Theorem 2.1. The plug-in estimator i uniformly improves upon the unrestricted maximum
likelihood estimator X1 if and only if for all 022 ’s the risk of 11 is not larger than that of X,
when u; = pa.

S

(F+3)
S

(33)
171,

Proof. Putting v = 11 is expressed as

fir = min(X1,vX1 + (1 —v)X2), (14)
and we calculate the risk difference of X; and /i1 as

R(p1, X1) — R(p, fin)
= E[(X1 — m)* — {v(X1 — ) + (1 =) (X2 — 1) P55 %, (15)

where I denotes the indicator function of the set satisfying the condition d. Making the
transformations

Zy=X1—m , Zy=Xy—u, (16)
Z1 and Z; are mutually independently distributed as N (0,712) and N (M,TQQ), respectively,

where p = pg — g > 0,72 = 02 /ny and 72 = 02 /ny. Noting that Z1, Zo and v are mutually
independent, we have from (16)

R(p1, X1) — R(pa, fn) = E[Z] —{vZ1 + (1 =) Z2}* |1 2,52,
=2E[y(1 = MIE[(Z1 — Z2)Z112,> 2]

+Bl(1 =)’ |BZT ~ Z3)12,>2). (17)

Making the further transformations

Vi=2Z1—-2, , Y= Z1+( )23, (18)

o in

note that Y7 and Y are mutually independently distributed as N (—u, 72+72) and N ((—12) w, T+ (—2)> ,
T

respectively, and

3/1(*12)4—5/2 ;. Yg—Yl
1+i ’ 1+( )
T2
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Then, we have

E[(Zy — Z2) Z112,> 7,]

T4 Y1 (Yl(é) -I—Yz)
=F T
3+ 72 %120
- 2
3 (Y2(Z) + ViE[E[Ya]))
=FE g Iyvi>o
7‘12—1—7'22 -
- 912
i (Y7 + pY1)
— gL TRy
[ 712+T22 Y120
712 2
E[Y2 Iy, 0], 19
s (Y1 Iv; >0 (19)

and

E[(Zl2 - Z22)IZ1222]

PR
—E 2 y2
<7§+7§> [1

T + T4 TS T
_p [ Y 2y .
I T+ 73 =
1T gy
, 20
s (Y1 Iyi >0 (20)

with equalities for ;1 = 0 and strict inequalities for x> 0. Thus we have from (17), (19) and
(20)

R(p1, X1) — R(pa, i)

E[Y?T
> [Tlgf;go]{%ffaha — )]+ (7 = BBl - )]}
2
= Pl 2?4 5210 - )71
T TS
E[Y{ Iy, >0]

a EH1=#2 [Y12IY120]

with equality for 4 = 0 and strict inequality for g > 0. Thus, we have shown that ji;
unifrormly improves upon X; if and only if for all O'Z-2’S the risk difference is not positive
when g1 = pg, which is the most critical case for uniform improvement. This completes the
proof. O

{Ru1=u2(N1>X1) - Rm=uz(#1,ﬂ1)}a (21)

Regarding the improved estimation of us, we have a similar result as follows.

Corollary 2.2. The plug-in estimator fio uniformly improves upon the unrestricted maximum
likelihood estimator X if and only if for all o?’s the risk of fia is not larger than that of Xo
when puy = pa.

Proof. Since pu1 < po can be written as —uo < —pu1, the result follows directly from theorem
(2.1). O
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3. Pitman dominates of new plug-in estimators

In this section, we consider estimators of y; of the form (12) and (13) and compare them with
unbiased estimator X;. We first show that for the case when + is a function of s7 and s3 the
most critical case for fi;(y) to be closer to p; than X; is the one when p; = ps . Further,
it is shown that fi;(+) improves upon X; if and only if fi(y) dominates X; in the estimation
problem of a common mean.

Theorem 3.1. Suppose that 0 < v < 1 is a function of s3 and s3. Then

a)MPN (i(y), X;) > % for all u1 < po and for all 0? and o3 if and only if for all o3
and 03, MPN,, (fu;(7), X;) > 1 when 1 = po.

b)MPN,, (j1;(7), X;) > % for all 1 < pe and for all o2 and o3 if and only if for all o}
and 0%, PN, (fui(7), Xi) > 1/2 to estimate pn when py = py = pu.

Proof. We need only to give a proof for the case of .
a) Since fi1(7y) # X1 if and only if X5 < X7 and v < 1, we have

MPN,, (jin(7), X1)

= P{|fu(y) — m| < [X1 — mllin(y) # X1}

= P{7 X1 + (1 =) X2 — | < |X1 — | Xe < X1,7 < 1}

= P{—(vX1+ (1 —7) X2 — 1) < (X1 — )| X2 < X1,7 < 1}

= P{X1 — 1 +7X1 + Xo — Xy — po > 0| Xy < X1,7 < 1}

= P{X1 — 1 +7X1 —yp1 + Xo — 1 — v Xo + vy > 0| X — g < Xy — py,y < 1}
=P{(1+7v)Z1+ (1 —7)Z2>0|Z2 < Zy,v < 1}, (22)

where Z; = X1 — g and Zy = Xy — iy are distributed as N(0,72) and N (u, 73) respectively,
W= 1 — po and 7'2-2 = 02 /n;. Now, we consider the conditional probability

P{O < (1+)Z1+ (1 =) 2|2 < Z1, 51,55} = f(n),

as a function of u. We need only to show that f(0) < f(u). Putting d = (1 ++)/(1—7)), we
define the sets

A={(z1,22)]22 < z21,—dz1 < 22}, B ={(z1,22)|22 < 21, —dz1 > 2},
Ar ={(z1,22)|22 < 21,20 > 0}, and Az = {(z1,22)| — dz1 < 29,22 < 0}.

Since A1 and A, are disjoint and A = A; U As, we have

_ b Po(4)
10 =10 = 5 s )~ A + P
_ {Pu(A)Po(B) = Po(A1) Bu(B)} + {Pu(A2) Po(B) — Fo(A2) Pu(B)}
{Pu(A) + Pu(B)} x {Po(A) + Po(B)} '
We first show that {P,(A1)Py(B) — Py(A1)P.(B)} > 0 for > 0. For that purpose, we note
that

0 1 22 _ 7Z2/d
P,(B) :/ ——exp{— }/ ¢(z1/m1)dz1dz2

21Ty

po [P % _Zz/d
<ennl—} [ Wexp{—ﬁ} / (a1 )iz

= exp{— Q}Po( )- (23)
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Similarly, we have

0 1
P,(A :/ ex / ¢(z1/m1)dz1dz
(A1) == p{— } (21/m1)d21d22

> exp{— }Po(Al) (24)

0(B) — Po(A1)Pu(B)} > 0.

From (23) and (24), we see that {P,(A1)F
Next, we show that {P, (AQ)PO(B) — Py(A2)P,(B)} > 0 for 1 > 0. We express P,(A) as
1
( ) f(ﬁ(Zl/Tl)ledzg

. (A2) / ——T
2) \/2nTs pi= o273 J —22/d T1

= PM{ZQ < O}E'u[ (Zg)|ZQ < O],

where g(22) = ff; /d ¢(z1/71)/T1dz1. Since g(z2) is an increasing function and the conditional
distribution of Zs < 0 is stochastically smallest when p = 0, we have for y > 0

PM(AQ) > PM{ZQ < O}EQ[Q(ZQ)|ZQ < 0] = P(){AQ}P {ZQ < 0}/P0{ZQ} (25)
Similarly, since h(zg) = [ —#2/d ¢(z1/71)/71dz1 is a decreasing function, we have
1 (22 — p)? /ZQ/d 1
- - - dz1d
/oo T Ty ), e/t

< PM{ZQ < O}Eu[h(ZQNZQ < 0]

= Py(B)P,{Z, < 0}/ Py{Zs < 0}. (26)
From (25) and (26), we have {P,(A2)Py(B) — Po(A2)P,(B)} > 0 and we have shown that
f(w) > f(0) for pu > 0.

b)In the estimation problem of a common mean, as is stated in Kubokawa (1989) and accord-
ing to the formula (26), fi(y) is closer to p than X; if and only if

P{(1 = 7)(Ua — U1)* +2U1(Uy — Uy) < 0} > (27)

l\DM—A

where U; = X; — p1, i = 1,2. Since
(1 =)(U2 = U1)* +201(Uz = Ur) = (Uz = Un{(1 +7) U1 + (1 = 1)Uz}, (28)
the left-hand side of (27) is expressed as

P{(1 = 7)(Us = U1)* + 2U1 (U2 — Un) < 0}
= P{U2 > Ul}P{(l + ’7)U1 + (1 — ’Y)UQ < O|U2 > Ul}
+P{U2 < Ul}P{(l +’7)U1 + (1 — ’7)U2 > O|U2 < Ul}.

‘We notice that

P{1+)Ui + (1 —7)U2 < 0[Uz > Ur}
=P{(1+~v)U1+ (1 —~)Uz > 0|Uz < Up }.

Since U; and Us are symmetrically distributed about the origin, thus
P{Uy2 U} = P{U> < Ui} = 3. (29)
We see that the left-hand side of (26) is equal to
P{(1+~)U; 4+ (1 —~)Us > 0|Uy < Uy },

which is M PN, (f1(7),X1) given by (22) for the case u3 = pz. Therefore, we see from
(a) that M PN, (fi1(7y), X1)) > § for all u1 < pp and for all 62, i = 1,2 if and only if
PN, (fi(v), X;) > 5 for all 4 and for all 02, i = 1,2. We complete the proof. O
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Remark 3.2. In the estimation problem of a common mean, Kubokawa (1989) has given a
sufficient condition on sample sizes ny and ngy for ji(v) to be closer to p than X; for some
specified class of ~ .

Remark 3.3. We should mention about the general case when 7 is a function of s?,i = 1,2
and (X; — X5)2. We first consider the case when we estimate p1 and suppose that i1 (vo)
is closer to p1 than X , where 7 is a function of s? and possibly (X; — X3)? . For any ~y
satisfying 70 < v < 1 if 79 < 1, f11(7) is closer to p; than X;. This is seen from (22), since
(22) is true even when 7 depends on (X; — X3)? and (22) is an increasing function of .

4. Examples

In this section, to illustrate the results the following numerical examples are presented.
Example 3. Consider two univariate normal distributions, when they are subject to the
order restriction pu; < pe. Six different cases are considered here. We simulate the values
of random samples Xi1, X9, , X1,,, from the univariate distributions N (p1,, s1,) with
means fi1., T = a,b,c, and known variances si, respectively. Also the values of random
samples Xo1, Xo99, -+, Xop,, from the univariate normal distributions N (pay, S2,) with means
tor, ™ = a,b,c, and known variances ss,, respectively. In each simulation, the process of
computation is repeated 10000 times to get an estimate of sample means X; and X», isotonic
estimators of means, i.e. 1 and fiy by (12) and (13), and the risk difference RDg, , =
R(p1, X1) — R(pa, fir) and RDyg, 5, = R(u2, X2) — R(us, fiz). For differente values of sample
sizes and r = a, b, ¢ the results are given in Table 2. From the Table 2, it is completely clear
that p1q < poa, p1p < pop and pe < poe and in case 2 (r=b)[ny = 10,ne = 15, ug = 4ug =
4,81 = 2,89 = 3] and in case 1 (r=a) [n1 = 20,n9 = 25,41 = 4po = 4,81 = 5,89 = 6],
the isotonic regression ji; uniformly has the smaller risk than the unrestricted maximum
likelihood estimator, X; and the isotonic regression fio uniformly has the smaller risk than
the unrestricted maximum likelihood estimator, Xs, respectively. But in other cases the
isotonic regression estimator ji; uniformly has not the smaller risk than the unrestricted
maximum likelihood estimator, X; and the isotonic regression estimator fio uniformly has not
the smaller risk than the unrestricted maximum likelihood estimator, X», since RD X <0
and RDyx, ;, < 0, respectively. Figure 1 shows the risk deifference RDg, ; = R(p1, X1) —
R(u1,f11) as a function of py = ug, where p = po, — p1,, for different values of r. Also, figure
2 shows the risk deifference RD)—(M]Q = R(u2, X2) — R(us2, fi2) as a function of p; = us, where
W= por — p1r, for different values of r.

Table 2: Simulation from two univariate normal distributions: the values of risks difference
fi1 and fio.
Sample sizes  N(p1r,s1)  N(p2r,s2,) RDx, 5 RDx, 5,

casel(r =a) n3 =10 Hig =3 Hog =4 1.179 -0.235
n2=15 Sla:4 Sga:5

case2(r =b) ny =10 p1p = 4 pop =4 0.011 0.127
TL2=15 81b=2 52b:3

cased(r =¢) ny =10 Hie =3 Hoc =3 -0.139 -0.110
TLQZ].O 81C25 SQCZG

casel(r =a) n3 =20 H1g = 4 Hog = 4 0.048 0.013
n2=25 51a:5 82a26

case2(r =b) ny =20 Hip =5 fop =5 -0.019 -0.067
TL2:25 51524 82{,:6

cased(r =c¢) n3 =20 Bie =17 o =17 -0.037 -0.068

ny = 20 S1c =6 Soc =17
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Example 4. Consider two univariate normal distributions, when they are subject to the
order restriction pu; < pe. Six different cases are considered here. We simulate the values
of random samples X;1, X12, -+, X1n,, from the univariate distributions N (u1,,s1,) with
means (1., 7 = a,b,c, and known variances si, respectively. Also the values of random
samples Xo1, X9, -+, Xop,, from the univariate normal distributions N (pay, S2,) with means
tor, ™ = a,b,c, and known variances s, respectively. In each simulation, the process of
computation is repeated 10000 times to get an estimate of sample means X; and X», isotonic
estimators of means, i.e. fi; and fy by (12) and (13), and M PN, (fi;(7), X;) > 3. For
differente values of sample sizes and r = a, b, ¢ the results are given in Table 3. From the
Table 3, it is completely clear that p1, < pog, p1e < pop and pie < poe, and modified Pitman
nearness of (X1, 1) is greater than % for all of cases. Also, the modified Pitman nearness of
(Xo, po) is greater than % in cases 1,2,3 and 5. But in cases 4 and 6, the modified Pitman
nearness of (X», fi2) is not greater than 1. Figure 3 shows M PN, = MPN,, (i (7),X1) as
a function of puy = uo, where u = o, — 1, for different values of r. Also, figure 4 shows
MPN,, = MPN,, (f12(7), X2) as a function of py = po, where p = po, — p1r, for different

values of r.

Table 3: Simulaition from two univariate normal (_iistributions: the values of MPN,, =
MPN,, (fuu(7), X1) and MPNy, = MPN,,(fi2(7), X2).
Sample sizes  N(p1r,81,) N(por,s20) MPN, ~MPN,,

casel(r=a) ny =15 Hiqg =6 Mog =T 0.208 0.568
TL2:15 Sla:4 82a25

case2(r =b) n; =10 iy =4 fop =5 0.252 0.580
n2=20 511,:5 82b=7

cased(r=¢) ny =15 i =3 foe = 3 0.303 0.618
Tl2:20 Slc:5 Sgc:7

casel(r =a) n3 =20 Hig =9 Hog =9 0.428 0.379
?’L2=25 81a27 Sga:4

case2(r =b) mn; =20 M1y =6 Moy =7 0.188 0.549
n2:20 51b=4 82b=5

cased(r=¢) ny =15 Hie =5 foc =17 0.074 0.372

TL2:20 51023 82c:6

13
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5. Conclusion

In this paper, we have deal with the problem of estimating two ordered normal means under
the squared error loss function when the variances are unknown and unequal. We showed
that the plug-in estimator {7 uniformly improves upon the unrestricted maximum likelihood
estimator X if and only if for all 01-2, the risk of fi; is not larger than that of X; when p1 = o,
and showed that the plug-in estimator fio uniformly improves upon the unrestricted maximum
likelihood estimator X5 if and only if for all 0?, the risk of fis is not larger than that of X,
when g1 = pg. Also, under modified Pitman nearness criterion when the order restriction on
variances is not present, it is shown that the most critical case for ji;(y) to improve upon X;
is the one when gy = o and that the problem of improving upon X; reduces to the one of a
common mean. Also, two numerical examples presented to illustrate the results. In example
1, the data simulated from different bivariate normal distributions. We showed that, in two
cases, the isotonic regression estimators uniformly have the smaller risk than the unrestricted
maximum likelihood estimator since the risk differences are positive and in the other cases, the
isotonic regression estimators uniformly have the smaller risk than the unrestricted maximum
likelihood estimator since the risk differences are negative. In example 2, the data simulated
from different bivariate normal distributions. We showed that the modified Pitman nearness
of (X1, 1) is greater than § for all of cases. But, the modified Pitman nearness of (Xa, p2)
is greater than % for some cases.
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The Choice of Initial Configurations in
Multidimensional Scaling: Local Minima, Fit, and
Interpretability

Ingwer Borg Patrick Mair
WWU Miinster Harvard University

Abstract

Multidimensional scaling (MDS) algorithms can easily end up in local minima, depend-
ing on the starting configuration. This is particularly true for 2-dimensional ordinal MDS.
A simulation study shows that there can be many local minima that all have an excellent
model fit (i.e., small Stress) even if they do not recover a known latent configuration very
well, and even if they differ substantially among each other. MDS programs give the user
only one supposedly Stress-optimal solution. We here present a procedure for analyzing
all MDS solutions resulting from using a variety of different starting configurations. The
solutions are compared in terms of fit and configurational similarity. This allows the MDS
user to identify different types of solutions with acceptable Stress, if they exist, and then
pick the one that is best interpretable.

Keywords: MDS, initial configuration, local minima, procrustes, SMACOF, R.

