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Editorial
This is the last editorial that is visible in the hard copy version of an issue. The Austrian

Journal of Statistics is free and open access. Due to this spirit we are moving from hard
copies to electronical online versions only. Future issues will be a collection of articles
without any special formatting on page numbers and table of contents. However, such
information is visible in the online version of the issue.

This current issue includes five scientific papers, accessible online at http://www.ajs.or.at.
The first article is related to compositional data analysis and deals with the interpretati-

on of regression coefficients for compositional regression. The second article investigates
in censoring schemes for a life time distribution. The third contribution enhance previous
work from the authors for a multivariate setting. The aim is to find an optimal allocation
given box constraints in survey sampling. Distribution characteristics for fuzzy sets are
considered in the fourth paper. The last paper again deals with a life time distribution.

Matthias Templ
(Editor-in-Chief)

Institute of Data Analysis and Process Design
Zurich University of Applied Sciences
Rosenstrasse 3, CH–8400 Winterthur,
Switzerland
E-mail: matthias.templ@gmail.com

Winterthur, 30. Januar 2018

http://www.ajs.or.at
mailto:matthias.templ@gmail.com
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Abstract

Regression with compositional response or covariates, or even regression between parts
of a composition, is frequently employed in social sciences. Among other possible applica-
tions, it may help to reveal interesting features in time allocation analysis. As individual
activities represent relative contributions to the total amount of time, statistical pro-
cessing of raw data (frequently represented directly as proportions or percentages) using
standard methods may lead to biased results. Specific geometrical features of time budget
variables are captured by the logratio methodology of compositional data, whose aim is to
build (preferably orthonormal) coordinates to be applied with popular statistical methods.
The aim of this paper is to present recent tools of regression analysis within the logratio
methodology and apply them to reveal potential relationships among psychometric indi-
cators in a real-world data set. In particular, orthogonal logratio coordinates have been
introduced to enhance the interpretability of coefficients in regression models.

Keywords: regression analysis, compositional data, time budget structure, orthogonal logratio
coordinates, interpretation of regression parameters.

1. Introduction

Regression analysis becomes challenging when compositional data as observations carrying rel-
ative information (Aitchison 1986; Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015)
occur in the role of response or explanatory variables. Although this might frequently seem
to be a purely numerical problem, compositional data in any form inducing a constant sum
constraint (proportions, percentages) rather represent a conceptual feature. In fact, composi-
tional data may not necessarily be expressed with a constant sum of components (parts). The
decision whether data at hand are compositional or not depends on the purpose of analysis
- whether it is absolute values of components, or rather their relative structure, that is of
primary interest.

One of most natural examples of compositional data are time budget (time allocation) data,
discussed already in the seminal book on compositional data analysis (Aitchison 1986, p.
365). Apart from the compositional context, due to its psychological, social, and economic
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impacts, time allocation and its statistical analysis receives attention in many publications.
The distribution of the total amount of time among productive-, maintenance-, and leisure
activities reflects the current status and soundness of economy, with its labour-saving in-
ventions, communication technologies, means of transportation, information and mass media
channels, and level of consumption (Becker 1965; Garhammer 2002; Gershuny 2000; Juster
and Stafford 1991; Robinson and Godbey 1997). The economy is usually closely linked to
political arrangement, which through welfare state institutions (including child-care facilities)
relieve citizens of many obligations, thus opening possibilities for loosening and restructur-
ing their daily schedules (Korpi 2000; Gershuny and Sullivan 2003; Crompton and Lyonette
2006). Leisure time service is further provided for by various sports programs, holiday resorts,
outdoor activities and the like, for both adolescents and adults. Moreover, frequently also
supplementary qualitative/quantitative variables (age, gender, variables resulting from psy-
chometric scales) are of simultaneous interest, which calls for the use of regression modelling.

When considering the problem of time allocation from the statistical point of view, the in-
dividual activities represent relative contributions to the overall time budget. Particularly,
although the input data can be obtained either in the original time units, or directly in pro-
portions or percentages, the relevant information is conveyed by ratios between the parts
(time activities). Consequently, also differences between relative contributions of an activity
should be considered in ratios instead of absolute differences as they better reflect relative
scale of the original observations.

Both scale invariance and relative scale issues are completely ignored when the raw time bud-
get data or any representation thereof (like proportions or percentages) are analysed using
standard statistical methods. Although there do exist methods whose aim is to solve purely
numerical problems resulting from the nature of observations carrying relative information
(being of one dimension less than the actual number of their parts), these methods usually do
not represent a conceptual solution to the problem of compositional data analysis. Instead,
any reasonable statistical methodology for this kind of observations should be based on ratios
between parts, or even logratios (logarithm of ratios), which are mathematically much easier
to handle (Aitchison 1986; Pawlowsky-Glahn et al. 2015). Logratios as a special case of a
more general concept of logcontrasts are used to construct coordinates with respect to the
Aitchison geometry that captures all the above mentioned natural properties of compositions.
Nevertheless, possibly due to apparent complexity of the logratio methodology, logratio meth-
ods haven’t still convincingly entered applications in social sciences, specifically psychological
applications; methods to analyse time budget, mentioned in the seminal book of Van den
Ark (van den Ark 1999) and resulting from fixing the unit-sum constraint of compositional
data, were mostly overcome during the last 15 years of intensive development in the field of
compositional data. Very recently statistical analysis of psychological (ipsative) data seems to
attract attention (Batista-Foguet, Ferrer-Rosell, Serlavós, Coenders, and Boyatzis 2015; van
Eijnatten, van der Ark, and Holloway 2015). Nevertheless, still rather specific methods are
used without providing a concise data analysis, particularly concerning regression modelling
that frequently occurs in psychometrics.

For this reason, the aim of this paper is to perform a comprehensive regression analysis of
time budget structure of college students by taking real-world data from a large psychological
survey at Palacký University in Olomouc (Czech Republic). With that view, relations with
other response/explanatory variables (as well as those within the original composition) will
be analysed using proper regression modelling.

The structure of the paper is as follows. In the next section, the orthonormal logratio coordi-
nates are introduced first, and then regression modelling is discussed in more detail in Section
3. In order to achieve better interpretability of regression parameters while preserving all im-
portant features of regression models for compositional data, orthogonal coordinates (instead
of orthonormal ones) are introduced as an alternative in Section 4. Section 5 is devoted to
logratio analysis of the concrete time budget data set and the final Section 6 (Discussion)
concludes.
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2. Orthonormal logratio coordinates for compositional data

For a D-part composition x = (x1, . . . , xD)′, considering all possible logratios ln(xi/xj), i, j =
1, . . . , D, for statistical analysis means to take into account D(D− 1)/2 variables (up to sign
of the logarithm). This would lead to a complex ill-conditioned problem already for data sets
with moderate number of variables. Moreover, information related to the original parts (al-
though expressed possibly in logratios) is usually of primary interest. For this reason, a natural
choice is to aggregate logratios meaningfully to logcontrasts (variables of type

∑D
i=1 ci lnxi,

where
∑D
i=1 ci = 0), that are able to capture all the relative information about single composi-

tional parts (time activities). In other words, when x1 plays the role of such a part, we proceed

to variable ln(x1/x2) + . . .+ ln(x1/xD) = (D− 1) ln(x1/
D−1

√∏D
i=2 xi), i.e. to logcontrast that

highlights the role of x1 (?). In order to build a system of orthonormal coordinates, this
variable needs to be further scaled and also the remaining D − 2 coordinates, orthonormal
log-contrasts, are constructed consequently (we refer to isometric logratio (ilr) coordinates
(Egozcue, Pawlowsky-Glahn, Mateu-Figueras, and Barceló-Vidal 2003)). One possible choice
of ilr coordinates that fulfil the above requirements (for any of parts xl, l = 1, . . . , D, in place

of x1) is z(l) = (z
(l)
1 , . . . , z

(l)
D−1)

′,

z
(l)
i =

√
D − i

D − i+ 1
ln

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1. (1)

The case of x1 would be obtained by choosing l = 1. In a more general setting, the composition

(x
(l)
1 , x

(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D )′ stands for such a permutation of the parts (x1, . . . , xD)′ that

always the l-th compositional part fills the first position, (xl, x1, . . . , xl−1, xl+1, . . . , xD)′. In

such a configuration, the first ilr coordinate z
(l)
1 explains all the relative information (merged

into the corresponding logcontrast) about the original compositional part xl, the coordinates

z
(l)
2 , . . . , z

(l)
D−1 then explain the remaining logratios in the composition. Note that the only

important position is that of x
(l)
1 (because it can be fully explained by z

(l)
1 ), the other parts

can be chosen arbitrarily, because different ilr coordinates are orthogonal rotations of each
other (Egozcue et al. 2003). Although this particular choice of ilr coordinates has been
used successfully in many geological and chemometrical applications (Buccianti, Egozcue, and
Pawlowsky-Glahn 2014; Filzmoser, Hron, and Reimann 2012; Kalivodová, Hron, Filzmoser,
Najdekr, Janečková, and Adam 2015), no experiences are recorded in the psychometrical
context.

3. Regression analysis within the logratio methodology

Regression analysis is an important tool for analysing the relationships between the response
variable Y and known explanatory variables x, see, e.g. (Montgomery, Peck, and Vining
2006). Although in the psychometrical context it is often difficult to distinguish whether
the covariates are driven by an error as well, or not, we will follow the assumption of fixed
covariates in order to enable estimation of regression parameters using the standard least
squares (LS) method, resulting in easy-to-handle statistical inference (hypotheses testing).
When the response variables or explanatory variables are compositional, special treatment
in regression is necessary. A natural way for introducing regression with compositional ex-
planatory variables x = (x1, x2, . . . , xD)′ is to perform a standard multiple regression where
the explanatory variables zi = (1, zi,1, zi,2, . . . , zi,D−1)′ represent the ilr coordinates of xi and
1 for the intercept (Hron, Jeĺınková, Filzmoser, Kreuziger, Bednář, and Barták 2012). Us-
ing a special choice of ilr coordinates z(l) given by (1), we can consider the lth ilr basis, for
l = 1, 2, . . . , D, and we obtain D different multiple regression models in the form

Yi = β0 + β
(l)
1 z

(l)
i,1 + · · ·+ β

(l)
D−1z

(l)
i,D−1 + ε

(l)
i , i = 1, 2, . . . , n, (2)
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where β0, β
(l)
1 , . . . β

(l)
D−1 are unknown regression parameters and ε

(l)
i are random errors in the

lth model. Due to the orthogonality of different ilr bases, the intercept term β0 is the same
for all D models (similarly as the index of determination R2 or the F statistic to test the
overall significance of the covariates) (Hron et al. 2012). The regression parameters can
be estimated in the standard way by the least squares (LS) method. Using the notation

Y = (Y1, Y2, . . . , Yn)′ for the observation vector, Z(l) = (z
(l)
1 , z

(l)
2 , . . . , z

(l)
n )′ for n × D design

matrix, β(l) = (β0, β
(l)
1 , . . . , β

(l)
D−1)

′ for regression parameters, and ε(l) = (ε
(l)
1 , ε

(l)
2 , . . . , ε

(l)
n )′

for the error term, models (2) can be rewritten in the matrix form

Y = Z(l)β(l) + ε(l), l = 1, 2, . . . , D. (3)

We can consider that random errors in the lth model are not correlated with the same variance
σ2(l). Then the best linear unbiased estimators of regression parameters β(l) by the LS method
are

β̂
(l)

= (Z′(l)Z(l))−1Z′(l)Y, l = 1, 2, . . . , D. (4)

From the practical point of view, only the parameter β
(l)
1 is important, since it corresponds to

the first ilr coordinate z
(l)
1 that explains all the relative information about the part x

(l)
1 . The

other parameters β
(l)
2 , . . . , β

(l)
D−1 do not have such straightforward interpretation. So, we can

say, e.g., that the absolute change of the conditional mean of Y with respect to coordinate

z
(l)
1 is about β

(l)
1 , if other coordinates z

(l)
j , j = 2, 3, . . . , D − 1 (representing subcomposition

(x1, . . . , xl−1, xl+1, . . . , xD)′), are fixed.

The unbiased estimator of σ2(l) in the lth model (3) is

σ̂2(l) = (Y − Z(l)β̂
(l)

)′(Y − Z(l)β̂
(l)

)/(n−D), (5)

that can be used to estimate the variance-covariance matrix of the estimator of regression
parameters,

v̂ar(β̂
(l)

) = σ̂2(l)(Z
′(l)Z(l))−1. (6)

Under assumption of normality of random errors we can perform any standard statistical
inference, e.g. test the significance of regression parameters, or to construct confidence in-
tervals for them. The significance of the individual regression parameters in the lth model,
l = 1, 2, . . . , D, can be tested by the following statistics:

T0 =
β̂0

σ̂(l)

√
{(Z′(l)Z(l))−1}1,1

; T
(l)
i =

β̂
(l)
i

σ̂(l)

√
{(Z′(l)Z(l))−1}i+1,i+1

, (7)

i = 1, 2, . . . , D − 1. Here the symbol {(Z′(l)Z(l))−1}i+1,i+1 denotes the (i + 1)th diagonal
element of the matrix (Z′(l)Z(l))−1. Under the null hypothesis that regression parameters are

zeros, the statistics T0 and T
(l)
i each follow a Student t-distribution with n − D degrees of

freedom. The statistic T0 is the same irrespective of the choice of l = 1, . . . , D in (2), see (Hron
et al. 2012) for details. Of course, the response variable can have also another distribution
than normal, i.e. the methodology of generalized linear models (Dobson and Barnett 2008)
can be directly implemented.