1. Introduction

Multidimensional scaling (MDS) is a statistical method that optimally maps proximity data
on pairs of objects (i.e., data expressing the similarity or the dissimilarity of pairs of objects)
into distances among points in a multidimensional space. MDS is used for exploring or testing
the structure of proximity data. There are many variants of MDS (see Borg and Groenen
2005; Cox and Cox 2000). In applied research, two-dimensional ordinal MDS is probably the
most popular model. Here, the proximity data—converted first to dissimilarity indices ¢;; in
case the proximities are similarity measures—are optimally mapped into Euclidean distances
d;;(X) among points of a two-dimensional Euclidean space (with the coordinate matrix X).
The order of the distances corresponds to the order of the data, and ties in the data can be
broken in the distances (“primary approach to ties”).

The fit of an MDS model to the data is measured by the raw Stress coefficient

Stress = eZ =Y wi; (f(d;5) — dij(X))?, (1)

1<j 1<J

where w;; are non-negative fixed weights set by the user to weight the importance of error
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(e.g., to handle missing data by setting w;; = 0 if J;; is missing and w;; = 1 otherwise). The
fitted distances are defined by

m 1/p
di5(X) = (Z 20 - xja|p) , (2)
a=1

with p = 2 in the Euclidean case. The f(d;;) are disparities, that is, dissimilarities opti-
mally re-scaled (within the bounds set by the scale level assigned to the data) so that they
approximate the distances as closely as possible. Expressed more technically, disparities are
computed by a regression of the dissimilarities onto the distances so that f(d;;) = d;;.

Since Equation (1) is minimized over both X and c/i;j, an obvious but trivial solution is

choosing X = 0 and all c/Z;-j = 0. To avoid this solution, Equation (1) needs to be normalized
which can be achieved by dividing by the sum of the squared distances. Doing so and taking
the square root gives the usual Stress.1 loss function of MDS:

Stress.1 = \/Z (i (c/i\,,] - dij(X)>2 / Zwijd?j(X). (3)

1<j 1<j

This normalization also has the advantage that the Stress value does not depend on the
magnitude of configuration X.

An optimal MDS solution is found by using iterative optimization algorithms. They all start
with some initial configuration (IC), and then repeatedly move its points in space in small
steps until the Stress has converged to a minimum. Modern algorithms guarantee convergence,
but the response surface is bumpy and the optimization can easily end up in a local and not
the global minimum (Groenen 1993). The choice of the initial configuration can be crucial,
because the various local minima sometimes differ radically even if they represent the data
almost equally well in terms of overall Stress. For most data, many local optima exist in
most MDS models, in particular when using ordinal MDS and when the dimensionality of
the MDS solution is low. Suboptimal local minima are particularly likely to occur in case of
one-dimensional MDS, where standard MDS programs almost never find the global minimum
(Mair and De Leeuw 2015). Conversely, the greater the dimensionality of the MDS space, the
smaller the risk for suboptimal local minima (Borg, Groenen, and Mair 2013, p. 61ff.).

The various local minima may differ substantially even if they represent the data almost
equally well in terms of overall Stress. Confirmatory MDS (Bentler and Weeks 1978; De Leeuw
and Heiser 1980) is designed to check this. It puts additional theory-based restrictions onto
the MDS solutions. For instance, allowing the user to specify the MDS dimensions (i.e., the
columns of X) with values that must remain fixed up to linear transformations, or requiring
that all points of the MDS solution are located on a perfect circle. The MDS algorithm may
still find configurations that satisfy these particular models with Stress values that are hardly
worse than those produced by substantively blind exploratory MDS. Borg and Lingoes (1980)
provide striking examples of cases where minimal-Stress exploratory MDS representations and
minimal-Stress theory-compatible MDS representations of the same data are very different,
but where both have acceptably low Stress values.

When running MDS in a confirmatory way, the researcher can almost always specify an
IC that he or she derives from content theory or from structural relations established in
previous empirical research. For example, in psychological research on personal values (such
as power, hedonism, and self-direction) where hundreds of studies have led to robust structural
expectations, one can predict that the MDS configurations representing correlations among
items on the psychological importance of different personal values form a circle. The various
personal values are represented as points on this circle in a particular order, and with certain
values positioned in opposition to each other (Schwartz and Bilsky 1987; Schwartz, Cieciuch,
Vecchione, Davidov, Fischer, Beierlein, Ramos, Verkasalo, Lonnquist, Demirutku, Dirilen-
Gumus, and Konty 2014; Borg, Bardi, and Schwartz 2016). Hence, it is easy to formulate
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a theoretically sound initial configuration when doing yet another MDS study on personal
values.

In exploratory MDS, an initial configuration has to be set up by statistical reasoning. Most
MDS programs offer a number of choices for such rational initial configurations. The one that
is usually recommended as the best initial configuration—that is, as the one that is most likely
to lead to a configuration with minimal Stress—is the “Torgerson” configuration obtained by
“classical” MDS (Torgerson 1958; Davison 1978; Borg and Groenen 2005). It is computed by
assuming that the dissimilarities are distances, then converting these data to scalar products
by squaring and double-centering them, and finally taking the first m eigenvectors of the
resulting matrix as the m-dimensional initial configuration.

A second (additional) recommended choice is to run MDS with many different random initial
configurations and then pick the configuration with the smallest Stress as the optimal MDS
solution. With today’s computing power this is a viable alternative, since it only takes
seconds to run such an approach, and one can always compare the results of the random and
the Torgerson method to check if they lead to the same results.

Unfortunately, applied researchers find themselves in a dilemma when using MDS. They
can choose a particular type of initial configuration such as Torgerson. An MDS program
will then deliver the supposedly optimal solution based on this choice. Or they can choose
the random approach and then the program presents what appears to be the formally best
solution based on the analyses of many different initial configurations. In either case, no
information is provided on other local-minima solutions even though these solutions may
have only marginally higher Stress values but may be theoretically much more meaningful and
better interpretable. Yet, even if the solution given by the MDS program is indeed the global
minimum solution, an MDS user may simply be interested to see what other local-minima
solutions exist, what their Stress values are, and how similar they are. In the following, we
study this issue with an artificial data set and describe a systematic approach that can be
used by the applied MDS user to answer these questions for his or her data and the particular
choice of MDS model.

2. Method

We now describe a procedure for generating local minima solutions in MDS beginning with dif-
ferent initial configurations, and for comparing the configurational similarity of these solutions
so that the user can identify those solutions he or she wants to check for their interpretability.
The procedure is then illustrated using a simulation study where the true configuration is
known. Finally, we look at some applications in real empirical research.

2.1. The procedure

To avoid overlooking local minima solutions in MDS that have an acceptably good fit and
that are also substantively interpretable, one must generate many such local minima (if they
exist) and then systematically compare them rather than reporting only one Stress-optimal
solution. We suggest to achieve this goal in the following way:

1. Run an MDS analysis with a set of different initial configurations (e.g., using many
random configurations).

2. Save all resulting MDS solutions and their fit indices (Stress, p-values resulting from
permutation tests, etc.).

3. Use generalized Procrustean fitting to eliminate all meaningless differences (i.e., differ-
ences not driven by the data) among the MDS solutions.

4. Compute the similarity of each pair of MDS configurations.

21
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Figure 1: Configuration to be recovered by MDS (“true” configuration)

5. Analyze the similarity structure of the MDS configurations with two-dimensional MDS
(to visualize the similarity structure) and cluster analysis (to identify types of MDS
configurations).

6. For each type of MDS configuration with a reasonable Stress, plot one prototypical MDS
solution and check its interpretability.

7. Pick the MDS solution that is both acceptable in terms of Stress and best interpretable
as your MDS solution.

These steps can be easily programmed so that the user has to choose only the particular
MDS model he/she wants to fit. Plots and statistics can be produced that allow the user
to pick those MDS solutions that he/she wants to study further for their interpretability. A
corresponding R (R Core Team 2016) code chunk is given in the supplementary materials.
We use the smacof package (De Leeuw and Mair 2009) to fit the MDS models.

2.2. Simulation study

We illustrate our procedure by using an artificial case where the true MDS configuration is
known. We begin by defining an MDS configuration X which consists of nine points forming a
rectangular grid (see Figure 1). The distances among the nine points are computed. Then, to
introduce a somewhat non-linear mapping, their square roots are taken as dissimilarity data
for MDS. Thus, there exists a true underlying configuration whose distances are monotonically
(but not linearly) related to the dissimilarities.

We then ask if MDS succeeds to recover X given the above dissimilarities. X, of course, is
the global minimum MDS solution with a Stress of zero. We use ordinal MDS because of the
non-linear relation of the dissimilarities to the MDS distances in our case. We choose this
setup also because ordinal MDS has been a very popular MDS model in applied research.
In addition, most MDS programs run ordinal MDS with the additional default specification
that ties in the data need not lead to the same distances in the MDS solution (the so called
primary approach to ties).
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Two types of initial configurations are used in the following, always employing the function
mds () of the smacof package to compute MDS solutions:

1) The first type of IC is the Torgerson configuration. We then add successively more error
(randomly sampled from a normal distribution with mean = 0 and sd = 1,2, ...) to the point
coordinates of this IC and repeat the MDS analysis for each case. With sd = 0 we have
the case that is the default IC in most modern MDS programs today, or the IC that is most
often recommended as the best single IC based on extensive simulation studies (Borg and
Groenen 2005). When adding more noise to a Torgerson IC, we test the case where other
solutions with similar Stress exist but would not be found because the algorithm gets stuck
in the neighborhood of the Torgerson IC.

2) To safeguard against sub-optimal local minimum solutions, we recommend repeating an
MDS analysis with random initial configurations and then pick the resulting MDS solution
with the smallest Stress as the best solution. We therefore also run random initial configura-
tions (with coordinate values randomly sampled from a standard uniform distribution), but
store each solution and not just the best one. We then compare the various MDS solutions
so obtained by inspecting their Stress values and their configurations.

To compare many dozens configurations, a systematic approach is used: We first eliminate all
meaningless differences of the various solutions (due to rotations, reflections, dilations, and
translations) by Procrustean methods, then measure the overall similarity of each pair of con-
figurations by computing the product-moment correlation of the coordinates of corresponding
points, and finally use MDS and cluster analysis to visualize the similarity structure of these
correlations to detect possible classes of acceptable MDS solutions.

Specifying the function f in Equation (1) differently, we use the same procedure to study the
effect of different ICs for other MDS models, namely ordinal MDS with the so-called secondary
approach to ties where tied dissimilarities must be mapped into tied distances (“keep ties”);
interval MDS, where the dissimilarities can be linearly transformed; and ratio MDS where
the dissimilarities are fixed up to a multiplicative constant.

2.3. Real data applications

Simulations can be illuminating to illustrate a method but they may also be too contrived
for the applied researcher, showing applications and solutions for cases that almost never
become relevant in empirical research. We therefore use our procedure on some real data sets
that have been used before in the applied MDS literature. One such data set is a study by
Wish (1971) who asked students about the subjective similarity of 12 different nations. These
data are one of the oldest cases of using MDS in attitude research. They were analyzed, for
example, by Kruskal and Wish (1978) in their classic introductory textbook on MDS by using
ordinal MDS with a Torgerson initial configuration.

A second application uses ratings of 327 psychology students on the importance of personal
values as guiding principles in their life (Borg et al. 2016). What is scaled here are the
inter-correlations of indexes for the so called 10 basic values of the Schwartz theory on values
(Schwartz et al. 2014). The theory predicts a circular scale, with the points ordered on the
circle. This study replicates what was done in literally hundreds of related studies in research
on personal values, where MDS has been the cardinal method for testing and refining what is
called the Theory of Universals in Values (TUV). Almost always ordinal MDS has been used,
but systematic studies of using different initial configurations are not reported.

Finally, a classic MDS application is on data on the subjective similarity of different colors by
Ekman (1954). These data were used in the first papers on ordinal MDS by Shepard (1962)
and Kruskal (1964) where it was shown that the structure of the observed similarities is an
almost perfect color circle with very low Stress.
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Figure 2: Zero-Stress MDS solution for dissimilarities based on the grid in Figure 1, using
Torgerson initial configuration (left panel); Shepard diagram (right panel).

3. Results

3.1. Results: simulation study

A standard ordinal MDS analysis of the dissimilarity data derived from Figure 1 with a Torg-
erson IC leads to an almost perfect recovery of the underlying configuration, with zero Stress
(Figure 2, left panel). The Shepard diagram (right panel of Figure 2) for this configuration
shows that the square-root relation of dissimilarities to distances is also closely recovered.

Adding error to the Torgerson IC sometimes leads to MDS solutions with zero Stress but
sometimes to radically different solutions that also have zero Stress. Figure 3 gives an example
where the points do not form the rectangular grid but are collapsed in one direction to almost
a single straight line. The Shepard diagram in the right-hand panel of Figure 3 shows, for
example, that smacof maps all dissimilarities in the interval [1.0, 1.4] into line segments with
essentially zero length.

An even more pronounced step function comes with the solution shown in Figure 4. In this
case, MDS maps the dissimilarities into only two types of distances, large ones and small ones.
The configuration, therefore, exhibits the shape of an equilateral triangle. Its lines represents
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Figure 4: Zero-Stress MDS solution for dissimilarities based on the grid in Figure 1, using
Torgerson plus larger error initial configuration (left panel); Shepard diagram (right panel).

the vertical grid lines of the design configuration, collapsed and wired around the triangle’s
center. Its corner points each summarize the three points of one horizontal grid line of the
design configuration.

In a second simulation setting the procedure from Section 2.1 is illustrated on the artificial grid
data. 100 different random ICs (drawn from a U (0, 1) distribution) are generated and for each
of them an ordinal MDS is fitted. Analyzing the similarities of the resulting MDS solutions
shows how bumpy the response surface of ordinal MDS is for this set of data. The structure
of the 100 MDS solutions is visualized in Figure 5. This plot is a two-dimensional interval
MDS representation of the similarity structure of the 100 ordinal MDS solutions where the
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Figure 5: MDS configuration of 100 MDS solutions based on random initial configurations;
plotted with wordcloud to unclutter point labels; label size corresponds to Stress of respective
MDS solution; dashed line partitions plane into high- and low-Stress solutions, resp.
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Figure 6: Dendrogram (hierarchical cluster analysis; Ward criterion) of similarity indexes of
the 100 MDS solutions based on random initial configurations; arrows point to four prototypes
of the major clusters.

similarity of two configurations is measured by intercorrelating (using the Pearson correlation
coefficient) for each pair of solutions the coordinates of corresponding points after Procrustean
fitting (cf. Borg and Leutner 1985). To unclutter the plot we used the R package wordcloud
(Fellows 2014). Figure 5 represents each point by its label, except in cases where the point
labels would be overlapping. In that case, it plots the points as red dots and connects the
point label to the point with a straight line so that the various labels do not overlap (see the
point clouds on the right-hand side of the plot).

The figure shows three rather dense clusters of low Stress solutions on the right-hand side,
and various widely scattered solutions with high Stress on the left side of the plot (large
labels). The plot can be partitioned by a staight line that separates all MDS solutions with
poor Stress (left-hand side) from those with acceptably low Stress (right-hand side).

One can also use cluster analysis to study the similarity of the 100 MDS solutions: Figure 6
shows that a hierarchical cluster analysis identifies four major clusters. For each cluster, one
configuration is marked by an arrow in the dendrogram as a prototype (the configurations
#10, #3, #2, and #72). Figure 7 exhibits these configurations. Only one of them, #72
has a poor fit (Stress.1= .236). The other three configurations correspond closely to the
configurations in Figure 2 (“grid”, #10), Figure 3 (“collapsed horizontals”, #3), and Figure
4 (“triangle”, #2), respectively. They all have Stress values of almost zero. Thus, formally,
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Figure 7: Configurations that represent four different clusters of the dendrogram in Figure 6.

they are all excellent representations of the data in the sense of the ordinal primary approach
to ties MDS model, but neither the “collapsed horizontals” nor the “triangle” solutions recover
the underlying configuration of Figure 1 very well. Rather, they are examples of degenerate
solutions.

Ordinal MDS with the secondary approach to ties (“keep ties”) recovers the latent configura-
tion of Figure 1 (and the slightly non-linear relation of dissimilarities and distances) perfectly
when using the Torgerson IC or the best random IC. However, using other ICs, one also ob-
tains many undesirable solutions. Some examples are shown in Figure 8. The configurations
#5, #11, and #7 swap the points on one or two of the horizontal grid lines of the design
configuration. Their Stress values are not zero, but they are all significant by the norms of
Spence and Ogilvie (1973). We also find a probability of essentially zero in all cases using
the permutation test provided by smacof. Hence, if the true configuration is not known, one
would likely accept any one of these solutions as “the” MDS solution if there are theoretical
reasons that speak for such a choice.

Interval MDS leads to MDS solutions that are either unacceptable local minima with high
Stress, or to configurations that closely correspond to the configurations #2, #5, and #7
in Figure 8. They have Stress values of .046, .113, and .113, respectively. All Stress values
indicate a highly significant model fit according to smacof’s permutation test.

Finally, ratio MDS leads to solutions that are quite similar to those of interval MDS. Of
course, the Stress values are higher, even in case of “grid” solutions, because the regression
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Figure 8: Four local minima solutions using ordinal MDS with the secondary approach to
ties.

line in the Shepard diagram must be linear and must run through the origin in ratio MDS.

When adding some jitter to the design configuration, we find similar results in all cases, except
when using ordinal MDS with the primary approach to ties. The noise that is added to the
design configuration makes all ties in the dissimilarities go away. The dissimilarities are,
therefore, all different and this makes it impossible for MDS to generate gross step functions
as in Figure 4, for example. Hence, solutions in the form of a triangle are not observed
anymore. Rather, the solutions are either grid-like, or they show some swapping of points on
the lower and/or on the upper horizontal grid line (as in Figure 7).

3.2. Results: real data applications

We now turns to three classic real data sets. For the data on the subjective similarity of
different countries reported by Wish (1971), ordinal MDS starting with random configurations
leads to different solutions. Many of them have unacceptably high Stress, but there are two
types of solutions with the same minimal Stress of .185. The fit of these solutions is also
significant (p = .04) using smacof’s permutation test. Figure 9 shows these solutions next to
each other. They are rather similar but differ in two important details: In configuration #1,
the positions of Japan and Israel are swapped in comparison to where they are in configuration
#13; moreover, in configuration #1 India is positioned more in the center of the configuration.

The crossed dashed lines in the plots represent two external scales that were optimally fitted
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Figure 9: Two MDS solutions for ratings on the subjective similarity of different nations.

into these plots. The external scales show the economic development and the number of
inhabitants, respectively, of the 12 countries in 1971 (Borg et al. 2013). In case of economic
development (red lines), the external scales and the fitted scales correlate with r = .936
and .925 in the plots. In case of the number of inhabitants, the correlation is r = .464 in
configuration #1 but only r = .303 in configuration #13. Hence, configuration #1 is the
more meaningful MDS solution if one wants to follow Wish (1971) and Wish, Deutsch, and
Biener (1972) in interpreting the configuration in terms of these dimensions. However, this
solution may not be the one that is reported by the MDS program as the final solution.

A second application uses ratings of students on the importance of personal values as guiding
principles in their life (Borg et al. 2016). What is scaled here are the inter-correlations of
indexes for ten basic values. These values are predicted to form a circular scale, with the
points ordered as PO(wer), AC(hievement), HE(donism), ST (imulation), S(elf-)D(irection),
UN(iversalism), BE(nevolence), TR(adition), CO(nformity), SE(curity), and back to PO(wer).

Ordinal MDS (using mds () with its default settings) leads to the solution shown in the lower
left-hand panel of Figure 10 with Stress.1 = .128. This solution obviously closely corresponds
to the predicted value circle even though the circle is somewhat dented, with AC(hievement)
moved towards the circle’s center. Random initial configurations identify three more local
minima. They all have almost the same Stress values. They are also all quite similar, but
a closer inspection shows that configuration #2 exhibits a theory-incompatible swapping
of CO(nformity) and TR(adition), while configuration #5 moves AC(hievement) somewhat
towards the center of the circle (see Figure 10). Configuration #3 on the other hand supports
the Schwartz theory perfectly.

As a third example, we study the color similarity data collected by Ekman (1954). For
these data, MDS finds a circular configuration with points ordered in terms of the physical
wavelengths of the colors that they represent. With both Torgerson or with random initial
configurations, the usual ordinal MDS with the primary approach to ties almost always leads
to the same solution, the color circle. Configurations that do not exhibit this circle are
extremely rare when testing many different initial configurations. Moreover, they all have
much higher Stress. This is useful information for the substantive researcher because it shows
that these data have an essentially unique MDS representation.

29
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Figure 10: Local minima MDS solutions for intercorrelations of indexes on the importance of
personal values.

4. Discussion

The above analyses demonstrate that it can be risky to use MDS without thoroughly studying
the effects of different initial starting configurations. Not just in contrived simulations, but
also with real data MDS can have many local minima with almost the same Stress but with
different configurations, allowing different interpretations. The Torgerson IC proves to be a
good rational IC, but (when adding error to the artificial data derived from the design grid
in Figure 1), even it does not guarantee to always succeed recovering a known underlying
configuration. When using stronger MDS models, particular types of solutions that result
from non-smooth step functions (as in Figure 4) cannot occur anymore, but radically different
solutions that all have acceptably low Stress values still exist, in particular if the data contain
ties and the usual ordinal MDS model with the primary approach to ties is employed.

If MDS is used in an exploratory way to visualize the structure of proximity data and make
them accessible to the researcher’s eye, there is really nothing to recover. In this case, one
should pick the local minimum solution that is best interpretable, ideally even suggesting a
content-based law of formation. Of course, this solution should also have an acceptably low
Stress value. In the applications discussed above, it turned out that the best-interpretable
solutions always had a Stress value that was not worse than the Stress value of other solutions.
However, this may not always be true in applied research, and so we recommend to at least
take a look at other local minima solutions before accepting the solution offered by the MDS
program.

This also holds if one does not use ordinal MDS but stronger MDS models. To make testing the
effects of different initial configurations easy in practice, the supplementary materials provide
corresponding R code. With this code, users can identify the configurations they want to look
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at in more detail. The various plots (together with the fit statistics) are the basis for deciding
what to pick as the best MDS representation for the given data. If computing time becomes
as issue as in large scale MDS settings, R’s facilities for parallelizing the random IC fits can
be used (e.g. using the parallel package). Since these MDS fits are independent from each
other, the job can be distributed easily on machines with multiple cores.

In general, no formal decision rule seems possible that tells the user what solutions satisfy
the criterion of having a Stress that is “still acceptable”. This decision always requires to
consider a set of statistical and content criteria (see Mair, Borg, and Rusch 2016) such as the
overall Stress; the composition of the Stress (Stress per point); the assumed error level of the
data; the mapping requirements of the chosen MDS model; and the statistical significance,
the robustness, the replicability, and the theoretical interpretability of the solution.
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Abstract

The present article aims to point and interval estimation of the parameters of gener-
alised exponential distribution (GED) under progressive interval type-I (PITI) censoring
scheme with random removals. The considered censoring scheme is most useful in those
cases where continuous examination is not possible. Maximum likelihood, expectation-
maximization and Bayesian procedures have been developed for the estimation of parame-
ters of the GED, based on a PITI censored sample. Real datasets have been considered to
illustrate the applicability of the proposed work. Further, we have compared the perfor-
mances of the proposed estimators under PITI censoring to that of the complete sample.

Keywords: statistical computing, Bayesian, maximum likelihood, simulation, progressive in-
terval censoring.

1. Introduction

In Statistical literature several authors have proposed models which are supposed to be com-
peting models (see, Mudholkar and Srivastava (1993), Kondolf and Adhikari (2000), etc.)
to Gamma and Weibull distributions. Similarly, Gupta and Kundu (2001a) introduced the
generalised exponential distribution (GED) as an alternative to Gamma and Weibull distri-
butions. Nowadays, its has gained popularity in the statistical literature due to its simplicity,
and the probability density function (pdf) is very flexible and accommodate wide variety of
shapes. The probability density function of the GED is given as,

f(z]a, 0) = 0466_9“”(1 — ¢ fmya-t x>0,a,0 >0, (1)

where « is the shape parameter and 6 is the scale parameter of the considered model. Its
cumulative distribution and survival functions are given by,

F(z]a,8) = (1 —e ) (2)

and
S(z|a,8) =1 — (1 — e ) x>0,a,60 >0, (3)
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respectively. It has been extensively studied by Raquab and Madi (2005); Singh, Singh, Singh,
and Prakash (2008) and many others. Gupta and Kundu (2001a); Jaheen (2004); Sarhan
(2007); Zheng (2002) discuss its importance over gamma and Weibull distribution which are
two most popular distribution used in survival analysis. Gupta and Kundu (2001a) noted
that, in many situations, the two-parameter generalised exponential distribution provides a
better fit than the two-parameter Weibull distribution. It may be noted here that the GED
is a special case of a distribution that was used by Gompertz (1825). Gupta and Kundu
(2001b) studied different methods of point estimation for GED parameters which include
maximum likelihood estimation, method of moment estimation and probability plot method
of estimation based on complete samples. Singh, Singh, and Kumar (2011) discussed the
parameter estimation and reliability characteristic of GED under Bayesian paradigm. It is
worthwhile to mention here that little attention has been paid to inferences based on censored
samples from GED under the Bayesian paradigm, although censoring is quite common in
various clinical and life testing experiments.

Situations do arise when the units under study are lost or removed from the experiments
while they are still alive i.e., we get censored data in such cases. If the point at which
the experiment terminate is time dependent, it is called Type-I censoring. On the other
hand, if it is unit dependent, it is called Type-II censoring. Depending on the need and
practical considerations, various modified forms of censoring schemes have been discussed
in the literature. Aggarwala (2001) proposed a combination of interval Type-1 censoring
and progressive censoring called progressive Type-I (PTI) interval censoring which naturally
arises in most clinical experiments. To have a clear visualization of this censoring scheme,
let us consider an experiment with n bladder cancer patients for whom remission times are
to be recorded. The patients are called for regular check-ups at scheduled times, and those
who turn up are checked. At the first visit, scheduled at time T3, only n — R; patients
out of the total n patients report, i.e. R; patients leave the experiment during the time
interval (0,71]. The experimenter examines these n — R; patients and finds that cancer
has reoccurred in D patients. It may be noted here that the exact time of recurrence for
these Dq patients is not known to the experimenter; he only has the information about the
number of recurrences during the time period between the start of the experiment and first
visit. At the second visit, scheduled at time T, n — Ry — D1 — Ry out of the remaining
n — Ry — Dy patients report, i.e. Ry patients leave the experiment at this stage (during
the time interval (77,75%]). The experimenter examines these patients and finds that cancer
has reoccurred in Dy patients out of remaining n — Ry — D; — Ro patients, and in this
way the experiment continues till the m!* visit. At this stage (m!* visit) all the remaining
R,=n—Dy—Dy---—D,, — R — Ry--- R,_1 units are removed, i.e. the experiment is
terminated at this stage. Recently Chen and Lio (2010) proposed a methodology to estimate
parameters involve in GED under PTI interval censoring under the assumption that the
proportions (p;) of the patients leaving the experiment during (7;-1,7;] is known in advance,
i.e. they prefixed the proportions pi,pa,...,pm and considered that at i** stage, |n; * p;|
patients shall leave the experiment. Here, |n; % p;| denotes the largest integer less than or
equal to n; * p;. The author’s claim that exactly |n; * p;| patients out of |n;| will drop out
of the experiment at the i*" stage (visit), seems unrealistic and hypothetical. In fact, the
number of patients dropping out from the clinical trial at any stage is beyond the control of
the experimenter and cannot be predetermined. It seems more logical and natural to consider
these p; as random variables for the risk of dropping at the i** stage. Perhaps, keeping a
similar thought in mind, Yuen and Tse (1996) and Tse, Yang, and Yuen (2000) discussed
progressive censoring scheme with binomial removal. Ashour and Afify (2007) have used
PITI censoring scheme with binomial removals assuming that the exact value of the lifetimes
of the units are observable. In their studies, they have assumed that the number of removals
R}s at the ith stage (i = 1,2,...,m) is random and follows the binomial distribution with
probability p;. Thus, Ry ~ Binomial (n, p1) and Ry ~ Binomial (n — D1 — Ry, p2). In
general, the number of units dropping at the i*" stage, R; follows the binomial distribution
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with parameters (n — Zle Dy + Ry, p;) for i = 1,2,3,--- ,m — 1. In this paper, we will
consider PITI censored data with binomial removals and develop estimators for the shape
and scale parameter under the situation that the exact value of the lifetimes of the units not
observable, only the number of units lying in the specified interval of times are known. For the
parameter estimation problem, we have considered the most popular loss function, namely the
squared error loss function (SELF) which can be easily justified on the grounds of minimum
variance unbiased estimation (see Berger 2013, Ch.2). We will compare the performance of
the proposed estimators of the parameters obtained under the above stated censoring scheme
with the estimates under the complete sample case.

The rest of the paper is organized in the following sections. In Section 2, Classical and Bayes
procedures for the estimation of the model parameters based on PITI with binomial removal
samples have been developed. Two real datasets has been considered, the first one is related
to the survival time of patients with plasma cell myeloma and the second one regarding the
number of revolutions in million before failure of groove ball bearings, have been considered
for the illustration of the proposed methodology in Section 3. Comparison of the estimators
based on simulation study has been provided in Section 4. Finally, conclusions have been
summarized in Section 5.

2. Parameter estimation

2.1. Maximum likelihood estimation

In this section, we provide the MLEs of « and #, the parameters of the lifetime distribution
given in equation (1). Let us consider that n units are put on test initially at time Ty = 0, and
we record the number of droppings and number of failures during pre-specified time intervals

(T;-1,T;) (i =1,2,...,m) amongst the available units; i.e. we get the data consisting of the
number of failures D = (di,da, ..., dy) and number of droppings R = (71,72, ..., 7y) during
the time intervals (0,74], (11, T3], ..., (Trm—1, D] through the censoring scheme described in

the previous section. It may be noted here that the individual units dropping from the test at

Experiment termina
all remaining
Number of droppings R, Ro R units removed

| | |
| | |

Time 0 t1 to tm—1 tm

Number of recurrence 2

Figure 1: Progressive interval type-I censoring scheme

the ¥ stage (during the time interval (T;_1,T;] ), s = 1,2, - - - m are random and independent
of each other with certain probability, say p;, for i = 1,2, --m. Therefore, the number r; of
units dropping at the 1%¢ stage follows a binomial distribution with parameters (n,p;) and

rq; 1 = 2,3, -m follows a binomial distribution with parameters (n — Z};i (dy +m), pi); ie.

n T n—r
P(rilp1) = (rl)pf(l—m) !

n—d;—r o
P(T2|7’1,d1,p2) = < T12 1>pg2(1_p2)n di—r1—r2
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and in general

i—1 i—1 i
n— > (dj+r;) , n—3 dj= 3 j
P(Tz“rl,u-ﬂ"z‘—l,dl,---,di—l,pi) = ( j=1 > pzz(l—pi) J=1 J=1 ,
Ti
m
for i =2,3,---m and rpp1 =n— > (dj —rj). Now the complete likelihood for the observed
j=1

data can easily be written as

L(a,80|R,D,T) [F(T;) — F(Tifl)}di x [1—F(T;-1)]"

it

(T’i"f’l, e ,’f’ifl,dl, .. ~7di,pi71) [1 — F(Tm)]rerl

(=) (e ) T e (e T

i—1

X [1 — (1 — e*eTm)a]T"L+1 <n — J;(dj + rj)>

Ti

<
1
=

Il
.:3

i—1 i
. n—_z dj_vz rj
xpi"t(L—pi) =t 9= (4)

Above expression bifurcates as
L(a,0|R,D,T) x Ly(,0|R, D, T)Ly(P|R, D, T), (5)

where

m+41

TS (R R RS (R YR

i= =

Note that Lo(+) is free from « and €. Thus, to compute ML estimate of o and 6, we require
only Li(:). The corresponding log likelihood function can be written as

logLy(T, a,0) = idiln[@_e—en)a_ (1_6—91371)6“]
=1

m+1

riln |1 — — e 0T ¢ .
+; nf1- (1 )] (7)

Hence, the likelihood equations can be obtained as;

dlogL id [(1—e )" In(1 — e T) — (1 — e 0Ti-1) " In(1 — e~ 9Ti-1)]

do : [(1 — e )" — (1 - e*QTifl)a}

mtl (1 — e*GTi—l)a In(e=9Ti-1)

Z n =1 —efT)]  — 0 (8)

[(1 — e‘eTi)O‘*1 e‘eTiaTi — (1 — e‘gTFl)a e‘eTFlaTi,l}
[(1 — e*eTi)a - (1- e_eTifl)a]
m+1 (1 _ e*OTifl)afl eieTiilOéﬂ_l

R g

=1

The MLEs of o and 0 can be obtained by solving (8) and (9) simultaneously. But it may
be noted here that explicit solutions cannot be obtained from the above equations. Thus, we
propose the use of a suitable numerical technique to solve these two non-linear equations. One
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may use Newton-Raphson or simulated annealing of their variants to solve these equations.
This can be routinely done using R or other packages. We have also obtained the observed
information matrix,

(10)

I(a, 0|data) = [_Lo‘a _Laﬂ

—Loo —Lgg

where, all the second partial derivatives of the log-likelihood function L., Lag, Lgo and Lgg
are provided in the Appendix-A. Based on it, the asymptotic confidence (AC) interval and
standard errors of the parameter estimates can be obtained in the usual way. While using the
Newton-Raphson algorithm (the details are provided in the simulation section) to compute the
MLEsS for the parameters, it is observed that the iterations converge approximately 85% —90%
of the time.

2.2. Bayesian estimation

In this section, we provide the Bayesian inferences for o and 6, when we have the progressive
interval type-I censored data as explained in Figure 1. We have also obtained the highest
posterior density (HPD) intervals for both the parameters. Before proceeding further, we
make selections for the prior distributions of the parameters. Following Berger and Sun
(1993); Raquab and Madi (2005); Singh, Singh, and Kumar (2014), it is assumed that both
« and 0 are independent gamma variates, having pdfs

g1(a) = A e~ M) g (n=1)
I(

0<a<oo, A1 >0,y >0 (11)
Vl)

and
(0) = 22 ~Oud)gla-1)
g2 = F(Vz) ;
Here, all the hyperparameters A1, 11, A3 and v are assumed to be known and can be evaluated
following the method suggested by Singh, Singh, and Kumar (2013). We compute the Bayes
estimate of the unknown parameters under the squared error loss function. Using the priors
given in (11) and (12) and the likelihood function (4), the joint posterior density of « and 6
for the given data can be written as

0<f<oo, Ao >0, >0, (12)

L(OQG‘R’ DvT) 91(04) 92(9)

™ OZ,HR,D,T 50 00
(0 ) Jo o JoT L(e, 0| R, D, T) g1(c) g2(6) dex df
=TT Tdadd 13
[Je Jdads® (13)
where
k B
J=J(a,0) = e athbd)yi-l)gla-1) H[ 070y (1_679%71)6@ i
=1

Ti

x [1 (1- e*(’Ti)a}

Let h(-) be a function of a and . Then, the Bayes estimator of h(-) under the squared error
loss function is given by

ho(a,0) = En(h(c,6))

ffo (o, 0) J dov df
ffo J do df

(14)

It is clear from the expression (13) that there is no closed form for the estimators, so we
suggest using an MCMC procedure to compute the Bayes estimates. After getting MCMC

37
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samples from the posterior distribution, we can find the Bayes estimate for the parameters in
the following way

N
1
[E(®|data)] = | ——— Z O,
N —No i=No+1

where Ny is burn-in period of the Markov chain and ©; = [a,-,ei]’. For computation of
the highest posterior density (HPD) interval of ©, order the MCMC sample of © as O,
O2), O@3), "+, Ovy- Then construct all the 100(1-y)% credible intervals of © say (©(y),
@(NU—"/J'H))’ (6(2)’@(NL1—7J+2)) ce ’(Q(LN’YJ)’ @(N)) Finally, the HPD credible interval of
« and f is that interval which has the shortest length.