Similarly, when the response variables Y = (Y1, Y2, . . . , YD)′ are compositional and explana-
tory variables x = (x1, x2, . . . , xk)

′ are non-compositional, one can use the regression mod-
els where the response variables Z1, . . . , ZD−1 represent the ilr coordinates of Y (Egozcue,
Daunis-i Estadella, Pawlowsky-Glahn, Hron, and Filzmoser 2011). Using the ilr coordinates

(1), where only the first ilr coordinate Z
(l)
1 is of interest, we obtain D different multiple

regression models in the form

Z
(l)
i,1 = γ

(l)
0 + xi,1γ

(l)
1 + · · ·+ xi,kγ

(l)
k + ε

(l)
i , i = 1, 2, . . . , n, l = 1, 2, . . . , D. (8)
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In this case, the interpretation of regression parameters is the following. For example, if

x2, . . . , xk are fixed, then for each change of 1 unit in x1, the conditional mean of Z
(l)
1 changes

γ
(l)
1 units. Nevertheless, similarly as for the case of regression with compositional explanatory

variables, because the orthonormal coordinates (1) have to be interpreted in terms of scaled
logratios under natural logarithm, the interpretation of these “units” and thus also values
of regression parameters might get rather complex for practical purposes. Under the usual
multiple regression model assumptions, (8) can be expressed in the matrix form

Z
(l)
1 = Xγ(l) + ε(l), l = 1, 2, . . . , D, (9)

where Z
(l)
1 = (Z

(l)
1,1, Z

(l)
2,1, . . . , Z

(l)
n,1)
′ is an observation vector, γ = (γ0, γ1, . . . , γk)

′ is a vector
of regression parameters, and X = (1,x1,x2, . . . ,xk) is n × (k + 1) design matrix. Here 1
is a vector of n ones. When the random errors in the lth model are not correlated with the
same variance σ2e,(l), the best linear unbiased estimator of regression parameters γ(l) by the
LS method is

γ̂(l) = (X′X)−1XZ
(l)
1 , l = 1, 2, . . . , D, (10)

with the estimated variance-covariance matrix

v̂ar(γ̂(l)) = σ̂2e,(l)(X
′X)−1. (11)

The unbiased estimator of σ2e,(l) in model (9) is

σ̂2e,(l) = (Z
(l)
1 −Xγ̂(l))′(Z(l)

1 −Xγ̂(l))/(n− k − 1). (12)

Again, under assumption of normality of random errors we can test the significance of regres-
sion parameters, or construct confidence intervals for them. In this case, the significance of
the individual regression parameters in the lth model, l = 1, 2, . . . , D, can be tested by the
statistic:

U
(l)
i =

γ̂
(l)
i

σ̂e,(l)

√
{(X′X)−1}i+1,i+1

, i = 0, 1, . . . , k. (13)

Under the null hypothesis that regression parameters are zeros, the statistics U
(l)
i follow a

Student t-distribution with n− k − 1 degrees of freedom.

Finally, within the logratio methodology we can consider also the case of regression among
parts of a composition, in particular, between a part x0 and the rest of compositional parts,
x1, . . . , xD, in a (D+1)-part composition. Following (Buccianti et al. 2014; Hr̊uzová, Todorov,
Hron, and Filzmoser 2016), a natural choice is to consider the case of regression with com-
positional explanatory variables, where the response is formed by coordinate, carrying the
relative information of x0 (with respect to compositional covariates), i.e.,

z0 =

√
D

D + 1
ln

x0
D

√∏D
i=1 xi

.

By construction, z0 is orthonormal to the rest of coordinates, assigned to explanatory parts
as in (1).

4. Orthogonal coordinates for compositional regression

Although the above regression models in orthonormal logratio coordinates are theoretically
well justified, both the normalizing constants to reach orthonormality and the natural loga-
rithm itself result in quite a complex interpretation of the regression parameters. A way out
is to move to orthogonal coordinates, where nothing from the above properties of regression
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modelling in coordinates is lost (in particular, values of T
(l)
i and U

(l)
i statistics, neither the

geometrical features of regression with compositional response (Egozcue et al. 2011)), while,
at the same time, a substantial simplification in parameter interpretation is gained. Following
(1), these considerations lead to orthogonal coordinates

z
(l)∗
i = log2

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1, (14)

for l = 1, . . . , D, where the normalizing constants are omitted and the original natural loga-
rithm is replaced by the binary one. Let’s see the effect of using the orthogonal coordinates
for all regression models introduced above (parameters of their corresponding versions in or-
thogonal coordinates (14) are always marked with an asterisk). Considering regression with
compositional explanatory variables first, from properties of LS estimation and the relation
between logarithms of different bases we get

β∗0 = β0, β
(l)∗
1 = ln(2)

√
D − 1

D
β
(l)
1 ,

generally

β
(l)∗
i = ln(2)

√
D − i

D − i+ 1
β
(l)
i , i = 1, . . . , D − 1,

and similarly for their estimates and the respective standard errors. Analogously, for models
resulting from regression with compositional response we get

γ
(l)∗
i = log2(e)

√
D

D − 1
γ
(l)
i , i = 0, . . . , k.

Finally, in regression within composition both the above effects are combined, i.e., for D
regression models

Zi0 = β0 + β
(l)
1 z

(l)
i,1 + · · ·+ β

(l)
D−1z

(l)
i,D−1 + ε

(l)
i , i = 1, 2, . . . , n, (15)

(l = 1, . . . , D) we obtain

β∗0 = log2(e)

√
D + 1

D
β0, β

(l)∗
i =

√
(D + 1)(D − i)
D(D − i+ 1)

β
(l)
i , i = 1, . . . , D − 1.

Indeed, the interpretation of regression coefficients gets simpler now. For regression with
compositional regressors and non-compositional response, first note that a unit additive in-
crement in a log-transformed coordinate z is equivalent to a two-fold multiplicative increase
in the relative dominance of the original compositional variable x, if the base-2 logarithm is
used, that is,

∆z
(l)∗
1 = log2

x
(l)
1

D−1
√∏D

i=2 x
(l)
i

· 2− log2
x
(l)
1

D−1
√∏D

i=2 x
(l)
i

= 1.

The coefficient β
(l)∗
1 in the regression equation then has the usual meaning of an additive in-

crease in the response y that corresponds to increasing z by one (i.e., increasing the dominance

of x twice), while keeping all else fixed. For example, if β
(l)∗
1 = 3, the value of the response

gets higher by 3 units when the relative dominance of the part xl with respect to the average
of the other parts, see the logratio in (14), is doubled, at constant values of the other involved
covariates (orthogonal coordinates). Next, in case of regression with compositional response

and non-compositional regressors, γ
(l)∗
j is the additive increment of the log-transformed re-

sponse z when adding one to an explanatory variable xj , j = 1, . . . , k, (at constant values of
the other covariates)

γ
(l)∗
j = ∆Z

(l)∗
1 = log2

Y
(l)
1

D−1
√∏D

i=2 Y
(l)
i

δ
(l)
j − log2

Y
(l)
1

D−1
√∏D

i=2 Y
(l)
i

= log2 δ
(l)
j ,
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where δ
(l)
j = 2γ

(l)∗
j is the multiplicative increase in the relative dominance of the original

compositional response y. So, for a unit additive change in xj , the ratio of Y
(l)
1 to the

“mean value” of the other compositional responses grows δ
(l)
j = 2γ

(l)∗
j times. Finally, an

analogous interpretation for regression within composition can be obtained, namely, a two-
fold multiplicative increase in the relative dominance of xl (or equivalently, a unit additive

increment in coordinate z
(l)∗
1 ) brings the increase in the relative dominance of the response

x0 of

δ
(l)
1 = 2β

(l)∗
1 , where ∆Z∗0 = log2 δ

(l)
1 .

Note also that the above expression for the proportionality coefficient δ stays the same ir-
respective of the base to which the logarithm was taken, as factor 2 in the expression now
stands for two-fold increase in dominance, not for the logarithmic base.

5. Time budget analysis

Following the previous developments, the decision to admit that the time budget data are
by their nature compositional invites one to couch analysis in terms of logratios instead of
working with the original observations in percentages; namely, the latter would lead to biased
conclusions due to relative character of compositions. The aim of this section is to demonstrate
on real-world psychometric data that working with logratios in the regression context is as
accessible as dealing with the original observations.

5.1. Data and methods

For this purpose, we employ data from (Vančáková 2013) that were obtained in a large psycho-
metric study, guaranteed and realized by the Department of Psychology, Palacký University
in Olomouc, Czech Republic. A questionnaire called “Leisure Time” was distributed among
students at the above university, reaching a total of N = 414 respondents (347 women, 67
men) who provided complete answers. The items included in the questionnaire tapped three
distinct areas: i) personal characteristics (age, gender, faculty and field of study); ii) leisure
time (its concept, absolute and relative amount, content); iii) personality traits (self-esteem
and attitude to challenges). In terms of current analysis, of particular interest are relationships
among the following variables: Daily Time Budget as expressed in seven compositional vari-
ables (parts, summing up to 100 percent) study/work, commuting, food, hygiene&dressing,
sleep, household duties, and leisure time; personality variables self-esteem (z-score from a
10-item Rosenberg Self-Esteem Scale (Rosenberg 1965) included in the questionnaire) and
challenge (“Are you a person who invites challenges, i.e. opportunities to surpass yourself?”,
originally 4-choice response collapsed into dichotomic and coded as 1 for “always” or “almost
always”, and 0 for “almost never” or “never”); and covariates of age (in years) and gender
(dichotomic, coded as 1 for men and -1 for women). Distribution of the variables age and
self-esteem is visualized in Figure 1 in the form of EDA-plots using the R package StatDA
(Filzmoser 2013).

Although the respondents were asked to enter data on Daily Time Budget in percentages,
the obtained range of the sum of parts was 〈7, 520〉 due to misunderstanding the units to use
and their prescribed constant sum constraint (of course, most of the row sums were exactly
or close to 100). Nevertheless, the important information on relative contributions of parts to
the overall time budget was unaffected by using whatever units, which thus emphasizes even
further the necessity to apply the logratio methodology in statistical processing. Note once
again that for the logratio methodology the constant sum representation of compositional
data is not a necessary requirement. However, for the purpose of easier comparisons, in the
following the percentage representation was taken for all time budget observations.

Besides paying attention to differences, as well as agreement, in logratio vs. “standard”
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Figure 1: EDA-plots for variables age (left) and self-esteem (right).

methodologies, we will keep our thoughts focused on some tentative conjectures about inter-
connections among variables. This data set allows for exploring possible influences among
several prominent psychological factors. On the one hand, we have the pair of personality
traits of self-esteem and openness to challenge which we expect to be bundled close together
and even boost each other if challenges are being tackled successfully, or else restrain each
other in a downward spiral. On the other hand, the necessity of time allocation brings about
an inevitable interplay of work, active relaxation, and sleep (passive relaxation). And then,
of course, these two broad areas come into mutual contact in complex ways.

These considerations lead us, at the outset, to postulate a firm and positive relationship
between personality traits of challenge and self-esteem. Next, within compositional variables,
we deem as highly probable a negative relationship between work/study and leisure time, and
between work/study and sleep on the premise that working/studying takes away time from
both these forms of relaxation. Sleep is considered loosely associated with leisure time on the
grounds that the time left after deducting all duties is being distributed between both. If there
is more time available, it will add up to both sleep and leisure. If any at all, the relationship
between sleep and challenge is expected to be negative, as the person who is busy taking
challenges might have less time for sleep. The association between sleep and self-esteem is
less clear-cut but it can be conceived along the lines that a self-assured person participates in
numerous activities and thus sleeps less, while, on the other hand, an insecure person may seek
sleep as a welcome escape from reality. As a consequence, work/study should be positively
related with both challenge and self-esteem, and leisure time negatively related with both.
Any effects of gender may be obscured in this dataset as men are seriously underrepresented
among respondents.

In the following, the relationships among variables are determined through regression anal-
ysis. A logratio approach (which is deemed appropriate whenever a compositional variable
out of Daily Time Budget is present) is compared to a standard non-compositional approach,
e.g. Linear Model (LM) or Generalized Linear Model (GLM). In the statistical analysis we
focused on those relations that are primarily not gender related. Moreover, preliminary ex-
ploratory analysis using variation matrix (Aitchison 1986) and compositional biplot (Aitchi-
son and Greenacre 2002), see Figure 2, revealed strong relationship between food and hy-
giene&dressing components; because of their rather marginal importance for psychological
interpretation, these parts will be excluded from further consideration (but kept as parts of
the initial composition). On the other hand, there seems to be no relation between commuting
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Figure 2: Compositional biplot for time budget data. Number codes correspond to single
activities (1 − study/work, 2 − commuting, 3 − food, 4 − hygiene&dressing, 5 − sleep, 6 −
household duties, 7 − leisure time)

and leisure time, or study/work and household duties, respectively. Interestingly, there is some
nearly constant ratio also between study/work and sleep throughout the sampled population,
which goes against the hypothesized association.

5.2. Regression analysis

From the essence of the data set, interconnections among variables (compositional and non-
compositional, or even within the time budget composition) are of primary interest. For
this purpose, several regression models were applied to data. Accordingly, in addition to
Daily Time Budget, non-compositional variables of challenge, self-esteem, age, and gender
were taken into consideration here. In order to enable direct interpretation of regression
output, orthogonal coordinates (as described in Section 4), instead of orthonormal ones, were
employed for the compositional variables within logratio approach.

As a first step, let us explore the manner how seeking challenges is determined by Daily Time
Budget and other explanatory variables. That is, the response now is non-compositional
(binomial), while some of the regressors are compositional and others not. For this purpose,
binomial regression (a special case of logistic regression) was applied, first with compositional
regressors in logratio coordinates, second with the original variables in percentages; note that
any representation of the orthogonal logratio coordinates would lead to the same parameter
estimates for the non-compositional covariates. From the time budget variables just those
of potential psychological influence were included (study/work, commuting, sleep, household
duties, and leisure time); of course, due to construction of the regression model in coordinates,
all parts of the original composition were taken into account for the estimation purposes under
logratio approach. On the other hand, perfect collinearity among compositional variables
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makes it impossible to include all of them simultaneously as regressors in a standard linear
model. Following (Hron et al. 2012), common regression output like parameter estimates,
their standard errors, values of corresponding statistics and their P-values (using function
glm from R-package MASS, see (Venables and Ripley 2002) for further details) are collected
in Table 1 (all tables with detailed results are included as supplementary material), where
names of the original parts stand as notation for the corresponding orthogonal coordinates
(14). It can be seen that both the study/work coordinate and the self-esteem variable are
contributing the most (in the positive direction, due to positive sign of their coefficients) in
explaining the challenge response. The interpretation of coefficients is such that if the relative
dominance of study/work in time budget doubles (with respect to average contribution of the
other parts), the odds for seeking challenges increases exp(0.422) = 1.53-fold (other covariates
staying fixed); similarly, a unit increase in self-esteem z-score brings increase of the odds for
seeking challenges exp(0.452) = 1.57-fold. Note that, in line with the methodology described
in the previous section, five regression models were employed to obtain the estimates for the
compositional coordinates. By applying orthogonal coordinates (14), the interpretation of
regression coefficients gets much easier than with original orthonormal coordinates (1). The
tight link between challenge and self-esteem is thus established. On the other hand, we don’t
see significance of either sleep or leisure time, though the direction (sign of coefficient) is as
expected.

For all binomial regression models the usual model diagnostics can be done, being the same ir-
respective which ilr coordinate system for representation of compositional predictors is taken.
Specifically, jackknife deviance residuals against linear predictor, normal scores plots of stan-
dardized deviance residuals, plot of approximate Cook statistics against leverage/(1-leverage),
and case plot of Cook statistic as listed, e.g. in function glm.diag.plots from the package
boot can be obtained. In our case normality of residuals is rather limited, though plots of the
Cook statistics do not show a significant amount of influential/leverage points that supports
reliability of the results.

Finally, note that it would be also possible to add interactions between single compositional
parts (represented by the respective ilr variables) and non-compositional predictors. An
example of that would be possible interaction between variable study/work changing with
age, i.e. fresh students and students shortly before finishing the study might have different
values on study/work than others. Nevertheless, in order to keep simplified level of the
modelling, interactions were not allowed; moreover, even when such a promising interaction
was added to the model, the resulting parameter was not significant.

Table 1: Logratio approach: Results from regression of challenge on orthogonal coordinates
of the explanatory composition and further covariates. For explanations see text.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.69708 1.24154 -0.561 0.57448

study/work 0.42200 0.14164 2.979 0.00289

commuting -0.06723 0.10961 -0.613 0.53959

sleep -0.20460 0.17476 -1.171 0.24168

household duties -0.02904 0.11187 -0.260 0.79519

leisure time -0.13142 0.12714 -1.034 0.30129

self-esteem 0.45187 0.11105 4.069 4.72e-05

age 0.04298 0.05516 0.779 0.43586

gender 0.19698 0.15494 1.271 0.20360

Null deviance: 552.4 on 413 degrees of freedom

Residual deviance: 521.4 on 404 degrees of freedom

AIC: 541.4

Number of Fisher Scoring iterations: 4



Austrian Journal of Statistics 13

The output of binomial regression with the original compositional variables is shown in Ta-
ble 2. The interpretation of regression parameters is analogous to standard multiple regres-
sion. The exponential function exp(·) of the estimate of regression parameter corresponding to
given covariate (either in percentages or in other units) represents amount by which the odds
of challenge would increase/decrease if that covariate were one unit higher by constant values
of the other covariates. By taking this interpretation into account, there is not much differ-
ence from the logratio approach above (also the model fit, expressed by AIC criterion, stays
almost the same), which would indicate that the distortion of covariance structure among
percentage covariates (see, e.g., (Aitchison 1986) for details) didn’t have dramatic influence
on regression output. The strength of association between openness to challenge and self-
esteem remains unchanged. Nevertheless, the interesting influence of study/work coordinate,
which was clearly visible using the logratio coordinates, is now lost.

Table 2: GLM approach: Results from binomial regression of challenge on original explanatory
composition (in percentages) and further covariates. For explanations see text.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.44332 1.90962 -0.232 0.816

study/work 0.02123 0.01853 1.146 0.252

commuting -0.00242 0.03916 -0.062 0.951

sleep -0.00467 0.02077 -0.225 0.822

household duties 0.00073 0.03098 0.024 0.981

leisure time -0.01892 0.02253 -0.840 0.401

self-esteem 0.44518 0.11046 4.030 5.57e-05

age 0.03610 0.05418 0.666 0.505

gender 0.16862 0.15198 1.110 0.267

Null deviance: 552.40 on 413 degrees of freedom

Residual deviance: 524.04 on 405 degrees of freedom

AIC: 542.04

Number of Fisher Scoring iterations: 4

As a second step, let us look the other way around and search for possible significant co-
variates of Daily Time Budget. For this purpose regression with compositional response was
employed, the response variables now being the five chosen Daily Time Budget variables. The
logratio approach leads to five univariate regression models (with orthogonal coordinates cor-
responding to individual compositional parts) and the results are displayed in Table 3 (to save
space, just regression estimates and possible significance at the usual level α = 0.05, marked
by asterisk, are provided). The effects of particular covariates on response coordinates are
evident. For example, by increasing the value of self-esteem by one, the relative dominance
of leisure time in the composition (with respect to average of parts) increases approximately
by 6 percent (20.088 = 1.06). Similarly, taking challenges brings the relative dominance of
study/work 18 percent higher (20.237 = 1.18), and one more year of age 2.9 percent higher.
The positive association between study/work and taking challenges is in accordance with our
anticipations, but with self-esteem and leisure time a contrary direction was expected. The
connection between sleep and both challenge and self-esteem remained below significance.
It is interesting to see also some gender influence on both sleep and leisure time. Due to
coding used (1 for male and −1 for female) it can be concluded that for males sleep and
leisure time play a more important role in the overall time budget than for females. More

precisely, the part sleep is explained only by gender. Hence, ẑ
(sleep)∗
1 = 1.644 is the fitted

value of the coordinate z
(sleep)∗
1 for males, while ẑ

(sleep)∗
1 = 1.357 for females. It means that

the relative dominance of sleep in the composition to the “mean value” of the other composi-
tional responses is 21.644 = 3.125 for males (3.125 times higher relative contribution of sleep
than for the averaged rest of components), and 21.357 = 2.562 for females. Further, it can
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be concluded that the relative dominance of sleep for males is 2
2γ̂∗

(sleep) = 1.22 times greater
than for females. Although results for food and hygiene&dressing variables are in general not
discussed in this section, it is worth to note that for hygiene&dressing a significant role of
gender (in the negative sense) was revealed; accordingly, this compositional part plays a more
important role in time budget of females than for males.

Table 3: Logratio approach: Results from regression with compositional response. Significant
regression parameters (at α = 0.05) marked by asterisk.

study/work commuting sleep household leisure time

(Intercept) 0.60673 -1.17704 1.50068* -1.27186* 0.96194*

challenge 0.23723* -0.02216 -0.01922 -0.07174 -0.13237

self-esteem -0.02201 0.02367 0.03083 -0.01959 0.08817*

age 0.04117* -0.00789 0.00186 0.02723 -0.01801

gender -0.03217 -0.05116 0.14381* -0.04412 0.22449*

By way of comparison, the same regression model was analysed under the assumption of
Dirichlet distribution for the compositional response that is popular also in psychometric
context (Georguieva, Rosenheck, and Zelterman 2008) and, although rather inconsistent with
logratio methodology, is still frequently recommended for modelling compositional data. For
this purpose function DirichReg from the package DirichletReg (Maier 2014) was applied
by expressing the input compositions in proportional representation; regression output is
collected in Table 4. The interpretation of regression parameters is analogous to standard
multiple regression by considering proportional representation of the response and the fact
that parameters of the Dirichlet distribution, being not scale invariant, are predicted. Apart
from apparent computational complexity of the model, Dirichlet regression does not seem
to shed new light into the problem; moreover, some of the potential relationships that have
emerged with the logratio approach are lost again.

Table 4: GLM approach: Results from Dirichlet regression with compositional response.
Significant regression parameters (at α = 0.05) marked by asterisk.

study/work commuting sleep household leisure time

(Intercept) 2.05549* 0.94065* 2.59815* 0.98208 2.21778*

challenge 0.08550 -0.05467 -0.06799 -0.08346 -0.14143

self-esteem 0.03210 0.04770 0.06618 0.02641 0.09649*

age 0.00825 -0.01401 -0.01578 -0.00027 -0.02443

gender -0.03630 -0.03837 0.06755 -0.03792 0.11748*

From the previous analysis, leisure time seems to be strongly linked with the non-compositional
variables. A natural question thus arises whether regression could reveal also some relations
within parts of the time budget composition. Thus, as the third step, the corresponding
logratio model from Section 2 was applied, by expressing both the response and regressors in
orthogonal logratio coordinates (and with additional non-compositional covariates). Similarly
as before, Table 5 collects results from four regression models, each highlighting the role of
one of compositional explanatory variables (without influence on the non-compositional co-
variates). Though the R2 statistic gives rather low value (as is usual in social science), some
patterns stand out. In particular, relative dominance of leisure time is positively influenced
by sleep (increasing the dominance of sleep twice enlarges the dominance of leisure time by 27
percent, as 20.34 = 1.27) and marginally by self-esteem (unit increase in self-esteem increases
the dominance of leisure time by 6 percent); negative effects on leisure time are formed by
study/work (10 percent decrease in dominance, 2−0.16 = 0.90) and commuting (decrease in
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dominance by 13 percent). Consistency with the previous logratio model (Table 3, regression
with compositional response) is underlined by the roles of self-esteem and gender covariates.
Again, a psychological interpretation can be easily derived. Here we are able to pinpoint the
significant positive association of sleep and leisure time, as well as negative association of
work/study and leisure time. Marginally significant is the connection between leisure time
and self-esteem which appeared significant in previous regression (Table 3).

Table 5: Logratio approach: Results from regression of leisure time coordinate on orthogonal
coordinates of the explanatory composition and further covariates. For explanations see text.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.47988 0.45492 1.055 0.29211

study/work -0.15646 0.05576 -2.806 0.00526

commuting -0.20414 0.04377 -4.664 4.22e-06

sleep 0.33976 0.06374 5.330 1.64e-07

household duties 0.05734 0.04304 1.332 0.18351

challenge -0.09358 0.08937 -1.047 0.29568

self-esteem 0.08353 0.04330 1.929 0.05442

age -0.01908 0.01991 -0.958 0.33852

gender 0.16760 0.05951 2.817 0.00509

Residual standard error: 0.8544 on 404 degrees of freedom

Multiple R-squared: 0.1619, Adjusted R-squared: 0.1433

F-statistic: 8.674 on 9 and 404 DF, p-value: 6.21e-12

For the final comparison we consider the standard linear regression model where the original
parts in percentages are involved (except for food and hygiene&dressing), see Table 6 for
the regression summary. Although conclusions from this model as regards non-compositional
covariates would be pretty similar as with logratio methodology, the situation is different in
other respects. By comparing R2 for these two models and P-values at respective composi-
tional covariates it is easy to see that for the standard regression model these values are very
strongly driven by the constant-sum constraint of the original composition. In particular, note
that by including all the compositional parts, R2 would be brought up to 1, i.e., relations
between the response and covariates would be completely driven by constant sum constraint
of the input data. Of course, as statistical processing of the original compositions violates
both scale invariance and relative scale properties of observations, it cannot be concluded that
by considering compositional data without a constant sum constraint, the resulting regression
model would be relevant. Nevertheless, in percentage representation, which is the case here,
the irrelevance of the standard approach is clearly observable.

5.3. Results

The logratio approach to regression analysis supports our hypothesis of strong negative asso-
ciation between work/study and leisure time, as well as of strong positive association between
challenge and self-esteem. Next, leisure time is significantly tied to self-esteem but the di-
rection here appeared positive, rather than negative as expected. The reason could be that
self-assured people don’t feel the urge to work that much and rather take things easy, allowing
themselves more leisure. Also, an explanation in keeping with (Š́ıpek 2001) says that people
with higher self-esteem may be better prepared to use their free time and it may be easier for
them to admit their needs (for rest and reward). The connection between leisure time and
challenge was not born out (remained below significance, though direction was negative as
anticipated). The above regression results were agreed on by both logratio and standard lin-
ear model approaches. Both approaches also showed a relationship between sleep and leisure
time. However, here the directions differed: logratio showed it to be positive (as hypothe-
sized), linear model negative. On top of that, logratio approach was capable of revealing a
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Table 6: Standard LM approach: Results from regression of leisure time on other composi-
tional parts (in percentages) and further covariates. For explanations see text.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.88605 2.96589 19.180 < 2e-16

work/study -0.60560 0.02698 -22.446 < 2e-16

commuting -0.94166 0.07235 -13.016 < 2e-16

sleep -0.51838 0.03738 -13.869 < 2e-16

household duties -0.63007 0.06094 -10.339 < 2e-16

challenge -0.41193 0.48376 -0.852 0.39498

self-esteem 0.46017 0.23468 1.961 0.05058

age 0.05062 0.10826 0.468 0.64032

gender 1.00488 0.31835 3.157 0.00172

Residual standard error: 4.636 on 405 degrees of freedom

Multiple R-squared: 0.6014, Adjusted R-squared: 0.5935

F-statistic: 76.37 on 8 and 405 DF, p-value: < 2.2e-16

significant positive connection between challenge and work/study.