In order to obtain the MCMC samples from the joint posterior density of « and 6, we use
the Metropolis-Hastings (M-H) algorithm. We consider a bivariate normal distribution as the
proposal density i.e. Na(u,Y) where ¥ is the variance-covariance matrix. It may be noted
here that if we generate observations from the bivariate normal distribution, we may get
negative values also, which are not possible as the parameters under consideration are positive
valued. Therefore, we take the absolute value of the generated observations. Following this,
the Metropolis-Hastings algorithm associated with the target density 7(-) and the proposal
density No(p, ) produces a Markov chain ©7 through the following steps.

’

(D Set initial values ©¢ = [ay, bp]
@ Generate new candidate parameter values 0, = [, 9*]/ from No(p, X).

@ Calculate the ratio

p(6:,6,1) = min { £ 1}
@ Draw u from uniform(0,1);

Accept O, as ©; if u < p(0,,0,-1),
If ©, is not accepted, then ©; = ©;_1.

In using the above algorithm, the problem arises as to how to choose the initial guess. Here,
we propose the use of the MLEs of (a, #), obtained by using the method described in Section
2.1, as initial values for the MCMC process. The choice of covariance matrix X is also an
important issue; see Natzoufras (2009) for details. One choice for ¥ would be the asymptotic
variance-covariance matrix I (4, é) While generating M-H samples by taking ¥ = I~1(4, é),
we noted that the acceptance rate for such a choice of ¥ is about 15%. By acceptance rate, we
mean the proportion of times a new set of values is generated at the iteration stages. It is well
known that if the acceptance rate is low, a good strategy is to run a small pilot run using a
diagonal Y as a rough estimate of the correlation structure for the target posterior distribution
and then re-run the algorithm using the corresponding estimated variance-covariance matrix;
for more details see Gelmen, Carlin, Stern, and Rubin (1995, pp. 334-335). Therefore, we
have also used the latter described strategy for the calculations in the following sections.

3. Real data application

In this section, we illustrate our proposed methodology with the real examples. The first
dataset considered by us represents the survival times for patients with plasma cell myeloma,
already reported in Carbone, Kellerhouse, and Gehan (1967). The data contains the response
time to therapy of 112 patients with plasma cell myeloma (a tumour of the bone marrow
composed of cells normally found in bone marrow) treated at the National Cancer Institute,
Bethesda, Maryland. Figure 2 represents the contour plot of negative log-likelihood for the
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Figure 2: Contour plot for plasma cell myeloma data

considered dataset. The ellipses are obtained by joining those points which have equal values
of the negative log-likelihood. Every inner ellipse has a smaller value than that of the outer
ellipse. Thus, the innermost ellipse has the minimum value. In other words, the minimum of
the minus log-likelihood (maximum of the likelihood) will correspond to the innermost ellipse.
We used an arbitrary point (1,0.05) from this innermost ellipse as an initial guess. The MLEs
for the dataset are then calculated, using the procedure explained in Section 2.1. Finally,
these are obtained as ajs;, = 1.4325, Orrz, = 0.0571. Similarly, a 95% asymptotic confidence
intervals for « is obtained as (0.9706, 1.8944) and for § as (0.0420, 0.0727).

To compute the Bayes estimates for the considered dataset, we used the MCMC technique
discussed in Section 2.2. Following Robert (2015), we ran three MCMC chains with initial
values selected as MLE, MLE - (asymptotic standard deviation) and MLE + (asymptotic
standard deviation), respectively. Figure 3 shows the iterations and density plot of samples
generated from the posterior distribution using the MCMC technique. From this figure, we
see that all the three chains have converged and are well mixed. It is further noted that the
posterior of « is approximately symmetric, but the posterior of # is left skewed. Utilizing these
MCMC samples, we computed the Bayes estimates, following the method discussed in Section
2.2, and got d&p = 1.4301, O = 0.0581 under non-informative independent priors. The 95%
highest posterior density (HPD) interval estimate for « is obtained as (1.0001,1.6109) and for
0 as (0.0424, 0.0719).

The second dataset, considered here, arose in the tests on the endurance of deep groove ball
bearings. This data contains the number of million revolutions before failure for each of the
23 ball bearings in the life test and has been reported by (Lawless 2002, pp.228). The data
points are exact observations. For the illustration of our methodology, we have generated
censored data for a prefixed number of inspections by specifying the inspection times and
dropping probabilities.

We fixed the experimentation time as 140 units of time and decided to have 7 inspections
during this period. We have considered four different inspection plans. The first plan
consists of equally spaced inspection times i.e. at 20, 40, ..., 140 units of time. The
next inspection plan is designed under the motivation that if the probability of failure is
high during some time interval, an early inspection should be scheduled. Thus, the sec-
ond inspection plan is based on such a notion. The third inspection plan is designed on
the basis of estimated cdf; although such a plan is not feasible in practice we have in-
cluded it for theoretical interest. First, we calculate v = F(140, apr,0p1), then inspec-
tion times are obtained as Ty = F~Y(u/7,anr,0mL), To = F1(2u/7, anmp,0mL), -- -,
Ts = F~Y(6u/7,anr,00) and Ty = 140. The fourth inspection plan is chosen so as to
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Figure 3: Iteration trace and density plot of MCMC samples for plasma cell myeloma data

have approximately equal probability of failure in each interval of inspection and are approx-
imated to the nearest multiple of 10. The dropping schemes, are selected in the following
manner: the first scheme considers the risk of dropping at all the intermediate stages to be
zero i.e. p1 = p2 = p3 =ps = p5s = pg = p7 = 0,pg = 1. In the second scheme, the risk at all
stages is equal but not to zero i.e. p1 = p2 = p3 = ps = ps = pg = p7 = 0.2, pg = 1. The third
scheme is constructed so that the risk of dropping is low in the earlier stages and high in later
stages. Contrary to it, in the fourth scheme, the risk of dropping is high in earlier stages and
low in the later stages. Lastly, we consider the case when the risk is high at the first stage,
but there is no risk at all other stages. These inspection schemes and dropping schemes are
summarized in Table 1b and Table 1a, respectively. Under dropping scheme 1 and inspection
scheme A, we obtained the number of failures at seven stagesas 1, 2, 8, 4, 3, 2, 2
respectively and one dropping at last stage. Following the same procedure, as followed in the
previous example, we calculated the ML estimates and Bayes estimates with corresponding
interval estimates for the dataset as mentioned above. This result is summarized in the
first row of Table 2. The last row of the table provides the ML and Bayes estimates with
corresponding interval estimates for complete dataset.

It may be worthwhile to mention here that the number of droppings are random and we
are generating the progressive interval type-I censored data from the complete sample data,
therefore we can study the average performance of the estimators. For this purpose, we
generated 2000 censored datasets of r;’s for given p;’s and accordingly the d;’s from the
considered complete dataset. Table 2 provides the average ML and Bayes estimates, along
with the AC and HPD interval estimates of the parameters based on the generated censored
datasets. It may be seen from this table that the width of the interval estimates under
dropping scheme 1, when risk of dropping at all stages is zero, is least of all the estimators
under other schemes. It may further be seen that width of the interval estimates under
dropping scheme 2 is more than the others. Further, under the 4" scheme the interval width
is lesser than those under the 3"¢ scheme. While studying the effect of inspection time on the
performance of the estimators, we noted that the average estimate under inspection scheme
A and dropping scheme 1 is close to the estimate obtained for the complete sample case. For
other inspection and dropping schemes the average estimates are larger than that obtained for
the complete sample case. Similarly, the average width of the interval estimates under scheme
A is least among all considered inspections schemes. The width of the interval estimates under
scheme B is more than those under scheme A but less than those under scheme C. The width
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of the interval estimates under scheme D is largest. It is also noted that as the proportion of
droppings increases, the width of the interval estimates increase.

Table 1: Censoring scheme

(a) Dropping Scheme (b) Inspection Scheme
Name Dropping Probabilities Name Inspection times
1 0,0,0,0,0,0,0,1 A 20, 40, 60, 80, 100, 120, 140
2 0.2,0.2,02,0.2,02,02,02,1 C 33.00, 45.60, 51.96, 67.80, 68.88, 98.64, 140
3 0.2,0.2,0.2,0.1,0.1,0.1, 0.1, 1 B 36.96, 46.85, 55.88, 65.55, 77.31, 94.54, 140
4 0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 1 D 40 50, 65, 70, 100, 120, 140
5 0.25,0,0,0,0,0,0, 1

Table 2: Average ML and Bayes estimates of « and 6 along with their AC and HPD intervals
for different censoring scheme related to the ball bearing dataset

Inspection Dropping . AC Interval of o N HPD Interval of @« AC Interval of 0 A HPD Interval of 6

Scheme scheme ML Tower Upper B Lower Upper Onir Lower  Upper 05 Lower Upper
A 1 5.7260 1.0579 9.3029 57261 1.2590  8.2029  0.0198 0.0449 0.0331 0.0326 0.0246  0.0411
A 2 5.6573 0.0000 10.1799 5.6579 0.3648  9.0797  0.0178 0.0454 0.0325 0.0329 0.0241  0.0413
A 3 5.6133 0.0000 9.5056  5.6139 0.0673  8.4048  0.0184 0.0456 0.0322 0.0320 0.0240  0.0417
A 4 5.7297 0.0000 9.4267  5.7302 0.0791  8.3263  0.0184 0.0457 0.0322 0.0323 0.0240  0.0412
A 5 5.6271 0.2748 9.3500  5.6275 0.4651  8.2488  0.0194 0.0452 0.0324 0.0318 0.0245  0.0410
B 1 5.6181 0.0000 9.1913  5.6189 0.0000  8.0901  0.0185 0.0458 0.0331 0.0330 0.0252  0.0417
B 2 7.8164 0.0000 33.0905 7.8160 0.0000 31.9902 0.0170 0.0480 0.0329 0.0332 0.0230  0.0429
B 3 7.9880 0.0000 28.4871 7.9892 0.0000 27.3877  0.0165 0.0472 0.0329 0.0323 0.0236  0.0427
B 4 7.4395 0.0000 17.7741 7.4402 0.0000 16.6733 0.0178 0.0466 0.0328 0.0325 0.0240  0.0423
B 5 6.6683 0.0000 11.3200 6.6683 0.0000  9.0184  0.0192 0.0461 0.0337 0.0324 0.0246  0.0424
C 1 5.8681 0.0000 9.4332  5.8698 0.0000  8.3330  0.0188 0.0456 0.0332 0.0328 0.0250  0.0420
C 2 8.6784 0.0000 46.1006 8.6785 0.0000  44.9996  0.0167 0.0486 0.0340 0.0338 0.0231  0.0440
C 3 7.4340 0.0000 38.6957 7.4343 0.0000 37.5957 0.0164 0.0486 0.0347 0.0333 0.0232  0.0437
C 4 7.0231 0.0000 22.1019 7.0241 0.0000 21.0007 0.0174 0.0476 0.0349 0.0337 0.0240  0.0426
C 5 6.4037 0.0000 12.6525 6.4052 0.0000  9.5506  0.0185 0.0468 0.0347 0.0339 0.0242  0.0424
D 1 7.0398 0.0000 21.8711 7.0412 0.0000 20.7705 0.0178 0.0469 0.0330 0.0327 0.0246  0.0424
D 2 10.794 0.0000 64.2911 10.7940 0.0000  63.1905 0.0161 0.0509 0.0347 0.0336 0.0227  0.0441
D 3 13.624 0.0000 47.2659 13.6252 0.0000 46.1648 0.0162 0.0506 0.0330 0.0325 0.0229  0.0436
D 4 9.4267 0.0000 23.0812 9.4280 0.0000 19.9801  0.0169 0.0487 0.0324 0.0331 0.0236  0.0432
D 5 8.4054 0.0000 13.7967 8.4067 0.0000 12.6970  0.0182 0.0477 0.0328 0.0330 0.0245  0.0427
Complete 52525 1.2716  9.2933 — 1.572 9.3819  0.0322 0.0449 — 0.0319 0.0256  0.0427

4. Simulation study

In this section, we have compared the performances of the various estimators on the basis of
their bias and mean square error (MSE). It may be mentioned here that the exact expressions
for the bias and mean square errors cannot be obtained, because the estimators are not
in closed form. Therefore, biases and MSEs are estimated on the basis of a Monte-Carlo
simulation study of 2000 samples. For this purpose we generated a specified number of
observations from the distribution given in equation (1) for arbitrarily fixed values of the
parameters under the specified censoring schemes and calculated different estimates of «
and 0 following the procedure described in the previous sections. This process was repeated
2000 times to obtain the simulated biases and MSEs. We have computed the MLEs by
using the Newton-Raphson algorithm. The estimates of («, ) obtained through the Newton-
Raphson algorithm are denoted as (o, Oar1,), respectively. It is noted that Newton-Raphson
algorithm has a convergence rate of 85%-90%. We have reported the results omitting the cases
where the algorithms do not converge. To simulate a progressive interval type-I censored
sample from the considered distribution, we have used the algorithm given by Balakrishnan
and Cramer (2014, pp.200) after modifying step @ as : Determine the number of droppings
at the j stage by generating r; from Bin(n — Z;;ll(dj +175),05)-

It may be noted here that the MSE and bias of these estimators will depend on the sample size
n, values of «, # and hyperparameters A;, As, 1 and 2. We considered a number of values
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for the sample size n; namely n = 20, 30, 40 and 50. For the choice of the hyper-parameters
of the prior distribution, we have considered one set of values as Ay = Ao = 11 = 1» = 0 which
reduces the prior to a non-informative prior. For an informative prior, the hyperparameters
are chosen on the basis of the information possessed by the experimenter. In most cases,
the experimenter can have a notion of what are the expected value of the parameter and
can always associate a degree of belief to this value. In other words, the experimenter can
specify the prior mean and prior variance for the parameters. The prior mean reflects the
experimenter’s belief about the parameter in the form of its expected value, and the prior
variance reflects his confidence in this expected value. Keeping this point in mind, we have
chosen the hyper-parameters in such a way that the prior mean is equal to the true value of
the parameter, and the belief in the prior mean is either strong or weak, i.e. the prior variance
is small or large, respectively; for details see Singh et al. (2011). The bias of the estimates of
parameters, reliability and hazard rate with corresponding MSEs have been calculated, and
the results are summarized in Table 3, 4 and 5.

Table 3 provides the absolute bias and MSE of estimates of the parameters along with
the reliability and hazard rate at time ¢t = 1 for @ = 2.5, § = 2 and inspection times
0.2, 0.4 ,0.6, 0.8, 1.0, 1.2, 1.4, 1.6. It can be seen from the table that in general the bias
and MSEs decrease as n increases in all the considered cases. It can also be seen that the
MSE of the MLE is more than that of the corresponding Bayes estimate in all cases, but the
difference between the MSEs of the Bayes and ML estimates decreases for increases in the
value of n. It is noted here that bias of the estimates and MSEs under censoring scheme 1
are approximately equal to that of complete sample case (denoted as scheme 0) and smaller
than those under other schemes. In most cases it is observed that the bias and MSE under
dropping scheme 1 are smallest followed by scheme 5, 4, 3 and 2 sequentially. Bias and MSE
of the reliability estimate show a similar trend as observed for the parameter estimates.

Table 4 provides the absolute bias and MSE of the various estimators for different choices
of model parameters. Above we noted that as the sample size increases the Bias and MSE
decrease, therefore we have reported the results for n=30 only. Similarly, we noted above
that under dropping scheme 1 the performance of the estimates are as good as the complete
sample case and better than all other schemes. Therefore, we have reported the results for
the complete sample case and scheme 1 and scheme 4 only. It may be seen from the table
that the bias and MSE of all the considered estimates of «, 6, reliability Sy/r(t = 1) and
hazard rate Hysr(t = 1) increase as « increases and/or as 6 increases. It is interesting to note
that the bias and MSE of all the estimates are smaller when the proportion of droppings are
smaller. All the estimates under scheme 1 have, more or less, a similar bias and MSE as that
obtained for the complete case; but the bias and MSE of the estimates under scheme 4 are
a little larger. The bias and MSE of the Bayes estimates obtained using various priors are
presented in Table 5, and we see that as prior confidence in the guessed value increases the
MSE decreases.

5. Conclusions

In the present piece of work, we have considered both Classical and Bayesian analysis for
the progressive interval type-I censored data when the lifetime of the items follows gener-
alised exponential distribution. The ML estimates do not have explicit forms. Therefore, the
Newton-Raphson algorithm has been proposed to compute the MLEs. The Bayes estimates
under the squared error loss function also do not exist in explicit form, but, Bayes estimates
can be routinely obtained through the use of MCMC technique considering the shape and
scale parameters having independent gamma priors. On the basis of this study, we may
conclude that the proposed estimation procedures under progressive interval type-I censoring
with specific choices of the scheme can be easily implemented. It is also seen that the in-
spection scheme and dropping schemes have an effect on the performance of the estimators.
Thus, if it is possible, it is better to choose a scheme resulting in a fewer number of droppings.