The psychologically relevant variables seem to form a well-defined cluster of challenge, self-
esteem, and work/study. Somewhat in opposition stands the pair of leisure time and sleep.
However, their position with respect to the main cluster is less clearly marked, as leisure time
is negatively linked to work/study but positively (perhaps only marginally) to self-esteem.
Nevertheless it seems reasonable to assume that working/studying does take time away from
both leisure and sleep simultaneously.

Finally, it is also worth noting that standard regression models were presented mostly for the
sake of comparison of the logratio approach with alternatives that would be most possibly
used instead. While in some cases their output might seem meaningful, it can also happen
that by ignoring the relative structure of Daily Time Budget some interesting features are lost,
as was the case in Table 2 and Table 4. For some cases, like when percentage representation
of the relative contributions is analysed, it is very easy to demonstrate that scale invariance
of compositional data leads to clear failure of the standard approach (Table 6).

6. Discussion

Specific habits of time allocation reveal a lot about an individual, a community, a society, or
a culture. In each society, options available to individuals for earning their living determine
the amount of time they will spend working, or preparing themselves for any such productive
activity through study or apprenticeship. In modern times, we have witnessed a continuous
reduction in working hours, at least in industrialized countries. At the same time, due to
constant total time budget, this development leaves more space for other activities, both
necessary (self- and home-maintenance like sleep, eating, hygiene, care for family and house)
and discretionary (leisure activities like socializing, culture, sports, reading, idling, etc.). As
the time budget data are usually accompanied with other psychometric variables, regression
modelling is the first and intuitive choice for a relevant statistical analysis.

Due to relative character of time budget allocation, it seems natural to work with (log-)ratios
rather than with observations in the original scale (i.e. represented usually in proportions
or percentages). It turned out that logratios meet the scale invariance and relative scale
requirements (among others that are important for reasonable processing of compositional
data) commonly raised in connection with any observations carrying primarily relative infor-
mation. The main problem is then how to construct logratio coordinates, both meaningful
from the mathematical point of view (guaranteed in particular by orthonormality of coor-
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dinates) and at the same time providing easy interpretation. The aim of the paper was to
enhance interpretability of regression analysis output by employing orthogonal coordinates
in place of the mathematically preferred orthonormal ones, demonstrated for the particular
case of time budget data. The reason for the choice of alternative coordinates is that all the
beneficial properties of the orthonormal coordinates are maintained also by the orthogonal
ones, but the latter enable (by avoiding the scaling constants and changing the logarithmic
base) a more straightforward interpretation. We are convinced that better interpretability
of the regression models, discussed in the paper, can help with applicability of the logratio
methodology in psychological research, and also in general.
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Analysis of Wines Using a Robust Compositional Biplot.” Talanta, 90, 46–50.
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771 80 Olomouc, Czech Republic
E-mail: jan.smahaj@upol.cz, panajotis.cakirpaloglu@upol.cz

Jana Vančáková
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Bayes Prediction Bound Lengths under Different

Censoring Criterion: A Two-Sample Approach
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Moti Lal Nehru Medical College, Allahabad, U.P., India

Abstract

The censoring arises when exact lifetimes are known partially only, and it is useful
in life testing experiments for time and cost restrictions. In literature, there are several
types of censoring plans available. In which three different censoring plans have addressed
in the present comparative study. The Burr Type-XII distribution considered here as
the underlying model and the comparison made on Two-Sample Bayes prediction bound
lengths. The analysis of the present discussion has carried out by a real life example and
simulated data both.

Keywords: Burr Type-XII distribution, two-sample plan, Type-II censoring, right censoring,
progressive Type-II right censoring, Bayes prediction bound length.

1. Introduction

The cumulative density and probability density function of Burr Type-XII distribution are
given as

F (x; θ, σ) = 1− (1 + xσ)−θ ; θ > 0, σ > 0, x ≥ 0 (1)

and
f (x; θ, σ) = σθxσ−1 (1 + xσ)−θ−1 ; θ > 0, σ > 0, x ≥ 0. (2)

The two-parameter Burr Type-XII distribution has unimodal or decreasing failure rate func-
tion

ρ(x) = σθxσ−1 (1 + xσ)−1 ; θ > 0, σ > 0, x ≥ 0 (3)

The shape of the failure rate function ρ(x) does not affected by the parameter θ. The pa-
rameter θ and σ both are known as shape parameter. Also, ρ(x) has a unimodal curve when
σ > 1 and it has decreased failure rate function when σ ≤ 1. The Burr Type-II distribution
is applied in several areas including study of quality control and reliability, duration study
and failure time modeling. The analysis of business failure data, the efficacy of analgesics in
clinical trials, and the times to failure of electronic components are the other areas of applica-
tion of the said distribution. Zimmer, Keats, and Wang (1998) discussed at several statistical
properties of the underlying distribution based on reliability analysis.
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El-Sagheer (2016) discussed in his recent paper, about the point and interval predictions
based on general progressive Type-II censored data by using generalized Pareto distribution
under Bayesian setup for two-sample prediction approach. Rao, Aslam, and Kundu (2015)
discuss about the multi-component stress strength reliability based on ML estimation criteria
by assuming Burr Type-XII distribution in his recent paper. Using Koziol-Green model of
random censorship Danish and Aslam (2014) deals the Bayes estimation for unknown param-
eters of the underlying distribution by assuming both the informative and non-informative
priors. Jang, Jung, Park, and Kim (2014) discussed some estimation based on Bayesian setup
for Burr Type-XII distribution under progressive censoring.

Soliman, Abd-Ellah, Abou-Elheggag, and Modhesh (2012) obtained some Bayes estimation
from Burr Type-XII distribution by using progressive first-failure censored data. Lee, Wu,
and Hong (2009) obtained Bayes and empirical Bayes estimators of reliability parameters
under progressively Type-II Burr censored samples. Many works have done on underlying
distribution, a little few of them discussed above, and a few more are Rodriguez (1977), Nigm
(1988), Al-Huesaini and Jaheen (1995), Ali-Mousa and Jaheen (1998), Wu and Yu (2005), El-
Sagheer and Ahsanullah (2015), Soliman, Abd-Ellah, Abou-Elheggag, and El-Sagheer (2015)
and El-Sagheer (2016).

It is not always possible that the experimentally observed the lifetimes of all inspected units
in life testing experiments, due to time limitation and/or cost or material resources for data
collection. In addition, when some sample values at either or both extremes adulterated, the
trimmed samples are useful. There are several types of censoring plans available in literature,
in which only three common censoring plans have addressed in the present study.

The article presents a comparative study under Two-Sample Bayes prediction bounds length
by using different censoring plans, wiz, Item-Failure, right Item-Failure, and Progressive Type-
II censoring. The Bayes prediction bounds lengths have obtained from the underlying model.
The properties of the procedures are illustrated by simulated data as well as a real data set.

2. Bayes prediction bound lengths (Two-sample technique)

When sufficient information regarding the past and the present behavior of an observation
is available, we predict the nature of the future behavior of an observation in the present
section. A Bayesian statistical analysis has applied here for predicting future statistic from
the model given in Eq. (2), based on all three considered censoring plans.

Let x(1), x(2), ..., x(r) be the first r observed ordered failure items from a sample of size n
under considered censoring scheme for the model Eq. (2). If y(1), y(2), ..., y(k) is the second
(unobserved) items censored data of size k drawn independently from the same model of size
N , then the first sample is known as informative sample, while the second sample is referred
to as future sample. Our aim is to predict the jth order statistic in the future sample based
on an informative sample. This prediction technique is known as the, Two-sample Bayes pre-
diction technique. Recently, Prakash and Singh (2013) discussed about the Bayes prediction
limits under two-sample plan for the Pareto model.

2.1. Item-failure censoring

Let us suppose a total of n items from considering model are put under the life test and the
test terminates when first rth(r ≤ n) item fails. This censoring scheme is known as Item-
Failure censoring scheme. In such test situations, the observations usually occurred in ordered
of weakest items failed first.
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Let us assume that x(1), x(2), ..., x(n) be n ordered items from Eq. (2). If x ∼=
(
x(1), x(2), ..., x(r)

)

be first r observed failure items, then the joint probability density function for these order
statistics is defined as

fI (x|θ, σ) =

(
r∏

i=1

f
(
x(i); θ, σ

)
)
(
1− F

(
x(r); θ, σ

))n−r

=

(
r∏

i=1

σθxσ−1
(i)

(
1 + xσ(i)

)−θ−1
)(

1 + xσ(r)

)−θ(n−r)

⇒ fI (x|θ, σ) ∝ θrexp (−θTI (x; θ, σ)) ; (4)

where TI (x; θ, σ) =
∑r

i=1 log
(

1 + xσ(i)

)
+ (n− r)log

(
1 + xσ(r)

)
.

There is no honest way to define, which prior probability estimate is better. Based on personal
beliefs, one may choice a flexible family of priors, and chosen one from that family, which
matches best. In the present study, Gamma distribution G(1, α) taken as the conjugate family
of prior for unknown parameter θ, with the probability density function

πθ = αe−αθ ; α > 0, θ > 0. (5)

Based on Bayes theorem, the posterior density about the parameter θ under considered cen-
soring plan is defined as

π∗Iθ =
fI (x|θ, σ) · πθ∫

θ fI (x|θ, σ) · πθ dθ
. (6)

Using Eq. (4) and Eq. (5) in Eq. (6), the posterior density is now obtained as

π∗Iθ ∝
θrexp (−θTI (x; θ, σ)) · e−αθ∫

θ θ
rexp (−θTI (x; θ, σ)) · e−αθ dθ

⇒ π∗Iθ =
(T ∗
I (x; θ, σ))r+1

Γ(r + 1)
θrexp (−θT ∗

I (x; θ, σ)) ; T ∗
I (x; θ, σ) = TI (x; θ, σ) + α. (7)

The Bayes predictive density of future observation Y is denoted by hI (Y |x) and obtained by
simplifying the following relation

hI (Y |x) =

∫

θ
fI (y; θ, σ) · π∗Iθ dθ

⇒ hI (Y |x) = (r + 1)σyσ−1 (1 + yσ)−1 (T ∗
I (x; θ, σ))r+1

(
T ∗
I (x; θ, σ) + log (1 + yσ)

)r+2 . (8)

Based on predictive density Eq. (8) of the future observation Y, the cumulative predictive
density function is denoted as GI (Y |x) and obtained as

GI (Y |x) = Pr (Y ≤ y)

= (T ∗
I (x; θ, σ))r+1 (r + 1)σ

∫ y

0

yσ−1 (1 + yσ)−1

(
T ∗
I (x; θ, σ) + log (1 + yσ)

)r+2dy
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GI (Y |x) = 1−
(

T ∗
I (x; θ, σ)

T ∗
I (x; θ, σ) + log (1 + yσ)

)r+1

. (9)

Now, if Yj denote the jth order statistic in future sample of size k; 1 ≤ j ≤ k, then from k
future observations, the probability density function of the jth ordered future observation is
given as

ΦI (yj) = j
(
kCj

)
(GI (Yj |x))j−1 (1−GI (Yj |x))k−j hI (Yj |x)

⇒ ΦI (Yj) = j
(
kCj

)

1−


 T ∗

I (x; θ, σ)

T ∗
I (x; θ, σ) + log

(
1 + yσj

)



r+1

j−1

·




 T ∗

I (x; θ, σ)

T ∗
I (x; θ, σ) + log

(
1 + yσj

)



r+1

k−j

·(r + 1)σyσ−1
j

(
1 + yσj

)−1 (T ∗
I (x; θ, σ))r+1

(
T ∗
I (x; θ, σ) + log

(
1 + yσj

))r+2 ; yj > 0. (10)

Let us assume the transformation

Z = 1−


 T ∗

I (x; θ, σ)

T ∗
I (x; θ, σ) + log

(
1 + yσj

)



r+1

then the probability density function for the jth ordered future observation becomes

ΦI (Z) = j
(
kCj

)
(Z)j−1 (1− Z)k−j ;Z > 0. (11)

Now, we say that (l1, l2) is a 100(1− ε)% prediction limits for a future random variable Y, if

Pr (l1 ≤ Y ≤ l2) = 1− ε. (12)

Here l1 and l2 be the lower and upper Bayes prediction limits of the random variable Y, and
1 − ε is called the confidence prediction coefficient. To find the prediction limits under the
two-sample plan for Yj , j

th observation from a set of k future observations, we rewrite the Eq.
(12) under the equal tail limits, as

Pr (Yj ≤ l1j) =
ε

2
= Pr (Yj ≤ l2j)∀ j = 1, 2, ..., k. (13)

Using the Eq. (11) and Eq. (13), the expressions of the limits for the jth future observation
are obtained by solving following equations

j
(
kCj

)∫ l̂1

0
Zj−1 (1− Z)k−j dZ =

ε

2

and

j
(
kCj

)∫ l̂2

0
Zj−1 (1− Z)k−j dZ = 1− ε

2
, (14)
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where l̂i = 1−
(

T ∗
I (x;θ,σ)

T ∗
I (x;θ,σ)+log(1+l

σ
ij)

)r+1

; i = 1, 2.

Solving Eq. (14) for j = 1, the lower and upper Bayes prediction limits for the first fu-
ture observation are given as

l11I = {exp ((ε∗ − 1)T ∗
I (x; θ, σ))− 1}1/σ ; ε∗ =

(
2− ε

2

)−1/k(r+1)

and

l21I = {exp ((ε∗∗ − 1)T ∗
I (x; θ, σ))− 1}1/σ ; ε∗∗ =

( ε
2

)−1/k(r+1)
.

Similarly, solving the Eq. (14) for j = k, the prediction limits for the last future observation
is

l1kI = {exp ((τ∗ − 1)T ∗
I (x; θ, σ))− 1}1/σ ; τ∗ =

(
1−

( ε
2

) 1
k

)−1/(r+1)

and

l2kI = {exp ((τ∗∗ − 1)T ∗
I (x; θ, σ))− 1}1/σ ; τ∗∗ =

(
1−

(
2− ε

2

) 1
k

)−1/(r+1)

.

Hence, the Bayes prediction lengths for the smallest (first) and the largest (last) future ob-
servations are obtained as

L(IS) = l21I − l11I
and

L(IL) = l2kI − l1kI . (15)

2.2. Right item-failure censoring

Since all n items from the considered model are put under the life test without replacement.
In which only r(≤ n) ordered items are measurable, while the remaining (n − r) items are
censored. These (n − r) censored lifetimes will be ordered distinctly. This process is known
as the right Item failure-censoring scheme (Prakash (2014)).

Now, let us consider a sequence of independent random sample from Burr Type-XII dis-
tribution of size n such as x(1), x(2), ..., x(r−1), x(r), x(r+1), ..., x(n). All n items are put to test
without replacement and the first r items x ∼=

(
x(1), x(2), ..., x(r−1), x(r)

)
are fully measured

while remaining (n− r) items
(
x(r+1), x(r+2), ..., x(n)

)
are censored. Based on above the joint

probability density function of these order statistics is defined as

fR (x|θ, σ) ∝
(

r∏

i=1

f
(
x(i); θ, σ

)
)
·
(

n∏

i=r+1

(
1− F

(
x(i); θ, σ

))
)

⇒ fR (x|θ, σ) ∝ θrexp (−θTR (x; θ, σ)) ; TR (x; θ, σ) =

n∑

i=1

log
(

1 + xσ(i)

)
. (16)

Using Eq. (5) and Eq. (16) in Eq. (6), the posterior density for unknown parameter θ under
right item-failure censoring is obtained as

π∗Rθ =
(T ∗
R (x; θ, σ))r+1

Γ(r + 1)
θrexp (−θT ∗

R (x; θ, σ)) ; T ∗
R (x; θ, σ) = TR (x; θ, σ) + α. (17)
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On similar lines, the Bayes predictive density, cumulative predictive density functions of
future observation Y and probability density function of the jth ordered future observation
are obtained respectively as

hR (Y |x) = (r + 1)σyσ−1 (1 + yσ)−1 (T ∗
R (x; θ, σ))r+1

(
T ∗
R (x; θ, σ) + log (1 + yσ)

)r+2 ,

GR (Y |x) = 1−
(

T ∗
R (x; θ, σ)

T ∗
R (x; θ, σ) + log (1 + yσ)

)r+1

and
ΦR (Z) = j

(
kCj

)
(Z)j−1 (1− Z)k−j ;Z > 0 (18)

where Z = 1−
(

T ∗
R(x;θ,σ)

T ∗
R(x;θ,σ)+log(1+y

σ
j )

)r+1

.

Solving Eq. (18) for j = 1 and j = k, the lower and upper Bayes prediction bound lim-
its for first and last future observation are given respectively as

l11R = {exp ((ε∗ − 1)T ∗
R (x; θ, σ))− 1}1/σ,

l21R = {exp ((ε∗∗ − 1)T ∗
R (x; θ, σ))− 1}1/σ,

l1kR = {exp ((τ∗ − 1)T ∗
R (x; θ, σ))− 1}1/σ

and
l2kR = {exp ((τ∗∗ − 1)T ∗

R (x; θ, σ))− 1}1/σ.

Now, the Bayes prediction intervals for first and last future observations are obtained similarly
as

L(RS) = l21R − l11R
and

L(RL) = l2kR − l1kR. (19)

2.3. Progressive Type-II censoring

The progressive censoring seems to be a great importance in strategic interval experiments. In
many industrial experiments involving lifetimes of machines or units, it is required to dismiss
the experiments early with failures must be limited for various reasons. This censoring cri-
terion plays a significant role in such lifetime studies, in which the experiments terminate early.

Let us suppose an experiment in which n independent and identical units x(1), x(2), ..., x(n)
are placed on a live test at beginning time and first r; (1 ≤ r ≤ n) failure items are observed.
At the time of each failure occurring prior to termination point, one (or more) enduring units
detached from the test. The experiment is terminated at the time of rth failure, and all re-
maining surviving units are removed from the test. See Prakash (2015) for more details on
Progressive censoring.

Let x ∼=
(
x(1), x(2), ..., x(r)

)
are the lifetimes of completely observed units to fail andR1, R2, ..., Rr

are the numbers of units withdrawn at these failure times. Here, R1, R2, ..., Rr all are prede-
fined integers following the relation

r∑

i=1

Ri + r = n.
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Based on progressively type-ii censoring scheme the joint probability density function of order
statistics x ∼=

(
x(1), x(2), ..., x(r)

)
is defined as

fp (x|θ, σ) = Cp

r∏

i=1

f
(
x(i); θ, σ

) (
1− F

(
x(i); θ, σ

))Ri ; (20)

Here, Cp is known as progressive normalizing constant. Simplifying Eq. (20), we get

⇒ fP (x|θ, σ) ∝ θrexp (−θTP (x; θ, σ)) ; TP (x; θ, σ) =

r∑

i=1

(1 +Ri) log
(

1 + xσ(i)

)
.

The posterior density about the parameter θ under progressive censoring plan is

π∗Pθ =
(T ∗
P (x; θ, σ))r+1

Γ(r + 1)
θrexp (−θT ∗

P (x; θ, σ)) ; T ∗
P (x; θ, σ) = TP (x; θ, σ) + α.

Similarly, the Bayes predictive density, cumulative predictive density functions of future ob-
servation Y and probability density function of the jth ordered future observation under
progressive censoring are obtained and given respectively as

hP (Y |x) = (r + 1)σyσ−1 (1 + yσ)−1 (T ∗
P (x; θ, σ))r+1

(
T ∗
P (x; θ, σ) + log (1 + yσ)

)r+2 ,

GP (Y |x) = 1−
(

T ∗
P (x; θ, σ)

T ∗
P (x; θ, σ) + log (1 + yσ)

)r+1

and

ΦP (Z) = j
(
kCj

)
(Z)j−1 (1− Z)k−j ;Z > 0 (21)

where Z = 1−
(

T ∗
P (x;θ,σ)

T ∗
P (x;θ,σ)+log(1+y

σ
j )

)r+1

.

Substituting j = 1 and j = k in Eq. (21). The lower and upper Bayes prediction bound
limits for first and last future observation are given as

l11P = {exp ((ε∗ − 1)T ∗
P (x; θ, σ))− 1}1/σ,

l21P = {exp ((ε∗∗ − 1)T ∗
P (x; θ, σ))− 1}1/σ,

l1kP = {exp ((τ∗ − 1)T ∗
P (x; θ, σ))− 1}1/σ.

and

l1kP = {exp ((τ∗∗ − 1)T ∗
P (x; θ, σ))− 1}1/σ.

Thus, the Bayes prediction intervals for the smallest and the largest future observation are
obtained and given as

L(PS) = l21P − l11P
and

L(PL) = l2kP − l1kP .
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3. Numerical analysis

The performance of the proposed procedures is studied by a numerical illustration based on
a real data set for a clinical trial describe a relief time (in hours) for 30 arthritic patients
considered here form data provided by Wingo (1993) and used recently by Wu, Wu, Chen,
Yu, and Lin (2010). The data are given in the Table (1).

Table 1: Relief time (in hours) for 30 arthritic patients

0.70 0.58 0.54 0.59 0.71 0.55 0.63 0.84 0.49 0.87
0.73 0.72 0.62 0.82 0.84 0.29 0.51 0.61 0.57 0.29
0.36 0.46 0.68 0.34 0.44 0.75 0.39 0.41 0.46 0.66

We fit the Burr Type-XII distribution to the given data in Table (1). The Kolmogorov-
Smirnov (K-S) distances between the fitted and the empirical distribution functions is 0.0675
with p-value is > 0.05. Based on the K-S test statistic, Burr Type-XII distribution provides
an adequate fit the data sets. In addition, the graph for both the empirical survival function
and the estimated survival functions is given in Figure (3.3). (El-Sagheer (2015))

We carry out this comparison by considering the given data of size n(= 30) with σ(= 1.00)
and α(= 0.50). The selected values of level of significance are ε = 99%, 95%, 90%.

3.1. Item-failure censoring scheme

Let the test is terminated when r(= 5, 10, 15), as it is supposed from n = 30. Help of a con-
sidered set of parametric values, obtains the one-sided two-sample Bayes prediction bound
lengths with the data given in Table (1) and presented in Table (3).

It is noted that when confidence level ε increases the length of intervals tends to be wider. A
decreasing trend has been seen in bound lengths when censored sample size increases.

3.2. Right item-failure censoring scheme

The one-sided two-sample Bayes prediction bound lengths have been obtained under similar
set of considered parametric set of values as discussed above and presented in Table (3) for
right item-failure censoring data.

All properties have seen similar for the bound lengths obtained under item-failure censoring
criterion. However, the bound lengths become narrower as compared to item-failure censoring
criterion for all considered parametric set of values

3.3. Progressive censoring scheme

The Bayes prediction bound length under two-sample criterion have been obtained and pre-
sented in Table (3) for a similar set of parametric values as discussed above in censoring plan
Ri; i = 1, 2, ..., r, given in (2).

Again, all the behaviors have seen similar as discussed above when compared with both
censoring criteria. Further, it is noted that the magnitude of bound lengths under progres-
sive censoring criteria are wider than compared to item-failure or right item-failure censoring
criterion. It is also remarkable that for small confidence level, the bound length for largest
observation is narrower as compared to the item-failure censoring criterion.
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Figure 1: Empirical and estimated survival functions

Table 2: Different progressive censoring plan

Case m Ri; i = 1, 2, ...,m
1 5 1 2 1 0 1
2 10 1 0 0 3 0 0 1 0 0 1
3 15 1 0 2 0 0 1 0 2 0 0 0 1 0 0 1

4. Simulation study

Based on simulation, the performances of the procedures are studied in the present section.

Using Eq. (5), the values of shape parameter θ have been generated by using α(= 0.25, 0.50, 1.00).
Using these three generated values of θ with a known set of values of parameter σ(= 0.50, 1.00, 2.00),
generates 10, 000 random samples, each of size n = 30.

All desired censored samples are generated by using following relation xi =
{

(1− Ui)−
1
θ − 1

} 1
σ
.

Here, Ui are independently distributed U(0, 1). The one-sided two-sample Bayes prediction
bound lengths based on simulated data are presented in the Tables 04-06 for item-failure,
right item-failure, and progressive censored data respectively.

The bound length becomes wider as combination of prior parameter increase. However, a
decreasing trend has seen for higher set of prior values (α = 1.00, σ = 2.00). All other
properties have seen similar as discussed in the previous section.

Conclusion

The properties of Bayes prediction bound lengths based on two-sample technique are the main
aim of the present discussion. The underlying model is assumed here as the Burr Type-XII
distribution and the analysis presented by simulated data set and a real data set provided by
Wingo (1993). The item-failure, right item-failure, and progressive Type-II censoring is used
for the present comparative study.
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Table 3: Two-sample Bayes prediction bound lengths under different censoring plans

α = 0.50 Item-Failure Censoring Plan
σ = 1.00 The First Future Observation The Last Future Observation
r ↓ ε→ 99% 95% 90% 99% 95% 90%

5 3.3742 3.3501 3.3237 4.7201 4.6645 4.5772
10 2.5178 2.4556 2.3996 3.3748 3.3128 3.1849
15 2.1914 1.9791 1.9152 2.8201 2.6846 2.5436

Right Item-Failure Censoring Plan
5 3.2511 3.2078 3.1423 4.5177 4.2942 4.1967
10 2.4158 2.3359 2.2312 3.2116 3.1018 3.0186
15 2.0414 1.9268 1.8753 2.6171 2.5366 2.4507

Progressive Type-II Censoring Plan
5 3.8061 3.7488 3.6002 5.1837 4.8177 3.9006
10 3.1998 3.0739 2.8952 3.5538 3.1084 2.9082
15 2.7939 2.5121 2.4109 3.1664 3.0008 2.4610

Table 4: Bound lengths under item-failure censoring plan

n = 30 The First Future Observation The Last Future Observation
(α, σ) ↓ r ↓ ε→ 99% 95% 90% 99% 95% 90%

5 2.9547 2.9031 2.6749 3.0745 3.0616 3.0194
0.25, 0.50 10 2.1815 2.1215 2.0149 2.3124 2.1822 2.0974

15 1.6953 1.4341 1.1327 1.9057 1.6216 1.5998
5 3.1231 3.0178 2.9104 3.3538 3.3297 3.2607

0.50, 1.00 10 2.3081 2.0387 1.8196 2.5024 2.4504 2.2652
15 1.9128 1.8114 1.6418 2.1488 1.9871 1.9333
5 3.0445 3.0193 2.9522 3.3124 3.2786 3.0501

1.00, 2.00 10 2.2696 2.1615 2.1527 2.4615 2.4101 2.2336
15 1.8892 1.7889 1.7203 2.1235 1.9426 1.9294

Based on selected parametric values, the one-sided two-sample Bayes prediction bound lengths
are wider under the Progressive censoring scheme as compared to other censoring patterns.
It is also remarkable that for small confidence level, the bound length for largest observation
is narrower under Progressive censoring criterion as compared to the item-failure censoring
criterion.
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Abstract

Modern surveys aim at fostering accurate information on demographic and other vari-
ables. The necessity for providing figures on regional levels and on a variety of subclasses
leads to fine stratifications of the population. Optimizing the accuracy of stratified random
samples requires incorporating a vast amount of strata on various levels of aggregation.
Accounting for several variables of interest for the optimization yields a multivariate op-
timal allocation problem in which practical issues such as cost restrictions or control of
sampling fractions have to be considered. Taking advantage of the special structure of the
variance functions and applying Pareto optimization, efficient algorithms are developed
which allow solving large-scale problems. Additionally, integrality- and box-constraints
on the sample sizes are considered. The performance of the algorithms is presented com-
paratively using an open household dataset illustrating their advantages and relevance for
modern surveys.