Table 3: Simulated bias (MSE) of estimates of parameters, reliability and hazard rate for
fixed @ = 2.5, # = 2 and inspection time 0.2(0.2)1.6.
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cheme

20 0°  0.5718(L.1600) 0.2025(0.5122) 0.4856(0.7593) 0.0691(0.2791) 0.0056(0.0070) 0.3079(0.1870)
1 0.5932(1.3333)  0.1842(0.5699) 0.5863(0.9271) 0.0385(0.3443) 0.0057(0.0069) 0.3085(0.1757)
2 2.0746(4.2198)  0.3975(0.8522) 2.0922(3.7516) 0.2707(0.6738) 0.0065(0.0089) 0.4007(0.3911)
3 1.7536(3.1505)  0.3920(0.8764) 1.6912(2.6920) 0.2597(0.5979) 0.0059(0.0077) 0.3093(0.3838)
4 1.7491(3.1034)  0.3861(0.8202) 1.4365(2.6664) 0.1939(0.5585) 0.0058(0.0073) 0.3091(0.3769)
5 1.0191(1.8213)  0.2074(0.7259) 0.8832(1.4055) 0.1025(0.4666) 0.0057(0.0072) 0.3094(0.2854)
0 0.3437(0.8028)  0.1147(0.4058) 0.0998(0.5197) 0.0152(0.2521) 0.0048(0.0047) 0.3079(0.1020)
1 0.3427(0.8692) 0.1003(0.4130) 0.1557(0.6105) 0.0091(0.2262) 0.0048(0.0046) 0.3082(0.1022)

%0 2 0.5693(1.3154) 0.2069(0.6577) 0.3680(1.0635) 0 0814(0.4828)  0.0059(0.0059) 0.4008(0.1036)
3 0.5596(1.2533) 0.1696(0.6206) 0.3012(1.0403) 0.0552(0.4668) 0.0054(0.0054) 0.3088(0.1031)
4 0.5194(1.2118) 0.1619(0.5703) 0.3989(0.9591) 0.0301(0.4670) 0.0052(0.0053) 0.3091(0.1027)
5 0.4322(1.0940)  0.1379(0.5208) 0.2671(0.8896) 0.0015(0.3743) 0.0050(0.0050) 0.3084(0.1026)
0 0.2522(0.7110)  0.0957(0.3491) 0.0910(0.5352) 0.0047(0.2438) 0.0043(0.0034) 0.3071(0.0960)
1 0.2536(0.8036) 0.0977(0.3801) 0.0882(0.6733) 0.0198(0.2541) 0.0044(0.0035) 0.3074(0.0958)

10 2 0.4758(1.0459)  0.1165(0.7106) 0.2164(0.9158) 0.0761(0.6127) 0.0056(0.0047) 0.3996(0.0975)
3 0.4140(1.0447)  0.1552(0.7056) 0.3396(0.8940) 0.0386(0.3859) 0.0053(0.0040) 0.3085(0.0965)
4 0.3450(0.9457)  0.1797(0.5425) 0.1757(0.8136) 0.0327(0.3185) 0.0049(0.0039) 0.3083(0.0969)
5 0.3318(0.8901) 0.1106(0.4865) 0.1575(0.6956) 0.0316(0.5886) 0.0049(0.0037) 0.3080(0.0961)
0 0.2477(0.7118)  0.0949(0.3488)  0.0332(0.6452) 0.0339(0.1837) 0.0040(0.0029) 0.3065(0.0853)
1 0.2537(0.8043)  0.0971(0.3895) 0.0078(0.7000) 0.0161(0.2413) 0.0041(0.0030) 0.3068(0.0862)

50 2 0.3322(0.9056)  0.1096(0.6144) 0.0955(0.7610) 0.0465(0.4660) 0.0048(0.0043) 0.3069(0.0866)
3 0.3148(0.8990)  0.1198(0.4954) 0.0349(0.8323) 0.0123(0.4802) 0.0046(0.0037) 0.3066(0.0859)
4 0.3011(0.8619) 0.1015(0.4742) 0.0879(0.7333) 0.0022(0.4111) 0.0043(0.0034) 0.3066(0.0860)
5 0.2499(0.8065)  0.0885(0.4326)  0.0247(0.7547)  0.0109(0.3040) 0.0041(0.0030) 0.3068(0.0860)

® Here, true value of reliability at time 1 is S(1) = 0.3048
¥ True value of hazard rate at time 1 is H(1) = 1.7851
¢ 0 means complete case, when no dropping and data points collected continuously



44

Estimations of the Parameters under Progressive Interval Type-I Censoring Scheme

Table 4: Simulated bias (MSE) of estimates of parameters, reliability and hazard rate for
various choice of parameters and fixed n = 30

Dropping

a Sch amr Onr ap 0p Sur(t=1) Hyp(t=1)
cheme
05 0 0.0320(0.0145) _ 0.0324(0.0105) _ 0.0275(0.0130) _ 0.0210(0.0101) _ 0.0003(0.0007) _ 0.0487(0.0219)
0.5 1 0.0366(0.0143)  0.0330(0.0125)  0.0313(0.0141)  0.0245(0.0111)  0.0060(0.0008)  0.0501(0.0215)
0.5 4 0.0452(0.0152)  0.0336(0.0132)  0.0399(0.0149)  0.0310(0.0131)  0.0063(0.0009)  0.0541(0.0224)
1.5 0 0.0345(0.0143) 0.0903(0.0964) 0.0318(0.0130) 0.0743(0.0904)  0.0029(0.0024)  0.1577(0.2474)
05 15 1 0.0413(0.0155)  0.0913(0.0964)  0.0403(0.0142)  0.0755(0.0948)  0.0082(0.0026)  0.1627(0.2476)
15 4 0.0471(0.0148)  0.0976(0.0968)  0.0448(0.0152)  0.0776(0.0958)  0.0095(0.0027)  0.1574(0.2482)
2.5 0 0.0449(0.0149)  0.1452(0.2642)  0.0429(0.0152)  0.1301(0.2527) 0.0036(0.0045)  0.2797(0.7334)
2.5 1 0.0455(0.0156)  0.1451(0.2652)  0.0427(0.0156)  0.1330(0.2558)  0.0042(0.0046)  0.2765(0.7330)
2.5 4 0.0481(0.0166) 0.1454(0.2666) 0.0454(0.0154) 0.1337(0.2565)  0.0077(0.0048)  0.2728(0.7333)
0.5 0 0.1641(0.2270) 0.0360(0.0133) 0.1302(0.2242) 0.0312(0.0081)  0.0024(0.0021)  0.0083(0.0074)
0.5 1 0.1712(0.2273)  0.0435(0.0140)  0.1343(0.2253)  0.0324(0.0092)  0.0038(0.0024) ~ 0.0114(0.0076)
0.5 4 0.1808(0.2311) 0.0440(0.0141) 0.1385(0.2282) 0.0410(0.0122)  0.0074(0.0026)  0.0042(0.0075)
15 0 0.1878(0.2309)  0.1037(0.1193)  0.1416(0.2243)  0.0866(0.1121)  0.0020(0.0043)  0.0869(0.1132)
15 15 1 0.1912(0.2324)  0.1068(0.1197)  0.1455(0.2241)  0.0873(0.1135)  0.0167(0.0044)  0.0851(0.1141)
15 4 0.1956(0.2388)  0.1097(0.1202)  0.1516(0.2318)  0.0883(0.1194)  0.0182(0.0045)  0.0891(0.1139)
2.5 0 0.1892(0.2349) 0.1875(0.3345) 0.1453(0.2340) 0.1543(0.3241)  0.0013(0.0048)  0.1850(0.3636)
2.5 1 0.1923(0.2362)  0.1918(0.3346)  0.1470(0.2358)  0.1582(0.3241)  0.0026(0.0050)  0.1833(0.3637)
2.5 4 0.1994(0.2382)  0.1986(0.3352)  0.1485(0.2375)  0.1584(0.3248)  0.0039(0.0052)  0.1904(0.3635)
05 0 0.3222(0.8562) _ 0.0642(0.0285)  0.2822(0.8474) _ 0.0368(0.0270) _ 0.0049(0.0017) _ 0.0090(0.0040)
0.5 1 0.3285(0.8576)  0.0719(0.0287)  0.2823(0.8474)  0.0383(0.0268)  0.0203(0.0018)  0.0094(0.0036)
0.5 4 0.3351(0.8579)  0.0786(0.0207)  0.2863(0.8473)  0.0406(0.0277)  0.0224(0.0021)  0.0117(0.0042)
1.5 0 0.3476(0.8634) 0.1682(0.2517) 0.2916(0.8413) 0.1263(0.2469)  0.0003(0.0038)  0.0687(0.0739)
25 15 1 0.3499(0.8644)  0.1698(0.2525)  0.3017(0.8455)  0.1318(0.2482)  0.0019(0.0039)  0.0502(0.0744)
15 4 0.3527(0.8645)  0.1706(0.2532)  0.3082(0.8453)  0.1354(0.2496)  0.0026(0.0043)  0.0612(0.0737)
2.5 0 0.3909(0.9115)  0.2839(0.6999)  0.3150(0.9071)  0.2353(0.6930)  0.0045(0.0051)  0.1421(0.3133)
2.5 1 0.3910(0.9125)  0.2826(0.7000)  0.3226(0.9110)  0.2393(0.6969)  0.0062(0.0053) 0.1357(0.3136)
2.5 4 0.3995(0.9204) 0.2854(0.7008) 0.3310(0.9149) 0.2420(0.6970)  0.0114(0.0054)  0.1262(0.3146)
3.0 0 0.5388(0.2176) 0.5116(0.1683) 0.4087(0.2304) 0.3261(0.1829)  0.0396(0.0202)  0.7741(0.3364)
3.0 1 0.5844(0.2234)  0.5000(0.2120)  0.4815(0.2212)  0.3820(0.2117)  0.1274(0.0478)  0.8046(0.3540)
3.0 4 0.6898(0.2692) 0.5463(0.2120) 0.6183(0.2369) 0.4740(0.2294)  0.1364(0.0286)  0.8580(0.3517)
40 0 0.5530(0.2303)  1.3648(1.4693)  0.4819(0.2352)  1.1533(1.3866)  0.0560(0.0566) 2.3702(3.7346)
3.0 4.0 1 0.6703(0.2267) 1.4112(1.4771) 0.6596(0.2532) 1.1435(1.4505)  0.1490(0.0812)  2.4594(3.7510)
4.0 4 0.7226(0.2649) 1.4730(1.4784) 0.7047(0.2760) 1.1856(1.4579)  0.1750(0.0492)  2.3688(3.7659)
5.0 0 0.7038(0.2371) 2.1954(4.0110) 0.6798(0.2532) 2.0040(3.8336)  0.0736(0.0736) 4.2306(11.0138)
5.0 1 0.6992(0.2392)  2.1816(3.9871)  0.6577(0.2589)  1.9941(3.8587) 0.0733(0.1028) 4.1922(11.0185)
5.0 4 0.7512(0.2888) 2.2243(4.0108) 0.7009(0.2402) 2.0491(3.8652)  0.1312(0.0979) 4.1031(11.0093)
3.0 0 2.4743(3.4426) 0.5779(0.2462) 1.9738(3.3973) 0.4890(0.1667)  0.0522(0.0520)  0.1438(0.1548)
3.0 1 2.5733(3.4655)  0.6817(0.2338)  2.0302(3.3062)  0.4975(0.1861) 0.0636(0.0411)  0.2144(0.1460)
3.0 4 2.7376(3.4884)  0.6648(0.2113)  2.1179(3.4287)  0.6501(0.2158)  0.1137(0.0763) 0.1135(0.1639)
4.0 0 2.8501(3.4821) 1.5624(1.8098) 2.1362(3.3767) 1.3086(1.7272)  0.0418(0.0946)  1.3455(1.7215)
40 4.0 1 2.8971(3.4904)  1.6341(1.8392)  2.2153(3.3794)  1.3131(1.7141) 0.2563(0.0930) 1.3069(1.7546)
4.0 4 2.9686(3.5936) 1.6931(1.8472) 2.2918(3.4908) 1.3620(1.7989)  0.2984(0.0876)  1.3602(1.7181)
5.0 0 2.8733(3.5557)  2.8320(5.0180)  2.2141(3.5167)  2.3504(4.8665) 0.0381(0.1063) 2.7912(5.4545)
5.0 1 2.9381(3.5388) 2.8915(5.0673) 2.2219(3.5526) 2.3802(4.8844)  0.0744(0.1164)  2.7914(5.4672)
5.0 4 3.0215(3.5968) 3.0140(5.0419) 2.2480(3.5922) 2.4060(4.9194)  0.0857(0.0869)  2.8584(5.4640)
3.0 0 18491(12.8567)  0.0865(0.4531) 4.2426(12.7171)  0.5767(0.4308)  0.0875(0.0302) _ 0.1381(0.0866)
3.0 1 4.9642(12.8929)  1.1139(0.4607) 4.2362(12.7365) 0.5975(0.4206)  0.3245(0.0346)  0.1655(0.0980)
3.0 4 5.0702(12.8907)  1.2088(0.4734)  4.3373(12.7514)  0.6192(0.4602)  0.3430(0.0472)  0.1805(0.0961)
4.0 0 5. 2182(12 9806)  2.5490(3.7884)  4.4249(12.6350)  1.9183(3.7509) 0.0387(0.1010)  1.0399(1.1152)
5.0 4.0 1 5.2887(13.064)  2.5670(3.8373) 4.5390(12.7071) 1.9886(3.7638) 0.0765(0.0882) 0.7663(1.1307)
4.0 4 5.2959(12.9793)  2.5738(3.8091)  4.6375(12.7009) 2.0625(3.7921)  0.0876(0.0708)  0.9403(1.1580)
5.0 0 5.8731(13.7266) 4.2612(10.5378) 4.7567(13.6204) 3.5345(10.4273) 0.0885(0.0966) 2.1410(4.7334)
5.0 1 5.9020(13.6974)  4.2759(10.5085) 4.8633(13.6841) 3.6289(10.4968) 0.1249(0.1087)  2.0771(4.7301)
5.0 4 6.0106(13.8543)  4.3315(10.5531) 4.9905(13.7422) 3.6310(10.4785) 0.2096(0.0827)  1.9228(4.7278)

Table 5: Average Bayes estimates (MSE) and 95% HPD intervals based on data simulated
under dropping scheme 1 for different choices of prior parameters

g1(@) 92(0) ap HPD Interval 05 HPD Interval

G421 G(4.2) 0.0849(0.8064) (3.6262, 2.1042) 0.0111(0.2759) (1.3450, 2.6745)
G(4,2) G(1,0.5) 0.0971(0.8342)  (2.0054, 3.7263) 0.0275(0.3157) (1.3070, 2.7325)
G(4,2) G(0.4,0.2) 0.1139(0.9135) (1.8692, 3.7963) 0.0412(0.3564) (1.0127, 2.9745)
G(1,0.5) G(4,2) 0.1135(0.9075)  (1.9507, 3.7702) 0.0198(0.3022) (1.2016, 2.8618)
G(L,05)  G(1,05)  0.1330(0.9275) (1.8068, 3.9263) 0.0390(0.3440) (1.1129, 2.9044)
G(1,0.5) G(0.4,0.2) 0.1459(0.9324) (1.7864, 3.9292) 0.0501(0.3674) (0.9977, 3.0199)
G(0.4,0.2) G(0.4,0.2) 0.1460(0.9454) (1.7001, 4.5137) 0.0566(0.3624) (0.9901, 3.1198)
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However, in most practical situations the dropping scheme is not controllable. Therefore, in
such situations, the inspection plan should be designed as to result in the least number of
droppings. However, under any scheme, the proposed method can be used to obtain the
estimates.

We have not considered any covariates in this paper, but in practice often the covariates may
be present. It will be interesting to develop statistical procedures for the estimation of the
unknown parameters in the presence of covariates. Further, we have considered dropping
probabilities at each stage to be fixed, but in real life, these may be random, and a suitable
model to capture this randomness can be developed. The work in this direction is under
progress.
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Abstract

Statistical analysis of trade flows structure can significantly help to reveal or to confirm
important macroeconomic phenomena. Because of relative character of these multivariate
observations, application of standard multivariate methods directly to raw data can lead
to meaningless results, affected by trade sizes of different countries. As a way out, it is
proposed to employ the logratio methodology that is able to capture interesting features
through logratios between compositional parts. Particularly, the perturbation operation
together with clr coefficients for coordinate representation of compositions seem to be
easy to handle and to interpret for the purpose. Popular exploratory tools, principal
component analysis and PARAFAC modeling of three-way data, resulting from a long-
term study of the export/import structure, are applied in the compositional context for
data from OECD and WIOD databases. The results show that the logratio methodology
enables to reveal interesting features of world trade flows and thus provides a preferable
alternative to existing exploratory tools.

Keywords: compositional data, perturbation, principal component analysis, PARAFAC, ex-
port and import.

1. Introduction

In today’s globalised world, export and import play an important role in the country’s eco-
nomic situation. Globalisation causes growth of international trade in goods and services and
two structural changes in trade patterns: the increasing importance of emerging economies
and rapid growth of trade in intermediate goods as a result of vertical specialisation, mean-
ing that each country is specialised in one or more innovation and production processes and
thus it is common for the value chain of a particular final product to span several countries.
Trade in intermediate goods currently represents about 56 % of total global trade in goods
(Miroudot, Lanz, and Ragoussis 2009) and therefore we intend to explore trade flows broken
down by end-use categories to better monitor international trade patterns.

As emphasized in Rodrik (2006) and Hausmann, Hwang, and Rodrik (2007), it is no longer
important how much a country exports, but what it exports. Moreover, even manufacturing
processes are fragmented, which means that tasks requiring low-skilled labour (e.g. assem-
bling, control) are off-shored to developing countries (or countries with lower labour costs).
This contributes significantly to the amount of exports while the value added to the product
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in developing countries may be small. Consequently, much more interest in the part is devoted
to relative structure of export rather than to its amount in absolute numbers.

The fragmentation of the manufacturing process can be analyzed using input-output ta-
bles (see Stehrer, Foster, and de Vries 2010; Timmer, Erumban, Gouma, Los, Temurshoev,
de Vries, and Arto 2012; Timmer, Los, Stehrer, and de Vries 2013). The value added may
be splitted up by production factors. For the purposes of this article, we distinguish capital,
low-skilled, medium-skilled and high-skilled work. We will compare (relative) shares of these
factors in value added exports (i.e. domestic value added embodied in final expenditures
abroad). Of course, export structure is closely linked to import shares, so they cannot be
analyzed separately in order to obtain concise and predicative results.

The aim of the article is to introduce appropriate statistical techniques for analysis and
visualization of structure of trade flows in goods. Since we focus on the structure of trade
flows, the absolute values of exports and imports are no longer relevant for the analysis.
Thus we consider the data as compositional, i.e. carrying only relative information, which
leads to a new perspective to the data processing. Although this perspective is recently
intensively discussed in many applied fields from geochemistry and chemometrics to social
sciences (Pawlowsky-Glahn and Buccianti 2011), just a few papers were published with purely
an economic motivation (see Fry 2011, and references therein). On the contrary, even when
the authors are aware of relative nature of the underlying economic data, this feature is mostly
not (or just sloppily) taken into account for the statistical analysis (Blejer and Fernandez 1980;
Devarajan, Swaroop, and Zou 1996).

In the next section, the basics of logratio methodology to compositional data analysis, essential
for the purposes of this article, will be recalled together with two speficic methods, applied
in the following — principal component analysis and PARAFAC. A particular focus will be
devoted to the operation of perturbation, linked to the geometrical structure of compositional
data, that enables easily to link the export and import structure of countries. Accordingly,
in Section 3, the theoretical contributions are applied to the real-world data of exports and
imports, where their structure is explored with respect to end-use categories and factors in
value added. In the last section the results are briefly discussed.

2. Logratio methodology to compositional data analysis

To motivate the concept of compositional data, the basic idea will be explained with an
example. Let household expenditures on housing, foodstuffs, other goods (including clothing,
footwear and durable goods) and services in various countries are of interest. Obviously, their
absolute values is hardly comparable due to different price level in each country. On the
other hand, the relative structure of expenditures (that can be expressed, e.g., in proportions
or percentages) can be quite similar. Consequently, ratios between components as a source
of the relevant information, which remains unaltered with any scaling performed, can much
better reflect specific situation in various countries than by processing the raw input data.
Therefore, when the relative information is of main interest, the sum of components (leading
to expression in the local currency, proportions, etc.) should not affect the result of statistical
processing. We refer to scale invariance of compositional data which is completely violated
when the whole analysis is based on the fixed representation of such data.

Technically, compositional data (Aitchison 1986) are strictly positive multivariate observa-
tions that carry only relative information. Accordingly, the only relevant information is
contained in ratios between parts of a composition. The sample space of representations of
compositional data with a prescribed constant sum constraint, the simplex, S”, consists of
D-part compositions x = (z1,...,2p)’, where Zi’;l x; = £ (which equals 100 for the case of
percentages and 1 for proportions).

The specific nature of compositional data induces its own geometrical structure, called the
Aitchison geometry, which has Euclidean vector space structure. Basic operations of the
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Aitchison geometry (Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015) are perturba-
tion and powering, defined for compositional vectors x € SP and y € SP and a real number
« as follows,

x®y =Clr1y1,...,xpyp]; a©x=Clxf,...,2D],
where .
K-x1  K-T9 K-xp
C(x) = :
Dlxz Zi[ilxi, D1ﬂfz

stands for an arbitrarily chosen representation of the resulting composition (the closure oper-
ation). In the standard Euclidean geometry in real space, these two operations correspond to
summation of vectors and multiplication of a vector by a scalar, respectively. The operation
of perturbation can be also interpreted as shifting with respect to the Aitchison geometry,
i.e. as a measure of difference appropriate to compositional change (Aitchison and Ng 2005).
The perturbation-subtraction of x and y,

x0y=x®|[(-1)©y]=Clz1/y1,...,2p/yp],

then represents the relative difference between both compositions. In other words, how the
compositions differ in terms of ratios between the corresponding components. Obviously,
if all the parts in the resulting composition are the same(neutral elements), the relative
contributions conveyed by both compositional vectors coincide.

The Aitchison inner product, norm and distance, defined for two compositions x and y as

Yi 1 L& T 2_
(x, ZZln 1 s lxll, = 2D§§<l$>

’L].j].

2
do(x,y) = |xOy], = 2;22( —In z> : (1)

i=1j=1 J

respectively, complete the Euclidean vector space structure of the Aitchison geometry.

Although the Aitchison geometry closely follows the relative nature of compositional data,
most of standard statistical methods cannot be used there as they are designed for the Eu-
clidean geometry in real space (Pawlowsky-Glahn et al. 2015). Moreover, in order to apply
them to compositions, any such method would need to fulfil three principles, resulting from
specific character of compositional data. The first principle is the mentioned scale invariance
which means that output of the processing must remain the same irrespective to the change
of measurement units. The second one is called subcompositional coherence and is closely
related to the previous principle. In particular, when dealing with a subcomposition, which
consists only of a selected components of the original composition, results of any analysis
should not be in conflict with those of processing the whole composition. The third principle
is the permutation invariance, i.e. invariance with respect to change of order of parts in a
composition.

Instead of developing specific methods directly in the Aitchison geometry, it is much easier to
express compositions in the real space and proceed with standard statistical tools. For this
purpose, the so called logratio coordinates, formed with respect to the Aitchison geometry,
are utilized (Pawlowsky-Glahn and Buccianti 2011). It depends on the aim of the analysis,
which coordinates are the most appropriate.

It turned out that for the purpose of dimension reduction methods, that will be further
employed in this study, the clr coefficients (Aitchison 1986), defined as

T TD

clr(x) = ln@,..., nm ,

(2)
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where g(x) is the geometric mean of all parts of a composition x, form the reasonable choice.
The clr coefficients are symmetric in components, each of them expresses (through the corre-
sponding logratio) dominance of a component with respect to average behaviour of the other
parts, aggregated by their geometric mean; i.e., the relative contribution of each part to the
other components in average is captured. On the other hand, the sum of clr coefficients
is zero as they correspond to a generating system with respect to the Aitchison geometry
(Pawlowsky-Glahn et al. 2015). The reason is that dimension of a D-part composition is just
D — 1. This reflects the fact that it can be represented in a (D — 1)-dimensional subspace
(the simplex of proportions, percentages) without loss of information. It also means that the
corresponding covariance matrix of clr coordinates is singular. Although the clr coefficients
are thus not coordinates with respect to a basis on the simplex, which would reflect the usual
practice, they still possess important properties. The crucial one is an isometry between
the Aitchison geometry and the Euclidean space. Concretely, for compositions x € S” and
y € SP and real numbers «, S it holds that

drl@a@x®BOYy) =a-cr(x)+ 8- cr(y);

(%,¥), = {clr(x), clr(y)) ;
1xllq = llelr(X)[|5 da(x,y) = d(clr(x), clr(y)),

Hence, when a composition is expressed in clr coordinates, standard statistical tools (that are
able to cope with singularity of the covariance matrix) can be employed.

As pointed out in the previous section, the aim of this article is to analyse the structure of
export and import in the end-use categories. The question is how to compare export and
import of different countries. In the standard case, one would compute simply differences
between components. However, each country has different area, different size of population,
different GDP and different structure of the economy. This means that if we would just
subtract import from export values, the results could be completely misleading. The problem
can be solved using the mentioned perturbation-subtraction, i.e. by taking the ratios of export
and import for every end-use category, and further statistical processing in clr coordinates.

2.1. Principal component analysis

Principal component analysis (PCA) is one of the most popular statistical techniques when
analysing the multivariate structure of a dataset. The aim of this method is to reduce the
data dimension in order to preserve most of the variability which is captured by small number
of new variables - principal components (PCs).

Principal components for a mean-centered data matrix X, p) are obtained through linear
transformation U = XB, where Uy, p) is the score matrix, whose columns (ug,...,up) are
the mentioned principal components, and B(py py stands for the loading matrix (Hérdle and
Simar 2012). The first PC is defined to have the largest possible variance, the second PC has
to be orthogonal to the previous one and again posses the largest possible variance. Other
PCs are defined in the same way.

In order to get principal components, the definiton of the matrix B is required.The load-
ing matrix can be obtained via eigenvalue decomposition of the covariance matrix 3 of X.
Accordingly, ¥ = BAB’, where A = Diag{)\,...,A\p} denotes the diagonal matrix of eigen-
values in decreasing order. In other words, the data matrix X can be interpreted as a product
of the score and loading matrices,

X = UB’ with U'U = A? and BB =1,

where Ip is the identity matrix. Consequently, bilinear decomposition is obtained.

For representation of the results of PCA, loadings and scores, the graph called biplot (Gabriel
1971; Gower and Hand 1996) is often applied. In the biplot scores (as points) and loading
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vectors (as rays) of the first two principal components are displayed. In case of standard
multivariate data, the length of the rays approximates the standard deviations of the original
variables and the cosine of the angle between two rays displays correlation coefficients between
the corresponding variables.

The differences for the compositional biplot (Aitchison and Greenacre 2002; Kynéclova, Filz-
moser, and Hron 2016) consist in applying PCA on clr coordinates of X defined in (2). This
implies different interpretation: rays now represent variability of relative dominance of compo-
sitional parts with respect to the rest of components, conveyed by the clr variables. Instead
of correlation between two clr coefficients (that might be misleading due to singularity of
the corresponding covariance matrix) rather variance of the pairwise logratio, approximated
by the length of a link between two vertices, is considered. In particular, when the rays
(vertices) coincide, the variance var(Iln %) is approximately equal to zero which means that
compositional parts x; and z; are interchangeable.

2.2. Parallel factor analysis

When in addition to the first two modes (samples, variables) also the third one, corresponding
to conditions (like time or several measurement techniques, applied to the same samples),
the bilinear PCA is no longer appropriate. One particular case is, when the same samples
(countries) are observed for the same variables (end-use categories) in a long-term study, like
for several years (occasions). Although it would be possible to analyse the data separately
using PCA for each year, or even to apply PCA for the whole unfolded data set, by doing
so the three-way structure could not be recognized. To analyse the complex structure of
data simultaneously, the method called parallel factor analysis (PARAFAC) or canonical
decomposition (CANDECOMP) needs to be applied (Harshman 1970; Carroll and Chang
1970). The data are decomposed into trilinear components where each component consists of
one score vector and unlike PCA two loading vectors (though it is also usual to refer to three
loading vectors). A PARAFAC model of three-way array (Carroll and Chang 1997) is thus
given by three loading matrices A, B and C with elements a;,b;s and ¢y that minimize the
sum of squares of the residuals e;;; coming from expression

F

Tijk = > Gifbjfcry + €iji (3)
=1

fori=1,...,n, j=1,...,Dand k=1,... K.

The solution of the PARAFAC model (estimation of the loading matrices for a given number
of factors F') can be found using alternating least squares (ALS) by assuming the loading
vectors of two modes known and then estimating the unknown set of parameters of the last
mode using the least squares regression (Carroll and Chang 1997; Kroonenberg 1983). The
algorithm works in an iterative manner and under mild conditions it converges to a unique
solution (Harshman and Lundy 1984; Stegeman 2006). From the compositional perspective,
the rotational invariance of the ALS algorithm (Kruskal 1989) is of particular importance,
because it enables to employ any logratio coordinates with the isometry property (like clr
coefficients) for the estimation purposes (Di Palma, Gallo, Filzmoser, and Hron 2016). Al-
though PARAFAC or, more generally, statistical modeling of three-way data was recently
successfully employed for economic applications (Dell’Anno and Amendola 2015; Veldscholte,
Kroonenberg, and Antonides 1998) and its specifics for compositional data were developed
(Gallo 2013; Gardlo, Smilde, Hron, Hrd4, Karlikové, Friedecky, and Adam 2016), combination
of both aspects (as far as it is known to the authors) is not available in the literature.

Similarly as of PCA, it is popular to display PARAFAC results graphically. Concretely,
loading values of the first two components are displayed in terms of three scatterplots, one
for each of modes. Subsequently, the obtained information can be merged together in order
to get a concise view on the three-way structure. There are not specific features in case of
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compositional data here, except to the fact that interpretation of clr variables needs to be
taken into account.

3. Applications to trade flows structure

Theoretical considerations, introduced in the previous section, were applied on the real-world
data which include the values of exported and imported goods of EU countries and 13 other
largest economies of the world (regarding available data of WIOD database). These countries
represented more than 85% of the world GDP in 2008. The first data set, trade flows bro-
ken down by end-use categories, is available online (http://stats.oecd.org/index.aspx?
queryid=32186), the second database - shares of value added broken down by factors can be
obtained from the WIOD database (www.wiod.org).

All the computations and graphical outputs were performed using the packages robCompo-
sitions (Templ, Hron, and Filzmoser 2011) and ThreeWay (Giordani, Kiers, and Del Ferraro
2014) of statistical software R (R Core Team 2016). Accordingly, the optimal number of com-
ponents in the PARAFAC model was derived using the NumConvHull procedure (Ceulemans
and Kiers 2006).

3.1. Trade flows in end-use categories

Breaking down trade in goods according to their end-use (OECD Directorate for Science, for
Economic Analysis, and Statistics 2014) adds a new dimension to the traditional commodity-
based trade statistics and provides a link to National Accounts Input-Output Tables, in which
flows of goods and services are reported according to end-users. Using the basic domestic end-
use categories from the System of National Accounts and the detailed classification systems
of trade in goods, bilateral flows of exports and imports can be classified into intermediate
goods, household consumption goods and capital goods. However, some kinds of products
can be either for intermediate demand and household consumption, or for capital goods in
industry and household consumption. Thus it was introduced mixed end-use category which
contains personal computers, passenger cars, personal phones, packed medicines and precious
goods. The last category, miscellaneous, includes commodities that don’t belong to any other
categories. To keep the presented study simple, we will not consider this category for further
calculations. In Table 1 a small part of the data set is shown for illustration purposes.

The dataset used in this section is called The OECD STAN Bilateral Trade by Industry and
End-use (Zhu, Yamano, and Cimper 2011). It firstly released in 2011 to highlight the increas-
ing influence of export and import of intermediate goods. The values of import and export
of goods are broken down by industrial sectors and, simultaneously, by end-use categories.
Estimates are expressed in nominal terms, in current US dollars, and are collected from more
than a hundred reporters and partners, including all 34 members of OECD and a wide range
of non-members. Note that for the purpose of standard statistical analysis, without consider-
ing the relative nature of data, we would have to convert the current US dollars into constant
US dollars in order to employ time. However, we are dealing with compositional data which
means that just ratios between categories form the source of relevant information and thus
multiplication by any constant does not affect results of the analysis. Following this idea, it is
not necessary to convert the currency prior to further statistical processing using the logratio
methodology.

As stated above, patterns in the relative structure of export and import of goods cannot be
revealed by applying standard multivariate techniques to the raw data as the relevant infor-
mation is contained exclusively in ratios between the respective components. Nevertheless,
for the sake of comparison, principal component analysis was applied both to the original
data and to clr coordinates for the year 2012, the most recent complete one in the database.

Obviously, when dealing with economies of different size of trade (with different population,
share of trade in economy), straightforward application of PCA (see Figures 1-3) becomes
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Table 1: Small part of the OECD data.

EXPORT || Intermediate | Household consumption Capital | Mixed end-use
AUS 117409481 41592639 | 47616893 37627503
AUT 91332690 20919015 | 28060985 12265110.5
BEL 262169002 67877294 | 33929953 77809975.3
TUR 85476254 45804409 | 13700828 6770951
USA 880162112 159919833 | 234236609 132854776

TWN 230018351 16278914 | 41361666 11368675

IMPORT
AUS 216321786 19537887 6669449 6676966.4
AUT 103594607 30203689 | 19508560 15607428
BEL 269679952 58898420 | 33473255 70981894
TUR 137206055 14363175 | 30415227 14167392
USA 1209223479 406593569 | 298476700 351426871

TWN 212736197 15469315 | 29972519 10065989
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Figure 1: Biplots of export applied to the original data (on the left) and to clr coordinates
(on the right).

useless. From the biplots on the left side, it is hard to recognize any structure in the dataset:
it either seems that all variables are highly correlated (Figure 1 and 2), or the respective
interpretation is doubtful (Figure 3).

In contrast, when relative contributions of the components, conveyed by clr coordinates (here
applied to end-use categories), are considered instead, PCA and biplot diagrams are much
easier to interpret (see the Figures 1 and 2 on the right). In Figure 1 (on the right), the
countries exporting relatively more intermediate goods (Russia, Australia, Brazil), household
(Greece, Turkey, India), mixed end-use (middle Europe countries), capital goods (Japan,
Korea, Finland) can be well distinguished, no matter of their size.