Keywords: stratified random sampling, multi-criteria optimization, linear constraints, integer
optimization, Pareto optimality, semismooth Newton.

1. Introduction

Accurate population figures provide an important basis for political and economic decision
processes. In light of urban audits and regional policies, these figures, however, have to be
made available in sufficient regional detail as well as for many sub-classes, which requires
introducing a vast number of strata by regions and content. Censuses, registers, or adequate
surveys can provide the information necessary for such research. Using surveys, stratified
random sampling provides an adequate basis that allows integrating further optimization
techniques while considering practical settings with various constraints. Additionally, several
variables of interest may be incorporated in the optimization process which either contains
complementary or conflictory information. This finally leads to a multivariate optimal allo-
cation problem under constraints regarding regional as well as context-specific stratifications.

For the stratified random sampling problem we assume a finite population U of size N with
disjoint cross-classification strata h = 1, . . . ,H. Let τY denote the total of a variable of
interest Y . In stratified random sampling, an unbiased estimator is τ̂StrRS

Y =
∑H

h=1Nhȳh,
where ȳh is the sample mean of variable Y and Nh is the population size in stratum h. Its
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variance is

Var(τ̂StrRS
Y ) =

H∑

h=1

N2
hS

2
h

nh

(
1− nh

Nh

)
(1)

with known stratum-specific variances S2
h of variable Y and stratum-specific sample sizes nh

for all strata h = 1, . . . ,H (Lohr 2010, chapter 4). In practice, earlier surveys or highly
correlated variables yield the necessary information for S2

h. In our presentation, we tacitly
assume that adequate proxies are available as a discussion of proxy quality and its implications
is beyond the scope of this work.

Minimizing the variance (1) with respect to the stratum-specific sample sizes nh while respect-
ing a given total sample size nmax leads to the (univariate) optimal allocation introduced by
Tschuprow (1923) and Neyman (1934). In contrast to the equal and proportional allocation,
see Cochran (1977), the optimal allocation depends on the variable of interest. The resulting
optimal allocation is given in closed form by

n∗h =
NhSh∑H
k=1NkSk

· nmax. (2)

This allocation method is extended in Gabler, Ganninger, and Münnich (2012) and Münnich,
Sachs, and Wagner (2012b), such that for each stratum-specific sample size nh box-constraints
mh, Mh with

2 ≤ mh ≤ nh ≤Mh ≤ Nh (3)

are added to the optimization problem. As zero sample sizes in single strata lead to biased
estimates and variance estimation of the total estimate requires stratum-specific sample sizes
of at least two, a lower constraint mh ≥ 2 is applied. Upper constraints Mh ≤ Nh have to
be introduced to avoid overallocation in strata where nh given by (2) exceeds Nh. A further
reduction of Mh allows to control sample fractions, for example to avoid highly different
response burdens in various regions or strata. In addition, Mh prevents a stratum-specific full
census which is prohibited by law in specific surveys, for example by judgment of the German
Federal Administrative Court (BVerwG, 03/15/2017, 8 C 6.16).

Altogether, the optimal allocation problem under box-constraints is given by

min
n∈RH

+

Var(τ̂StrRS
Y )

s.t.
H∑

h=1

nh = nmax

mh ≤ nh ≤Mh ∀h = 1, . . . ,H.

(4)

The problem can equivalently be stated with the inequality constraint
∑H

h=1 nh ≤ nmax, but
equality holds at every optimal solution.

Friedrich, Münnich, de Vries, and Wagner (2015) provide a further extension that ensures
integrality of the solution of the optimal allocation. Using Gabler et al. (2012) and by sepa-
rating different sub-regions, the method can be rewritten to a simultaneous optimal allocation
for multiple areas. This is achieved by using a quadratic separable decision function.

In the multivariate generalization of the optimal allocation problem, K different variances
Var(τ̂StrRS

1 ), . . ., Var(τ̂StrRS
K ) are considered simultaneously. Dalenius (1953) discusses this

problem in detail and distinguishes two solution strategies. In the first, one or more of the
variances Var(τ̂StrRS

k ), k = 1, . . . ,K, are bounded from above and treated as constraints of an
optimization problem in which the total sample size (or the cost of the survey) is minimized.
This leads to a univariate optimization problem with non-linear constraints. In the second,
the variances are minimized simultaneously subject to linear size (or cost) constraints. This
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perspective leads to a multi-objective optimization problem with conflicting objectives that
requires an appropriate mathematical theory. In particular, an adequate notion of optimality,
such as Pareto optimality, is essential and the problem has to be transformed into a form
that is solvable by optimization algorithms. Most of the literature dealing with multivariate
allocation splits up depending on which of these two formulations is used.

Indeed, Chatterjee (1968), Chatterjee (1972), and Huddleston, Claypool, and Hocking (1970)
use the first variant. Multivariate optimal allocation problems are addressed in the same
way in Kokan (1963) and supplemented by existence and uniqueness results in Kokan and
Khan (1967). Introducing overhead costs, Ahsan and Khan (1982) discuss the problem with
variance constraints for a more general objective function. More recently, Bankier (1988),
Hohnhold (2009a), and Hohnhold (2009b) have published allocation techniques with more
than one level of strata. These techniques are based on a compensation of the accuracy of
regional estimates and population total estimates and, hence, also belong to the first class of
methods. Falorsi and Righi (2015) present a generalized framework for defining the optimal
inclusion probabilities in multivariate and multi-domain surveys. Falorsi and Righi (2008)
and Falorsi and Righi (2016) introduce a solution method using a balanced sampling design.

Combining aspects from both strategies, Kish (1976) proposes to combine aspects of variance
and cost minimization in a non-linear model with the help of loss functions and discusses
various choices for the objective function within his model.

Turning to the second solution strategy introduced by Dalenius (1953), the multivariate opti-
mal allocation is threated in Folks and Antle (1965) as a multi-objective optimization problem
with linear constraints. They discuss the mathematical theory of scalarization and the re-
lationship between the multi-objective problem and the scalarized problem. Moreover, they
prove a sufficiency result for the set of efficient (or Pareto optimal) solutions for the simple
problem without box-constraints and neglecting the integrality of the solutions. Dı́az-Garćıa
and Ramos-Quiroga (2014) solve the multivariate allocation as a multi-objective problem as
well but with the help of stochastic programming. Khan, Ali, Raghav, and Bari (2012) use
stochastic programming on another model. Both methods lead to non-linear integer opti-
mization problems which are hard to solve even for small instances. Khan, Khan, and Ahsan
(2003) solve multivariate allocation problems by exploiting the separability of the objective
function and applying dynamic programming. While dynamic programming is a classical so-
lution method for allocation problems (Arthanari and Dodge 1981, chapter 5), it is not very
efficient in practice as the computational study of Bretthauer, Ross, and Shetty (1999) shows.

All strategies using the multi-objective perspective on the problem have to use scalarization
techniques to combine the variances for the variables in a one single objective function. The
selection of a scalarization technique can be interpreted as the choice of a suitable decision-
making function (Schaich and Münnich 1993 and Dı́az-Garćıa and Cortez 2006). The optimal
allocation then highly depends on the concrete choice of a scalarization function.

We also take the second of the two perspectives of Dalenius (1953) and treat the multivariate
allocation problem as a multi-objective problem. We extend the theoretical result in Folks
and Antle (1965) by giving a (necessary and sufficient) characterization of all Pareto optimal
points. Moreover, in contrast to earlier publications, we solve the problem while respecting
integrality and box-constraints. We compute the set of Pareto optimal solutions, the so-called
Pareto frontier, for this refined problem formulation which allows decision makers to choose
a personally specified preference from this set.

The solution of allocation problems under the box-constraints (3) may yield non-differentiable
points and many standard algorithms, such as classical Newton techniques, may fail to provide
the correct optimal solution. To avoid convergence issues, we propose using the semismooth
Newton method (Münnich, Sachs, and Wagner 2012a and Wagner 2013). Because stratum-
specific sample sizes are integer values, we also provide an alternative algorithm to derive a
multivariate optimal allocation in which all stratum-specific samples are integer-valued. This
strategy avoids rounding and is based on the integer optimal allocation techniques published
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in Friedrich et al. (2015).

Each scalarization for multivariate optimal allocation contains an additive linking of variances.
Due to the scaling of units of the variables of interest, the variances have to be standardized
for comparability. We present an alternative solution that extends the techniques published
in Schaich and Münnich (1993).

Finally, it is of great importance for practical applications to solve large problem instances in
appropriate time. Our methods solve multivariate optimal allocation problems with several
thousand strata within seconds and are reliable tools when dealing with real-world data.
This stands in contrast with other algorithms for multivariate allocation problems that are
generally computationally tractable for only a small number of strata. The computationally
efficient solution of large (integer) multivariate optimal allocation problems supplements the
theoretical discussion and certainly is another central innovation of our methods.

In Section 2, we use the method of box-constrained optimal allocation presented in Münnich
et al. (2012b) as a starting point to derive a generalized multivariate box-constrained optimal
allocation problem with various decision-making functions and standardization techniques.
Moreover, we establish the link between the multivariate allocation problem and the theory
of Pareto optimization. In Section 3, we provide efficient numerical algorithms for selected
variants of the developed problem. These are fast enough to solve even large problem instances
and avoid rounding the solution by finding the globally optimal integer-valued solution. In
Section 4, we present selected performance and simulation results based on the open AMELIA
household dataset (Alfons, Burgard, Filzmoser, Hulliger, Kolb, Kraft, Münnich, Schoch, and
Templ 2011, as well as Merkle, Burgard, and Münnich 2016).

2. Multivariate optimal allocation

2.1. Preliminaries

In a multivariate optimal allocation problem, several variables of interest are considered si-
multaneously. The resulting optimization problem has several conflicting objective functions.
Thereby, the correlation between the variables of interest, the variable types as well as the
purpose of the survey are decisive factors. The use of a scalarization technique is mandatory
to treat this conflict of objectives and to solve the optimization problem numerically. The
choice of a scalarization technique is not clear in advance, depends on the application, and
has a considerable influence on the solution of the problem.

The most intuitive scalarization technique is the weighted sum method, for which each objec-
tive is weighted and the weighted objectives are cumulated (Jahn 1986). Another widespread
technique is the epsilon-constraint method, which corresponds to minimizing the cost while
respecting variance restrictions (Ehrgott 2005 and Falorsi and Righi 2015). As we focus on
the minimization of the variance, we do not consider the epsilon-constraint method here.
Moreover, we propose a p-norm of the objectives (p = 1, 2, 4, 8,∞), which is discussed in Lin
(2005). Schaich and Münnich (1993) study the particular case p =∞ which is equivalent to
the so-called min-max method.

In addition to scalarization, standardization techniques are also important for standardizing
variances of various types of variables of interest. Schaich and Münnich (1993) suggest to
replace the variance of the estimators by the coefficient of variation to receive additively
comparable values. In order to retain the mathematical properties of the variance function,
we use the squared coefficient of variation

CV2(τ̂StrRS
Y ) :=

Var(τ̂StrRS
Y )

τ2Y

with the population total τY of variable Y for the (CV2)-standardization. Although the
principal effect is similar, squaring the coefficient of variation may lead to small differences
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in some settings. A drawback of using the squared coefficient of variation is the requirement
for the population total τY of variable Y , which is generally not given in advance and which,
as it is a ratio, is even more demanding than using only the proxies for the stratum-specific
variances.

Furthermore, we propose the alternative (opt) standardization, in which the objectives are
standardized by the unique univariate optimal allocations as standardization factors. The
standardized objective for the variable of interest Y is given by

opt(τ̂StrRS
Y ) :=

Var(τ̂StrRS
Y )

VaroptY

where VaroptY is the univariate optimal allocation for the variable Y computed, for example,
with the box-constraint optimal allocation by Münnich et al. (2012b). This standardization
technique reflects the relative loss for each variable under consideration when using the com-
promise allocation rather than the single variable optimized allocation. In contrast to (CV2),
an advantage of this technique is that the total τY of variable Y is not required. Moreover, if
S2
h has to be estimated, the uncertainty and blur of this estimation is symmetrically present

in the numerator and denominator of the objectives, and, thus, eliminated. Hence, a stan-
dardization by the univariate optimal variances results in a more robust multivariate optimal
allocation.