Similarly, in Figure 2 on the right, the compositional biplot of import is displayed. It is evident
that for Asian countries such as Korea, Taiwan, India and China dominance of intermediate
and capital goods in relative structure of import can be observed. On the other hand, mixed
end-use goods are imported into large countries, namely Russia, Australia, USA and Canada.
Middle Europe countries are spread around the origin and Cyprus imports mostly the house-
hold consumption goods. This corresponds well to the general perspective of international
trade structure of that year (UN 2012).

The perturbation operation can be now used to capture relative differences between export
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Figure 2: Biplots of import applied to the original data (on the left) and to clr coordinates
(on the right).
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Figure 3: Biplots of differences between export and import, applied to original data (on the
left) and to clr coordinates (on the right).

and import structure through ratios between the respective components. Consequently, large
values of the (log-)ratios will indicate discrepancy between both international flow aspects.
From the respective link in Figure 3 (right) it is visible that the variance of pairwise logratio
between export/import ratios of Capital goods and Mixed end-use goods, respectively, is very
small. Thus the ratios between exports and imports of these end-use categories are relatively
very similar. The cluster of China, India, Indonesia and Turkey lies near the Household goods
variable (in terms of its relative dominance with respect to the other categories as conveyed by
the respective clr coordinate), thus these countries have the relatively largest surplus of export
in this category. Russia and Australia have largest surplus in intermediate goods, while Korea
and Japan in capital goods. Although these effects could be even better observed from biplot
of the original data, previous results of sole export and import indicate that high variability
of mixed end-use and capital goods categories is not relevant by considering relative structure
of observations.

In order to include also time variable and to get a complete picture about the development in
a larger time scale, also PARAFAC modeling was applied to the perturbed data, i.e. to the
ratio of export and import components (after expressing them in clr coordinates) for years
2003-2012. Similar results as for the previous figures were obtained that confirm a certain
stability of the export/import structure comparing to the single year 2012, considered above.



Austrian Journal of Statistics 57

< RUS S 4 Interm
w
o AUS °
¥ GR 3
FIN CAN lfplﬁsu IDN S + Household
1 POL Capital
) PN DELDZ@W TUR
i IND| 31
KOR
" CHN Mixed_end
T

-6 -4 -2 0 2 4 6 -1.0 -0.5 0.0 0.5

Figure 4: Results of the PARAFAC method for differences between exports and imports,
mode A (on the left) and mode B (on the right), using clr coordinates.
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Figure 5: Results of the PARAFAC method for differences between exports and imports,
mode C, using clr coordinates.

In the mode A (Figure 4 on the left), corresponding to samples, cluster of China, India,
Turkey and Indonesia can be seen, as well as cluster of Japan and Korea. In the middle of
the plot there is a group of middle European countries and it also seems that Russia differs
significantly from the other countries. Mode B (Figure 4, right plot) confirms the result that
components Capital and Mixed end-use goods are relatively very similar, when considering
ratios of export and import for the years 2003—2012. And finally, mode C displayed on the
Figure 5 shows the development in time, where a clear time pattern with a change point in
2008 is observed, interpretable in terms of global integration. Accordingly, this loading plot
well reflects the global crisis in 2008-2009 that has temporarily brought the long-run trend of
rising global integration through trade to a halt.

3.2. Trade flows of value added

Since an intensive integration process recently, the flows of value added across countries have
become more relevant than the flows of goods. It is caused by the growing effect of the vertical
specialization, which can be explained in a way that firms offshore activities to other countries
to exploit cost advantages in particular stages of production (for more see Stehrer, Foster, and
de Vries 2012; Hummels, Ishii, and Yi 2001). As discussed above, the share of intermediates
in trade is significant. In order to distinguish real contribution (represented by value added)
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Table 2: Small part of VA data.

Compositional Analysis of Trade Flows Structure

VA EXPORT Capital | High-skilled | Medium-skilled | Low-skilled
AUS 236672.49 | 108796.630 122716.748 | 109261.377
AUT 68726.10 49733.400 86969.011 12356.746
BEL 100983.53 59336.529 102739.534 | 27714.804
TUR 204194.6 42477.77 31392.93 39164.41
TWN 79596.1 71722.10 34759.83 22437.47
USA 3632767.3 | 3073707.79 2353237.78 196386.87
VA IMPORT
AUS 22149.071 6364.3767 9851.844 | 5749.7064
AUT 15143.087 6587.8375 11316.180 | 3869.4331
BEL 29874.281 | 12481.4846 19397.737 | 9089.2901
TUR 8765.471 4035.702 6835.904 3442.306
TWN 29002.087 6870.004 12055.759 8311.096
USA || 261998.337 46909.534 84104.518 | 48165.174

of each country in its exports and other countries in its imports, the composition of value
added export and import was explored.
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Figure 6: Compositional biplots of value added export (on the left) and import (on the right)
of factors for clr coordinates.

The WIOD database (Timmer et al. 2012) allows to break value added of final products into
factors, namely capital (CAP) and labour (low skilled (LLS), medium skilled (LMS) and high
skilled (LHS)). The database comprises gross output and value added by industry for each
country and the flow of products across industries and countries in a global input-output
matrix. The WIOD database provides a time series of world input-output tables (WIOTs)
from 1995 to 2009. The shares of factors in each industry for all considered countries may be
found in the Socio Economic Accounts table (may be downloaded from http://www.wiod.
org/new_site/database/seas.htm).

Our second data set (see Table 2) is obtained from WIOTs and Socio Economic Accounts
table in the following way. From WIOTs, we can calculate value added export (VAX) (for
detailed treatment see Johnson and Noguera (2012) and Timmer, Dietzenbacher, Los, Stehrer,
and Vries (2015)) for each country and each industry. Employing Socio Economic Accounts
table we obtain share of each factor in the calculated value added in each industry. Summing
by industry we get shares of each factor in VAX for each country. Similarly we can split value
added by other countries in imports to each country.
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It is well known (Stehrer et al. 2010; Timmer et al. 2013) that developed countries export
relatively more high skilled labour and import more capital. In contrast, developing countries
are abundant with low skilled labour and import high skilled labour. This is illustrated by
Figure 6 for the year 2009, for which the database provides complete data. Indeed, China,
Turkey and Indonesia export relatively more low-skilled labour and capital, southern part
of EU low-skilled labour (in sense of their relative contributions with respect to the other
components, reflected by clr coordinates). The new countries of the EU have significant
abundance in medium-skilled labour as well as United States or Japan. The opposite tendency
can be seen in Figure 6 on the right, where compositional biplot of import of factors is
displayed.

To see the development in time, the PARAFAC model was applied to data for years 2000—
2009. In Figure 7 the results are displayed. By considering modes A and B of export (left
panel) together, countries can be divided into two parts. In the left part, the countries
exporting relatively more low-skilled labour are clustered (e.g., southern European countries,
Turkey, India, Indonesia or China). However, in the right part clusters of countries that
export relatively more capital, high- and medium skilled labour can be seen - Canada, USA,
Japan, Korea and middle European countries. From the mode B it can be concluded that
export of LMS and LHS is quite strongly proportional. Mode C of the left panel reflects the
change in year 2004, when an intensive integration process for many European countries as
new members of the European Union started.

Similarly as for the case of export, from mode B of the right panel it can be observed that
import of LHS and LMS is proportional (though not so closely as for the case of export).
Moreover, clusters of countries from mode A are similar to those from the biplot in Figure 6
(right). Accordingly, 1) Ireland, Finland, Sweden, Netherlands and USA, 2) Malta, Cyprus,
Portugal, Turkey and Bulgaria, and 3) Japan, India, Taiwan and Korea have similar relative
structure of import in terms of value added. In Mode C, the development is not so clear as
for the case of export, however it still reflects the exceptional role of the year 2004.

4. Discussion

With development of detailed publicly available databases, it is possible to analyse system-
atically also the international trade structure. Nevertheless, it is of particular importance to
consider carefully the natural properties of the observations at hand prior to their further
statistical processing. The case of export and import structure shows that problems with
different trade sizes can be overcome by employing the logratio methodology of compositional
data. Although PCA (biplot) and PARAFAC are standard tools for analysis and visualization
of multivariate data, their application in the compositional and economic contexts simulta-
neously form the main novelty of the paper. Results of analysing the international trade
structure reflects well the general knowledge, as provided regularly by the United Nations
(UN) and other institutions.

Apparently, the interpretation provided in the previous section is just illustrative capturing
the main features and there is still space for its further extension. For example, differences
in factors related to the export can be seen also from much broader perspective. In case of
the European Union, one can distinguish “core” EU countries, its southern countries and new
countries. Accordingly, the difference in technological structure of export, which is related to
the level of skills, is often accounted for problems of Euro (see, e.g., Wierts, Van Kerkhoff,
and De Haan 1998). We leave these issues as inspiration for those, who would employ the
logratio methodology for more detailed macroeconomic analyses in the future.
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Abstract

Distances driven by road freight vehicles are an essential parameter for the calculation
of transport volume. In the Austrian road freight survey, places of loading and unloading
are recorded on a postal code basis. To derive the actual distances driven from this data,
Statistics Austria uses a distance matrix that was first created in the 1980s. While the first
version of this matrix was based on manual measurements, it has recently been recreated
and updated using modern routing software.

This article describes the methodology on which the current Austrian distance matrix
is based. The main points discussed are: how to determine representative centroids for
postal code areas; how to deal with journeys within one postal code area; and how to
calculate the actual distances using routing software.

The last part of the article compares the distance matrix to odometer readings from
the Austrian road freight survey of the reference year 2015. This comparison showed a
high positive correlation which indicates the good quality of the developed distance matrix
and emphasises its usefulness in road freight transport statistics.

Keywords: road freight transport statistics, distance matrix, transport volume, calculation of
distances.

1. Introduction

In the framework of the European Statistical System (ESS) and in context with principle
9 of the European Statistical Code of Practise (Eurostat 2011a) official European Statistics
should be produced without excessive burden on respondents. This article presents a method
for the estimation of driven distances in kilometres based on a distance matrix. This method
could be easily implemented and used in the European road freight survey to simplify the
collection of kilometres driven. The survey is based on EU Regulation No 70/2012 (Council
of the European Union 2012) and is obligatory for all Member States (MS) except Malta.

The first part of this article describes the theory and the base data for the distance matrix.
Additionally, several practical examples are introduced. The second part includes a compar-
ison of the kilometres received from the distance matrix with the kilometres driven based on
odometer information of the reference period.
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2. The road freight survey

In general, transport statistics provide information on the transport volume and the trans-
port performance of the different modes of transport (road, rail, inland waterways, sea, air
and pipelines). Transport volume is the weight of transported goods in tonnes; transport
performance is the product of transport volume and the distance in kilometres.

In contrast to other surveys in transport statistics, the nationality principle is applied to the
road freight survey instead of the territoriality principle. Furthermore, the road freight survey
is performed as sample survey in place of a complete survey.

2.1. The nationality principle

Compared to the territoriality principle, where all movements of a vehicle on a defined territory
are observed, the nationality principle is based on collecting data of vehicles registered in the
respective country. Hence on the basis of EU Regulation No 70/2012 (Council of the European
Union 2012) each member state surveys the journeys of road transport vehicles - with at least
a load capacity of 3.5 tonnes or maximum possible weight of 6 tonnes in case of single motor
vehicles — performed on public roads within the territory of the member state as well as
abroad. Agricultural vehicles, military vehicles and vehicles belonging to central or public
administration' are not included in the survey.

In the Austrian road freight survey information on all journeys of lorries registered in Austria
are collected. Due to the nationality principle there are five types of transport:

e Domestic transport: Place of loading and unloading are both located in Austria. This
definition includes cabotage as a special case of domestic transport, as the main focus
in this article lies on the territory where the journeys take place and not the nationality
of the vehicles (see figure 1a).

e International dispatch: Place of loading is in Austria and place of unloading in a different
country (see figure 1b).

e International receipt: Place of loading is in a different country and place of unloading
is in Austria (see figure 1c).

e Transit: Place of loading and place of unloading are not in Austria, but the journey
leads through Austrian territory (see figure 1d).

e Other transport abroad: This kind of transport involves journeys of Austrian road goods
vehicles, which do not take place on Austrian territory (see figure le).

As a consequence of the nationality principle, the road freight surveys in the member states do
not include all transportation on the national territory. Instead, they contain information on
transport of all vehicles registered in each member state, irrespective where it was performed.

Eurostat receives data sets from all member states and — after several plausibility checks
— consolidates them to one comprehensive data set. Based on this comprehensive data set
several tables can be generated and with regard to the European Commission Regulation
No 6/2003 (European Commission 2003a) are distributed to the national authorities which
are responsible for community transport statistics in the particular member states. These
authorities’ have the possibility to complete the statistical coverage of road transport at
national level with the provided information.

Obviously, the road freight survey is a cross-national European Statistics. Hence it is of
extreme importance, that the quality of the survey in each member state is high level and the
concepts within the different surveys are similar and coordinated as well as possible.

! with the exception of goods road vehicles belonging to public undertakings.

2 In Austria the so called D-tables are transmitted to Statistics Austria.
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2.2. A sample survey

Due to the number of registered vehicles in the member states and the high amount of jour-
neys, the road freight survey is performed as sample survey. Based on the principles of the
European Statistical System, which implicate the reduction of burden on respondents, cost
effectiveness and the development of advanced statistics using modern methods, it is not
deemed maintainable to implement a complete survey.

The population for the sampling procedure consists of the road freight vehicles registered in
each member state. The manual “Road Freight Transport Methodology” (Eurostat 2011b) pro-
vides several recommendations for the design of the random sample. These recommendations
refer to time periods (normally operations during one reference week), sampling strategies
(e.g. considering different sizes of vehicles, separate strata for road tractors) and tips to avoid
systematic errors (e.g. refusals, response errors, not adequate coverage of the population).

Regarding the sample size, the thresholds for the percentage standard errors are defined in
the European Commission Regulation No 642/2004 (European Commission 2003b). The
percentage standard errors of the annual estimates for the main variables tonnes transported,
tonne-kilometres performed and total kilometres travelled loaded shall not exceed + 5% (95 %
confidence) respectively + 7% if the total stock of road motor vehicles relevant to the survey
in a Member State is less than 25000 or the total stock of vehicles engaged in international
transport is less than 3 000.

In Austria, the population of the survey consists of around 66 000 road freight vehicles with
a load capacity of at least 2 tonnes or road tractors. Once a year (usually in December) a
stratified sampling procedure (load capacity of the local unit, vehicle capacity, region, type
of transport) is done for the whole reporting year. As a benefit of this yearly procedure,
large companies are informed in advance about the dates of their reference weeks. To avoid a
possible bias due to inactive local units or deregistered vehicles during the year, a refreshment
sample is performed quarterly. On the whole, a total of 26 000 reporting weeks are collected
annually.

2.3. The Questionnaire

Due to the high complexity of reported journeys (e.g. combination of laden or empty journeys,
delivery or collection journeys) the design of the questionnaire for the road freight survey is
a huge challenge for statisticians. Thus the questionnaire resembles more a log book than a
questionnaire typically used in official statistics.

Four main tasks on the development of a questionnaire have to be taken into account in order
to collect all relevant data (e.g. place of loading and unloading, type of goods or distances
driven):
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The questionnaire should be easy to understand and fill in.

The respondents burden should be minimised.

The collected information should be detailed and accurate.

Several kinds of questionnaires (paper-based, computer-based) should be offered.

Regarding the last point it has to be mentioned, that the target group for the questionnaire is
very heterogeneous. In large companies the questionnaires are usually filled in by the staff of
the accounting departments, whereas in smaller companies mostly the driver is in charge of it.
A study conducted by SYSTRA for the Department for Transport in the UK (Systra 2015),
showed that the information sources to complete the road freight survey are quite varying. The
companies use for instance run records, drivers reports/day sheets/worksheets, tachograph
software, GTS or GPS systems, google maps for distance calculation, fuel cards, vehicle
inspection sheets, odometer readings, company diaries, log books or smart phone applications.
One result of the study was that companies typically need three different sources to complete
the survey. On the one hand, all data was stored electronically and on the other hand there
was a mixture of computer based information and hard copy data sources. Therefore, it is
useful to design the questionnaire to be easily applicable on different kinds of media (e.g.
electronic questionnaire, excel sheets, mobile phone applications or paper questionnaire), to
enable each respondent to choose the appropriate kind of questionnaire.

Nevertheless, the questionnaire is complex and dynamic because its length depends on the
number and type of journeys during the reference week. Hence, the effort for every respondent
might be different. To support the Member States in the development of the questionnaire,
Eurostat provides several suggestions through the reference manual.

Collecting information about the distances of journeys

The information of the distance for each journey is one of the essential variables of the survey
as it is essential for the calculation of the transport performance. Referring to the Eurostat
manual for the road freight survey, the respondents should provide this information for each
journey. In practise this information is frequently not available. In the SYSTRA study it
became evident that in such cases respondents use the driver’s worksheet for the variables
place of loading and unloading. Additionally, Google Maps or similar in-house systems are
used to calculate the kilometres.

Obviously, collecting data about place of loading, place of unloading and additionally, the
kilometres driven between these places raises the burden on respondents and is redundant.

Statistics Austria was aware of these difficulties already in the 1970-ies. For this reason a
method was developed, which imputes the kilometres driven between the place of loading and
unloading on basis of the postal codes of these places. The fundament of the imputation is a
distance matrix which includes all distances between every possible postal code combination
in kilometres within Austria and - with limitations — abroad.

The first version of a distance matrix was developed by using meilographs for measuring the
lengths of the roads between two postal codes manually or by using algorithms based on
air-line distance. It is obvious, that the development of the distance matrix was complex and
labour-intensive then and it was also impossible to update it continuously.

Due to the development of modern I'T-technology, powerful route planning software and GIS-
applications in general, nowadays the automatic generation of distance matrices is a straight
forward process. The following part of the article describes methods to improve the road
freight transport statistics by using a distance matrix.
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3. Methods for calculating a distance matrix

3.1. General considerations

As vehicles registered in Austria could operate anywhere in Europe as well as outside, a
European wide matrix would be necessary. Due to the computing time caused by calculating
combinations of all European postal codes and the fact that some postal codes may change
over time, an ongoing maintenance of the European postal codes would cause far too much
effort. Furthermore updates of the distance matrix should be possible at regular intervals
(e.g. every five years) without major changeovers of the underlying internal processes.

It is advisable to analyse the most frequently used places of loading and unloading of previous
journeys. In Austria more than 90 % of the journeys of vehicles registered in Austria are
performed within the national territory. Based on this information it became necessary to
subdivide the methods used into journeys on national territory on the one hand and journeys
abroad on the other hand. Regarding the high percentage of journeys performed on national
territory it was primarily important to develop a particularly accurate matrix referring to
these distances.

Concerning the distances abroad it was recommended to find a more common and espe-
cially more practicable approach. Therefore it was advisable to find a way to aggregate the
postal codes abroad. One possibility would be to use NUTS 3 regions due to the fact that
Eurostat already offers correspondences between NUTS 3 regions and postal codes in the
tercet-database®. Using these already existing correspondences allows the creation of a dis-
tance matrix for all NUTS 3 regions within the European Union without considerable effort
in the development.

For Austria it was more effective to keep the historical access of using so called postal code
regions. These postal code regions have been evaluated in the 1980’s based on regional
subdivisions which summarize a respective number of territorial neighbouring postal codes.
They are located below the NUTS 3 regions and hence they will provide more precise distances.
In Austria more than 80 % of journeys abroad accounted to Germany, Italy and Switzerland.
Taking this into account, it was required to find a method to calculate the distances for these
countries and additionally another access for countries with fewer journeys.

After finding the appropriate regions (NUTS 3 or any other defined region) as a basis for the
distance matrix, the next step is to decide on a centroid (geo-coordinate) representing each
region. Then the calculation of the distances between all combinations of these centroids
(geo-coordinates) can be performed as Origin-Destination Matrix using the appropriate GIS-
software (including routing options).

The following part of the article describes the development of a distance matrix for Austria.
The description should serve as guide for other countries which are interested in developing
a similar system.

3.2. Distances within the country

Finding a representative geo-coordinate

To calculate the distances between postal code areas, a specific geo- coordinate that could be
used as centroid for routing tasks had to be determined for each postal code. Initially a purely
population weighted centroid based on the population numbers from the Austrian population
census of 2011 and the coordinates from the register of buildings and dwellings (AGWR) was
chosen. The AGWR contains address details of parcels, buildings and dwellings (including
x,y-coordinates) as well as structural data for buildings, dwellings and other usage units. It

3 http://ec.europa.eu/eurostat/tercet/locality.do



Austrian Journal of Statistics 71

Figure 2: Residential population (district of Médling and surroundings)

is linked with the Austrian population register, and thus contains the number of people living
at any given address.

Nevertheless, this method had some weaknesses as it only considered the residential popula-
tion. Moreover, industrial and commercial areas were severely underrepresented. Therefore,
a new method based on both the residential and the “daytime population” was implemented.
For the daytime population, the population is not counted based on the place of residency of
an individual, but rather where it is likely to be during the day, e.g. on its work and school
place respectively. Figure 2 and figure 3 clarify the large differences between daytime and
residential population. Figure 4 depicts centroids dervied from these population measures.

In this new method for determining the central points a combination of daytime and residential
population was used. It can be described as follows:

e Determine the weighted centroid of a postal code area based on the sum of the residential
population and the daytime population.

e Move this point to the closest building with a residential or daytime population >0 that
lies inside an area of permanent settlement.

e Move this point again to the closest street or crossing, considering the rank of the street.

Distances between postal code areas

The calculation of the actual distances between the central points was based on the Tom-
Tom routing network and was implemented in ESRI ArcGIS 10.1 with the Network Analyst
extension. The routing system allows an accurate distance determination based on several
features:

e The subdivision according to road sections, which include the distance from one crossing
to the next, whereas for each of these sections the maximum speed is stored.
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Figure 4: Weighted centroids of postal areas in the northern Burgenland (federal state of
Austria)
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e Information about restricted road access, one way streets, toll roads and also on the
overriding road network

e Information, if a special road section is located in a built-up area.

e Based on the maximum speed and the information on street sections lying in built-up
areas and major cities resp. Statistics Austria developed a speed model as bases for the
calculations.

The route chosen was the fastest route between two postal code centroids, based on the STAT
speed model (Kaminger and Vojtech 2016). Certainly, the fastest connection is not necessarily
the shortest one, but experience has shown that mostly the high-level road network is used.

Distances within one postal code area

Journeys within one postal code area have both loading place and unloading place within the
same postal code area. Therefore these journeys should be treated separately. These journeys
are often “delivery or collection journeys” like e.g. grade supplies for retail stores, beverages
deliveries or waste collections.

As the method described above could not be applied for these special cases, a different access
based on the geographic extent of a postal code area was developed. Initially, only the
centre points of postal code areas were available at Statistics Austria. Information about the
geographic borders was not at hand. These points were used to generate a Voronoi-diagram
based partitioning of Austrian national territory. The calculation of the transport distance
(kmDis) was then based on the diagonal of the minimum bounding rectangle (bounding box)
of the respective polygons associated with each postal code.

A straightforward approach would be to define the requested distances as half the diagonal
of these bounding boxes and use it for the calculation of the kilometrage:

kmDiagonal
2

Regarding the landscape of Austria it is clear that the approach described above does not fit
for each area as there are many alpine regions and woods to take into account. Consequently,
it was required to choose a refined approach. Thus, the share of the settlement area — the
available area for agriculture, settlement and industry - was also considered. First analysis
showed that taking the share of the settlement area as factor as it was it resulted in kilometre
distances too low for areas with a very low share of the settlement area. Based on this
experience it was decided to set the factor to 25 % at least.

kmpis=

kmp;
kmpis = (W) x max(25 %, share of settlement area in per cent)

In order to explain the access more practically two examples are presented in the following:
Vienna — Down Town

The bounding box for Vienna’s central district has an area of 2.89 square kilometres and
a 100 % share of settlement area. Half the diagonal of the bounding box is 1.5 kilometres.
Therefore, the resulting distance for Vienna — Down Town is 1.5 kilometres.

Solden

A totally different example is an alpine region like Sélden im Otztal. The area of the bounding
box is 160.7 square kilometres with a share of 3.47 % settlement area. Half the diagonal of
the bounding box is 13.3 kilometres which is longer than the major road within Sélden and
therefore an unrealistic high value. The weighting - based on the fact that the share of the
settlement area is lower than 25% - is done with 0.25, resulting in a calculated distance of
3.32 kilometres. This value seems to be plausible due to the fact that the total length of the
only major road in this postal code is about 7 kilometres.
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3.3. Calculation of the matrix abroad

As with national data, a central point (place of loading/unloading) had to be defined for
each region. Since data necessary to calculate the population weighted centroids was not
available for all of Europe, a different method had to be developed. If more than 10 trips
to/from a postal code region were available, the weighted centre point was defined as the
geographic mean of those origins/destinations. Usually that was the geographic centre of
the postal code region with the most journeys. As mentioned before, more than 80% of
all journeys concerning foreign countries performed with vehicles registered in Austria have
affected Germany, Italy or Switzerland throughout the last years. To be as valid as possible,
all journeys of the last eleven years concerning Germany and Italy have been regarded based
on the postal code combinations.

For Switzerland or if there were less than 10 trips to/from a postal code region in Germany or
Italy available, the central point was defined manually based on local geographic and urban
features such as industrial areas or important ports.

For other countries, it was not deemed necessary to pre-calculate any distances. Those are
calculated on a case-by-case basis and inserted into the matrix as required.

Alternatively, Karner, Scharl, and Weninger (2014) describe a methodology for determining
central points of NUTS 3 regions based on the Urban Clusters (European Commission, 2006)
and CORINE land cover (European Environment Agency) datasets. This method can easily
be implemented by anyone, as all the necessary data is free of cost available from the respective
agencies.

Once a coordinate has been defined for each postal code- or NUTS 3-region, the distances
between the regions can be calculated either in a dedicated GIS database or using external
routing services such as google maps or open street map. For the distance matrix outside
of Austria, the commercial routing software Microsoft Map Point 2011 was used. This was
necessary as the routing network used for calculating Austrian domestic transport distances
was only available for Austria.

Even on this aggregated level, calculating all possible routes would have been too inefficient.
As the methodology presented in this paper is flexible, it is easy to update an existing matrix
of pre-calculated distances on demand, if new origin-destination combinations are required.

Odometer information as benchmark for the road freight survey

To verify the developed distance matrix as well as the quality of the survey, the distances
from the distance matrix were compared with the odometer information received from the
questionnaire. This was done with data of the Austrian road freight survey from the reference
year 2015.

As previously mentioned, the respondent has to fill in the place of loading and the place
of unloading for each journey during the reference week, which is then used to obtain the
kilometres driven from the distance matrix. Additionally, the number of kilometres according
to the odometer at the beginning and at the end of the week has to be provided. The difference
of these data represents the kilometres driven during the reference week.

For a comparison of these two data sources it has to be considered that not every journey is
reportable. Journeys on private roads (such as forest roads, roads within a factory, hospital
grounds or construction sites) are excluded from the survey, as are winter services (snow
removal, gritting) and road maintenance. Therefore, the reported journeys are only a subset
of all journeys driven during the reference week.

Another important point is that some odometer readings might be incorrect. As highlighted
before and also mentioned in the SYSTRA study, the questionnaire is often filled in by not
directly related departments (e.g. accounting) instead of the actual driver. As they might fill
in the questionnaire after the vehicle was driven, the provided information (like the actual
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Table 1: Comparison of odometer- and distance matrix in million km driven for the year 2015

Variable Odometer Distance matrix
Total annual km 12.41 11.85
Own account 5.09 4.79
Hire or reward 6.94 6.71
C10 - C32 Manufacturing 1.08 1.03
E38.1 Waste collection 0.30 0.26
F41 - F43 Construction 0.73 0.70

odometer reading at the start or the end of the week) might be incomplete.

The analysis is based on 19583 reported reference weeks in 2015. Out of these, 4617 weeks
were eliminated because the received difference of the odometer readings was zero. Assuming
that a driven distance of more than 3000 km per week might be too high and consequently
incorrect, 1372 cases were also excluded. After these plausibility checks 13 594 weeks were
used for further analysis.

The results of this comparison are recorded in table 1. This table contains aggregate statistics
for 2015 such as total annual kilometres and annual kilometres grouped by NACE (Council
of the European Union 2006) and transport type. It can be seen that the differences between
the reported kilometres and the kilometres estimated from the distance matrix are very small.
As assumed the estimated kilometres are slightly lower than the reported kilometres. This
indicates that for this level of detail, the approach described in this paper works quite well.

Figure 5 provides a more detailed look on total annual kilometres driven in 2015. It illustrates
the dependency of the odometer reading (horizontal axis) on the reported kilometres taken
from the developed distance matrix (vertical axis). The Pearson correlation coefficient of the
two variables is 0.91 and shows a high positive linear correlation between the two variables.

Despite the high correlation, outliers were detected. Generally, the comparison of the accumu-
lated kilometres from the distance matrix with the odometer reading is used as plausibility
check for the data of the road freight survey in Austria. If the data differs by more than
30 %, the employees of the statistical office contact the respondents to clarify the discrepan-
cies. As the main focus of this analysis was the improvement of the survey with regard to
underestimation, vehicles, whose kilometres from the distance matrix were higher than the
odometer reading, were accepted and no further enquiry to the respondents was realised. In
case of outliers in the opposite way, where these kilometres were lower than the odometer
readings, the respondents were called to identify the reasons of the underestimations. The
general feedback was that the odometer reading had been incorrect or there had been no
reportable journeys during the reference week. This indicates a good quality of the developed
distance matrix and emphasises the reasonable use of a distance matrix with regard to the
reduction of respondents’ burden. Furthermore, as this comparison is an additional possibility
for plausibility checks it improves the data quality of the survey.

Another analysis included the classification of the journeys in “Hire or reward” (NACE 49.4
Freight transport by road and removal services) and “Own account” (other NACE positions).
Both showed a correlation coefficient of 0.9 which was only marginal lower than in the whole
sample (see figure 6). As illustrated, vehicles of “Hire or reward” drive longer distances per
week than those belonging to the classification “Own account”.

Furthermore, the reference weeks of the companies were analysed by the NACE activities
“Manufacturing” (C10-C32), “Waste collection” (C38.1) and “Construction” (F41-F43). It can
be seen that both activities “Manufacturing” and “Construction” have a higher correlation
coefficient than “Waste collection” (see figure 7). On the one hand, this is due to the fact that

75



76

Improving Road Freight Transport Statistics by Using a Distance Matrix

3000 -

2000+

Kilometres (distance matrix)
S
o
<

Correlation=0.91
N=13594

count
I 500

400
300
200

100

0 1000

2000

Kilometres (odometer)

3000

Figure 5: Comparison of odometer information with kilometres from the distance matrix for

all vehicles in 2015

3000

2000

1000

Kilometres (distance matrix)

Hire or reward

Own account

Correlation=0.9

N=5961

1000 2000

Correlation=0.9

N=6725

_ 000 0
Kilometres (odometer)

200

100

1000 2000 3000

Figure 6: Comparison of odometer information with kilometres from the distance matrix for
the classifications “Hire or reward” and “Own account”.



3000

2000

1000

o

3000

Kilometres (distance matrix)

2000

1000

Austrian Journal of Statistics

C10 - C32 Manufacturing

E38.1 Waste collection

Correlation=0.89

N=1421

Correlation=0.85
N=460

F41 - F43 Construction

Correlation=0.9

N=1377

1000 2000

3000

Kilometres (odometer)

count
400

300

200

100

Figure 7: Comparison of odometer information with kilometres from the distance matrix for
the classifications “Manufacturing”, “Waste collection” and “Construction”.

77



78 Improving Road Freight Transport Statistics by Using a Distance Matrix

Old method New method
1000 7
Correlation=0.86 y Correlation=0.86

E N=2652 N=2652 CO%%,[
g 750 5
8 400
c

o]

2 500 300
)

8 200
©

£ 250 100
o

S

0

0 250 500 750 1000 0 250 500 750 1000
Kilometres (odometer)

Figure 8: Effect of the updated distance matrix on domestic journeys within one postal code
area.

journeys for waste collection are quite derived. The trucks often drive around several streets
within one area, for which reason the calculated kilometres are below the actual weekly driven
kilometres reported by the odometer information. On the other hand, journeys for collecting
waste are short and therefore the already mentioned problem with journeys within one postal
code influences the discrepancy. For the activities “Manufacturing” and “Construction” it has
to be kept in mind that journeys on the construction site as well as the factory site do not
have to be reported. As a consequence, the calculated kilometres naturally have to be lower
than the ones of the odometer information.

Regarding the analysis of kilometres within one postal code area it was investigated how the
new version described before would affect the discrepancy of the two variables (see figure 8).
As there were no data available for the whole reference year, the comparison was limited to
the first quarter of 2015. The graph on the left site shows the old approach of the distance
matrix (for every journey within one postal code 1 km was taken), whereas on the right site
the approximated distance on the basis of the postal code size was used. Both using only
journeys within Austria. There was no increase of the correlation coefficient, which remained
at 0.86. Nevertheless, when comparing the total transport distances measured by odometer
(1.10 million km) with the distances estimated with the old method (0.92 million km) and the
new method (0.94 million km), it becomes clear that the new method produces slightly better
results.

5. Conclusion

The aim of this article was to point out the advantages of a distance matrix and to present
a general guidance to create a distance matrix for a country to facilitate the survey for road
freight transport statistics. The distance matrix is a reasonable instrument to decrease the
burden of the respondents.

In order to eliminate the obligation to calculate the kilometres driven or to record all odome-
ter readings for the different journeys the distance can be calculated automatically by the
statistical office through the place of loading and the place of unloading. It is indispensable
to renew and update the distance matrix regularly as infrastructure and population focus
change over time.

Together with the odometer information for a specific period it can also be used as an addi-
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tional plausibility check to increase the quality of the data, although it is sometimes difficult
to compare the sum of all calculated kilometres with the odometer information of the reference
week due to journeys which are not reportable.

The comparison of the odometer information with the distances estimated with the distance
matrix showed a high positive correlation (r = 0.91) for the Austrian data of the reference year
2015. This indicates a good quality of the data and combined with the achieved reduction of
respondents burden it strengthens also the use of a distance matrix in road freight transport
statistics.

Certainly, there is still some work to be done on the improvement of the presented distance
matrix. As seen in the last chapter, distances for driving within one postal code or for
specific kinds of transport (e.g. delivery and collection journeys as waste collection) have to
be analysed further as there are still discrepancies between the calculated kilometres by the
distance matrix and the actual driven kilometres.

For the future there are several approaches possible:

e The estimation of weights for journeys within one postal code region, grouped by pa-
rameters such as the length of the high-level road network or the extent of industrial or
residential areas.

e Special questionnaires adapted for delivery or collection journeys (e.g. no type of goods)
with additional information on kilometres from the respondents.

e The use of mobile apps as a new kind of questionnaire for the road freight transport
survey. The main benefit would be the monitoring of accurate kilometres driven based
on GPS-technology.
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