2.2. Methods of multivariate optimal allocation

The optimal allocation with respect to only one variable of interest Y with box-constraints
for stratum-specific sample sizes is given by (4). The simultaneous consideration of several
variables of interest Y1, . . . , YK yields the following multi-criteria optimization problem

min
n∈RH

+

(
Var(τ̂StrRS

1 ), . . . ,Var(τ̂StrRS
K )

)

s.t.

H∑

h=1

nh = nmax

mh ≤ nh ≤Mh ∀h = 1, . . . ,H

(5)

where

Var(τ̂StrRS
k ) =

H∑

h=1

N2
h(Skh)2

nh

(
1− nh

Nh

)

with H cross-classification strata, stratum sizes Nh, and stratum-specific variances (Skh)2 given
for each stratum h = 1, . . . ,H and variables of interest k = 1, . . . ,K. To prove the existence
of a solution, we refer to Jahn (1986, Theorem 6.3). The multivariate allocation problem
(5) can be reformulated as a single-objective optimization problem with objective function
f : RH+ → R+ by combining the K original objective functions in one scalar expression. In
this scalarization the objective functions are also standardized to make them comparable.
Next, we explain the standardized scalarization in detail.

Weighted sum scalarization

Using the weighted sum scalarization method, we obtain the objective function f given by

f(n) :=
K∑

k=1

wk
Var(τ̂StrRS

k )

αk

=

K∑

k=1

wk

∑H
h=1

N2
h(S

k
h)

2

nh

(
1− nh

Nh

)

αk
,

(6)
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which depends on externally given weights w1, . . . , wK ∈ R+ with
∑K

k=1wk = 1. Using the
squared coefficient of variation as a standardization method, factor α ∈ RK is defined by
αk := τ2k for all k = 1, . . . ,K. Alternatively, if we apply the single unique optimal allocations
as a standardization technique, we set αk := Varoptk for all k = 1, . . . ,K.

Alternative scalarization techniques

Alternatively, by using the p-norm (p <∞) as scalarization method, we obtain the objective

f(n) :=




K∑

k=1



√

Var(τ̂StrRS
k )

αk



p 


1
p

. (7)

If we define f by the 2-norm, it is equivalent to the weighted sum with equal weights. Finally,
using the min-max method, f is given by

f(n) := max
k=1,...,K

√
Var(τ̂StrRS

k )

αk
. (8)

Properties of the objective function

In the case of the weighted sum scalarization, the objective function f in (6) is continuously
differentiable, strictly convex, and separable (Münnich et al. 2012b). These properties are
essential for the fast algorithms presented in Section 3. If the alternative scalarization methods
are used, f changes and may loose some of these properties. In particular, the objective f in
(7) is continuously differentiable and strictly convex, but only separable if p = 2. If f is not
separable, as in the case p 6= 2, special attention must be paid to the selection of the solution
algorithm.

Furthermore, for p = ∞ the objective (8) is not continuously differentiable. However, many
classical optimization methods, such as the Newton method, rely on differentiability and are
not applicable in this case. For more details we refer to Section 3.

2.3. Weighted sum and Pareto optimization

The scalarization by the weighted sum fits in the theory of Pareto optimality. When opti-
mizing competing objectives, the Pareto frontier describes the set of all efficient solutions in
the sense that for all points in the frontier one objective can only be improved by diminish-
ing another. Therefore, the Pareto frontier gives a very suitable characterization of all those
points decision makers should consider in a multi-criteria optimization problem. On the other
hand, it is not advisable to choose an allocation which is not on the Pareto frontier, because
it could be improved without cost.

Moreover, the Pareto frontier describes the optimal solutions independently from the weight-
ing, that means independently from the ranking of the variables of interest by decision makers.
Instead of determining the ranking in advance, our method allows users to select a preferred
solution among all Pareto optimal points after the optimization step. Advantages of this pro-
cedure are the ability to optimize without a known priority ranking of the variables of interest
and the possibility to use additional information at the time of decision, for example variance
structures or sensitivity, and the robustness of the solution with respect to the weights.

We describe the entire frontier of Pareto optimal solutions to the multivariate allocation prob-
lem (5) mathematically in Appendix A and extend the results by Folks and Antle (1965). We
prove that each optimal solution of the weighted sum reformulation for an arbitrary choice
of weights is a Pareto optimal solution for (5). Moreover, if we solve the weighted sum prob-
lem for all possible choices of weights, we obtain all Pareto optimal solutions of the original
problem (subject only to the discretization of the weights). This way, we compute the whole
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Pareto frontier of the multivariate allocation problem. We refer to Sections 4.2 and 4.3 for
computation algorithms of the Pareto frontier, their implementation, and exemplary numer-
ical results.

2.4. Multivariate optimal integer allocation

So far, we have ignored the requirement that the calculated stratum-specific sample sizes
in an (univariate or multivariate) optimal allocation problem have to be in the set of non-
negative integers for almost all application problems because, for example, a fraction of a
person cannot be drawn in a sample. In general, the solution of the allocation problems in
continuous variables presented in Section 2.2 is not an integer but a fractional number. In
practical applications this problem is commonly solved by a rounding strategy in the post-
processing of the results. However, a rounded solution obtained this way is in general not
an optimal solution in the set of all integral solutions as in the example data presented in
Section 4.4. Therefore, we also discuss an algorithm for the computation of the globally
optimal solution in integer variables.

3. Algorithmic solution of allocation problems

In this section we present two efficient algorithms for the numerical solution of (5) in contin-
uous and integer variables. The strict convexity and separability of the scalarized objective
function f is crucial for the correctness of both algorithms. Concerning the scalarization and
standardization techniques presented in Section 2, f is only separable for the weighted sum
or the 2-norm but not for the other p-norms or min-max.

3.1. Semismooth Newton

The algorithm is based on developments and derivations published in Münnich et al. (2012b)
who consider a univariate optimal allocation problem with box-constraints. After scalarization
and standardization with the techniques described in Section 2, it is also applicable to the
multivariate problem. The main characteristic of the algorithm is to express the stratum-
specific sample sizes nh as a function of the Lagrange multiplier λ ∈ R by transforming the
Karush-Kuhn-Tucker optimality conditions. Then, the expression for nh(λ) is substituted
into the equality-constraint of the original problem, which leads to a one-dimensional system
of equations depending on λ

Φ(λ) :=
H∑

h=1

nh(λ)− nmax = 0 (9)

with nh(λ) := Proj[mh,Mh]

(
S2
hN

2
h

λ

) 1
2
, where Proj[mh,Mh]

denotes the projection into the inter-

val [mh,Mh]. Due to this cut-off, Φ is not continuously differentiable. Nevertheless, Qi and
Sun (1993) show semismoothness for Φ. Münnich et al. (2012b) suggest a fixed-point itera-
tion to solve (9). We chose a semismooth Newton method because it allows for additional
generalizations. For a detailed presentation of the semismooth Newton method in the context
of survey statistics, we refer to Münnich et al. (2012a).

It is also necessary to solve non-separable settings of the continuous allocation problem for
a complete comparison of the methods in Section 4. These instances are solved with the R

package nloptr (Ypma, Borchers, and Eddelbuettel 2014).

3.2. Solution as integer optimization problem

As in the continuous case, the multivariate optimal integer allocation problem is algorith-
mically tractable whenever the objective function f is separable and convex. The problem
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reduces to a single-objective optimization problem and algorithms developed for the univariate
allocation problem can be applied directly.

Friedrich et al. (2015) present three algorithms for the problem that use the fact that the
minimization of a separable and convex function is polynomially solvable in integer variables if
the feasible set is a so-called polymatroid, which is a convex polytope with strong combinatorial
properties. An exhaustive discussion of the mathematical background is given in Friedrich
(2016). The algorithms are based on so-called Greedy strategies and find the globally optimal
integer solution.

In the case of convex objective functions that are not necessarily separable, the problem can
still be reformulated as a single-objective integer optimization problem, but the fast Greedy
algorithms do not find the optimal solution. Nevertheless, it is possible to solve these more
general problems with the help of a reformulation as linear integer problems (Hochbaum
1995). A reformulation of this type has been solved with the commercial software FICO
Xpress Optimization Suite in Friedrich et al. (2015) with the result that computation times
worsen significantly (many hours instead of seconds). Therefore, we do not solve the integer
version of the non-separable problems in Section 4.

4. Simulation study and results

We use the synthetic AMELIA dataset (Merkle et al. 2016) for a simulation study to verify and
compare the presented methods. It is a household dataset reflecting the household structure
of Europe containing 3 781 289 households and 10 012 600 individuals. We use the household
structure with stratification levels districts (DIS – 40 strata), household size (HHS – 6 strata),
and degree of urbanization (DOU – 3 strata). This results in 40 ·6 ·3 = 720 cross-classification
strata. As variances have to be compared, cross-classification strata with a total size of Nh < 2
are eliminated, so that the simulation only contains 676 strata. The size distribution of the
676 strata is shown in Figure 1 clustered by the classes of household size. Classes 1 up to 5
contain households with the respective number of persons, class 6 contains households with
more than five persons.

class 1 class 2 class 3 class 4 class 5 class 6
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Figure 1: Size distribution of the 676 cross-classification strata clustered by the classes of
household size.

We choose the total household income (INC), the social income (SOC), and the age of the
main income earner (HAGE) as variables of interest. The social income of a household is
defined as the sum of unemployment, old-age, survivors, sickness, disability, and education-
related benefits of all people within the household, see Merkle et al. (2016). Although the three
variables of interest are all continuous, our method is applicable to proportions of categorical
variables as well.

The correlations within each district are presented in the boxplots in Figure 2. The corre-
lations over the population are depicted as vertical lines. In particular, concerning variable
HAGE, we observe some differences between the overall correlation and the separated district
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correlations.
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Figure 2: Boxplots of the correlations of the variable of interest per district in contrast to the
total population (vertical lines).

We compare the estimates under various settings with the relative mean squared error (RMSE).
Because the sampling design is stratified random sampling, the estimates are unbiased and
the RMSE comparison is equivalent to the variance comparison (Lohr 2010, chapter 2). Since
the AMELIA dataset is used, the true values of the RMSEs can be computed directly for
the comparative analysis rather than the Monte Carlo equivalences. Furthermore, most of
the following figures and graphs do not contain absolute values of errors, variances or sample
sizes, but relative values compared to the case of an independent univariate optimal allocation
of the three variables of interest.

4.1. Comparison of variances depending on the decision-making strategy

In the following, we compare the results of the four decision-making functions 2-norm, 4-
norm, 8-norm, and min-max as well for the (CV2)-standardization and the alternative (opt)-
standardization presented in Section 2.1. The variance functions for each variable of interest
have equal weights in these settings and, as pointed out before, the 2-norm is equivalent to
the weighted sum with equal weights.
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Figure 3: Relative change of RMSE for the estimated population totals for various standard-
ization and scalarization techniques.

In Figure 3 we show the relative increase of the RMSE for the total population estimates of
the three variables of interest compared to the optimal univariate allocation computed by the
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method of Münnich et al. (2012b). For a better visibility, the 4-norm is not displayed in the
figure. Its graph is between the graphs of the 2- and 8-norm. As every univariate optimal
allocation is optimal, the RMSEs have to be higher or equal in the multivariate case compared
to the univariate RMSEs. As a consequence, the graphs in Figure 3 are located on or above
the horizontal one-line. In the settings with (CV2)-standardization, the error-increases are
not well balanced. Because

CV2(τ̂StrRS
SOC ) > CV2(τ̂StrRS

INC ) > CV2(τ̂StrRS
HAGE)

for all appropriate allocations, the increase of the RMSE is smallest in variable SOC. In the
min-max case (p = ∞), the increase for SOC is zero, which means that the multivariate
optimal allocation is equal to the univariate optimal allocation with respect to SOC.

In contrast, we observe a well balanced increase of the RMSEs for the (opt)-standardization
because the p-norm of the relative change of the variances compared to the univariate optimal
allocations is minimized. This results in a well compensated allocation. For p =∞ we obtain
an almost equal increase.

In Figure 4 we plot the same settings as in Figure 3, but the RMSEs of the subtotal estimates
of each of the 40 districts are presented. As before, the errors are illustrated relative to the
errors when using the univariate optimal allocations. Dots which are located to the right of
the vertical one-line correspond to subtotal estimates with an increase of the district specific
RMSEs. Accordingly, dots to the left of the one-line correspond to estimates with a decrease.
Again, the settings with the most compensated errors are those corresponding to the (opt)-
standardization. Although the RMSEs in Figure 3 are higher than the univariate RMSEs, the
multivariate allocation also leads to error-decreases in some districts, shown as points located
to the left of the one-line in the boxplots.
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Figure 4: Relative change of RMSE for the estimated district totals for various standardization
and scalarization techniques.

Figures 3 and 4 show that the (CV2)-standardization and a scalarization with a larger p
accentuate single variables, in particular those with a comparably high CV. This contrasts
compensatory methods which may be preferable in cases where no most important variable
is obvious.
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4.2. Comparison of variances depending on the chosen weights

Predefined weights

Here, we focus on the weighted sum as decision-making function. As illustrated in Section 2.3,
this decision-making function facilitates the computation of the whole set of Pareto optimal
solutions. We plot the relative increases of the district specific RMSEs for ten combinations
of weights for the (CV2)-standardization in Figure 5 and for the (opt)-standardization in
Figure 6. The relative error-increases of the total population estimates are comparatively
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Figure 5: Relative change of the RMSE for the estimated district totals for ten combinations
of weights with (CV2)-standardization. Red boxes correspond to a weight of 0.00, orange
boxes to a weight of 0.33, and yellow boxes to a weight of 0.67 for the respective variable.

shown as vertical lines. The settings in row one, nine, and ten are equal to the univariate
optimal allocations with respect to one of the three variables of interest, which is why the
boxplots for the corresponding variables have no spread. In most cases, higher weights coincide
with lower estimation errors of the district totals. Nevertheless, this coincidence is not a
general statement and depends, among others, on the correlation structure of the variables
of interest. Comparing the results of Figures 5 and 6, we observe more compensated error-
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Figure 6: Relative change of the RMSE for the estimated district totals for ten combinations
of weights with (opt)-standardization. Red boxes correspond to a weight of 0.00, orange boxes
to a weight of 0.33, and yellow boxes to a weight of 0.67 for the respective variable.
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increases over all variables and all districts using the (opt)-standardization than using the
(CV2)-standardization. For example, in Figure 5 the variable SOC is dominant. If SOC
is assigned any weight higher than zero, the increase in the error of the estimates is low
for SOC, but high for the other variables of interest. This effect does not occur for the
(opt)-standardization and the particular weight combinations w = (1/3, 1/3, 1/3) and w =
(0, 1/3, 2/3) in Figure 6.

Pareto optimization

To obtain a characterization of the Pareto frontier, we compute the multivariate optimal
allocations for all possible combinations of weights with a resolution of 0.1.

In the heatmaps in Figure 7 we plot the increase of the variances of the total estimates with
respect to the univariate optimal allocation variances. Each dot represents one combination
of weights. The percentage weight for each separate variable is marked on the related axis.
In consequence of the scaling resolution of 0.1, the dots which represent the equal weighting
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Figure 7: Relative increase of the variances of the population estimates under (CV2)- and
(opt)-standardization for 66 combinations of weights for each variable of interest. The per-
centage weight for each separate variable is marked on the related axis.

w = (1/3, 1/3, 1/3) and the weighting w = (0, 1/3, 2/3) are not contained in the heatmaps.
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However, they can be accurately approximated by the surrounding dots. Blue dots are favor-
able because they represent combinations of weights with a lower increase of the variances. For
example, the minimal variance for variable INC is located at the vertex where variable INC is
given the full weight 1.00. The variances differ depending on the choice of the standardization
strategy.

A similar behavior between the variances of INC and SOC can be observed because of their
positive correlation of 0.27. In addition to that, the correlation between HAGE and INC
as well as HAGE and SOC is smaller, which results in a higher error-increase of the total
estimate of HAGE, even for roughly equal weights. Similarly to Section 4.1, the setting with
(opt)-standardization is more balanced in the overall comparison of the heatmaps.

The structure of the heatmaps in Figure 8 is equivalent to Figure 7, but the cumulated error-
increase of the total estimates of the three variables of interest is plotted. In the case of the
(CV2)-standardization, the best choice is an asymmetric weighting. In contrast, the setting
with (opt)-standardization is more balanced, so the best choice has roughly equal weights.
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Figure 8: Relative cumulated increase of the variances of the population estimates under
(CV2)- and (opt)-standardization for 66 combinations of weights. The percentage weight for
each separate variable is marked on the related axis.

By Theorem A.1, each dot in the heatmaps represents the variance of one Pareto optimal
solution. To be precise, the dots along the edges (where at least one weight is zero) are
weakly Pareto optimal. Combining the heatmaps of the three variables of interest in one
plot, we can display the Pareto frontier in Figure 9. Each dot in the three-dimensional space
represents one Pareto optimal solution. Each of the three axes represents the error-increase
for the corresponding variable. As already observed before, the (opt)-standardization results
in a more balanced Pareto frontier.

1.02 1.08 1.141.00
1.12

INC

●●●●
●●

●●●
●●●

●●
●

●●
●

●
●

●
●

●●
●

●

●●
●

●

●

●

●
●

● ●

●
●

●
●

●

●

●

●●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●●●

●
●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●

●

●●

●●●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●

●
●
●●

●

●

●
●

●

●●

●

●●●●

●

●●

●

●●●

●

●

●

●●●●●●●

●●

●●

●

●

●

●

●

●

●
●●●●●

●

●

●●●●●

●

●

●

●

●

●

●

●●●●

●

●

●●
●

●

●

●

●

●

●

●

●●
●●●●

●

●●

●

●

●

●

●●●

●

●

●●●
●

●

●

●

●●●●

●●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●
●●

●

●●

●

●

●●●
●
●●

●●

●

●

●●
●

●
●●
●

●

●

●

●

●
●
●●
●
●●

●

●

●

●

●

●

●

●
●●●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●

●●●

●
●

●

●
●

●

●●●

●

●

●

●●●●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●●
●●
●●
●●
●
●●●
●
●

●●

●●

●

●

●●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●
●
●●●●
●
●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●●●●●

●

●●

●

●

●●●

●

●

●

●

●

●●●●

●

●
●

●

●
●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●●●
●●
●●

●●●●

●

●●●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●

●

●
●
●●●
●
●
●●
●
●
●
●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●
●
●

●

●
●
●●

●●

●

●●●●
●

●●

●

●●●

●

●●●

●●

●

●

●●●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●●

●
●

●

●

●
●

●

●
●

●●
●
●●
●

●

●

●

●●

●

●

●

●●
●
●

●●●●

●
●

●●●●●

●

●

●●●

●

●

●

●
●

●●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●
●●

●

●●●

●

●

●●

●●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●●

●

●●
●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●
●●●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●
●

●

●
●
●●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●●

●●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●●

●●

●●

●

●
●●

●●
●●●
●
●

●

●
●
●●

●
●
●●
●●●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●●

●

●●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●●

●
●
●
●

●●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●
●

●

●
●
●
●

●

●

●

●

●

●●

●
●●

●●

●

●

●

●

●●
●

●

●

●

●●●
●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●
●

●

●●
●

●

●
●

●●

●

●●

●

●

●

●●
●●
●

●

●●●●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●●●
●

●

●

●

●●
●

●

●

●

●
●

●●
●

●●

●

●

●
●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●●

●●
●
●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●
●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●

●

●
●
●
●

●

●
●●
●
●

●

●

●

●

●

●

●
●
●

●
●●

●

●●●

●●

●
●
●

●●

●●●

●
●

●

●●
●●●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●●●●●

●

●●

●

●

●
●

●
●
●

●

●

●

●
●

●●●●●
●

●

●
●

●
●
●●
●●●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●
●●
●●●

●

●

●

●

●

●●●

●
●
●

●

●

●

●

●

●●●

●●
●

●
●●

●
●
●●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●●

●
●●
●

●
●

●

●●

●

●

●

●●●

●

●

●
●
●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●●●
●
●

●
●
●
●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●●
●
●

●●●

●

●
●
●●

●●

●
●

●
●●

●

●●
●

●
●

●●

●
●
●
●
●●●
●

●

●

●

●
●

●●

●

●●
●
●●

●

●
●

●

●●
●

●●

●

●
●

●

●
●
●

●●
●

●
●

●
●

●●

●

●

●
●
●●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●●
●●

●

●
●
●●●
●
●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●
●

●●●●

●
●

●●

●

●●
●

●
●

●

●●●
●●
●●

●
●

●
●

●

●●
●

●

●

●●●●●●●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●●●

●●

●

●

●

●
●

●

●●

●

●●

●

●

●●●●●●

●

●●●
●
●●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●
●
●
●●

●
●
●●●
●

●
●

●

●●

●
●

●●
●

●
●

●

●
●

●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●
●
●

●
●
●

●●●

●
●

●

●

●
●

●
●
●

●

●●

●
●
●

●

●

●
●

●

●●

●
●

●

●
●

●●

●

●●

●
●

●
●

●
●

●

●
●

●

●●

●

●
●
●
●

●●●

●●●●
●

●●●

●
●●
●●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●●

●●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●●

●

●●

●

●
●●

●
●

●

●●

●

●

●

●

●
●●
●
●

●

●
●
●

●

●●

●
●●
●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●●

●
●

●
●
●
●
●

●

●●●

●

●●

●●●

●

●

●●

●

●●

●●

●
●

●

●

●●●

●●

●

●

●

●
●

●
●●
●
●

●

●●●
●●●
●

●

●

●
●●

●

●

●

●

●●●
●

●
●●

●
●

●●
●●●●
●●
●

●●
●
●
●
●

●●
●

●

●

●
●
●
●●

●

●

●●●

●●

●

●
●●

●

●

●●

●●
●
●

●

●

●

●

●
●
●
●

●

●●

●●

●●
●

●

●

●
●●
●

●

●●●

●●

●

●
●●●

●

●
●

●

●
●●

●

●
●
●
●
●

●
●●●●●●

●●

●

●
●
●●

●●
●

●

●

●●●●
●

●
●

●

●

●

●

●●
●●

●

●

●
●

●

●
●

●
●

●

●

●

●●●●

●

●●

●●
●●

●
●
●

●

●

●●
●
●

●●

●●

●

●
●

●
●●

●

●
●
●●

●
●

●

●●●●
●
●

●

●

●

●●●
●

●

●

●
●●

●

●

●
●

●●

●●

●

●

●

●

●●

●
●
●

●●

●

●
●●●
●●

●
●
●

●
●

●

●
●

●
●

●●●
●

●

●●
●●
●

●

●
●
●●
●

●
●●

●

●
●●

●●
●

●

●

●

●

●

●●●

●

●●

●
●

●

●●
●●●●●●
●

●
●

●
●

●

●

●

●
●

●●

●●

●

●

●●
●●●●

●

●

●
●

●●
●
●
●
●

●●
●

●

●●
●

●

●●

●●●

●

●●

●

●●●●
●●●●●
●

●●
●

●
●

●

●

●
●●●
●
●

●●●

●●

●

●

●●

●

●
●
●●

●

●

●

●
●
●
●
●

●

●●
●

●
●●●

●●●
●●●●●●
●●
●
●●
●●●

●●●●●
●

●

●●●●●●
●

●

●

●●

●●●

●
●
●
●●

●

●●

●

●

●
●

●

●●●●
●
●●

●●●
●

●

●

●

●●

●

●●
●

●

●

●●●
●
●●●●●

●●●●
●●

●

●
●

●●
●
●●
●

●●●●●
●

●
●
●

●●●
●
●

●

●
●
●

●

●

●●●

●●●●●
●

●●●

●
●

●

●●
●
●●

●●●●●

●●●●●

●

●
●
●

●●

●

●

●
●

●

●●
●●●

●
●

●

●●
●

●●

●
●

●

●
●

●

●

●

●

●

●●●●●
●

●

●●●●●

●●●●

●
●

●
●

●
●

●

●●●●●●
●●

●
●

●

●●●●

●

●●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●●
●

●●●

●●
●
●

●●

●

●●
●
●

●

●●●●

●●

●
●●●

●
●

●●

●

●

●
●

●●
●

●
●

●●
●

●
●

●
●●●
●

●●●

●

●
●
●

●●
●
●●

●●

●●●●
●●●●●

●●●●

●●●●
●

●●●

●●
●●

●
●

●

●
●●

●●

●

●
●

●

●

●
●●

●
●●

●●
●

●
●

●●

●

●
●

●
●

●
●

●
●●●
●●

●
●

●
●

●●
●●

●
●
●●

●
●
●
●

●

●

●●
●
●

●●

●●●
●

●
●●

●
●

●●

●●●

●●●
●

●
●●

●●

●
●

●

●
●
●●

●
●●
●

●●●●●

●●●●●●

●

●
●●

●
●●

●
●●●

●
●●●

●●●●
●●

●

●●

●●
●
●
●●

●●●●
●
●

●●

●
●●

●●●●●●

●
●
●

●●
●●

●●
●●●●

●

●●●

●●●

●

●
●

●●
●

●●

●

●

●

●
●●
●
●●

●●●

●

●
●

●●●

●
●
●●●●

●
●●

●●

●
●

●
●

●●●●●
●
●
●
●●

●

●

●●
●
●

●
●

●●
●

●●

●●
●

●●
●

●●

●
●●

●
●●

●
●
●●●

●
●

●●

●●

●

●●
●

●

●
●●

●

●

●●
●

●●
●●●
●

●●

●●
●●

●

●

●●
●

●●

●

●

●●●
●

●●●
●●●●●
●
●●

●●
●

●●
●●

●

●

●
●●●

●●

●●
●●
●●
●

●
●●

●●●

●●

●●

●●●
●

●●
●●

●

●
●●

●
●●
●

●
●
●
●●●

●●
●
●

●●●
●
●

●
●●

●●
●

●

●
●●

●●
●

●
●●

●
●

●●

●●
●●●

●●
●
●●●

●●●●●
●●●
●
●●
●●●

●
●
●

●

●
●

●
●

●●●●
●●●
●●●
●
●●
●

●

●

●

●

●●●
●●●

●
●

●●

●●●
●

●
●
●

●●
●●●
●

●
●

●●
●
●

●
●●●
●
●

●●
●●
●●●
●

●
●●
●
●●
●●●●●
●●

●●
●

●
●●●
●

●●●

●●●●

●●
●

●
●●

●●
●
●

●●

●●●
●

●

●●

●●
●
●

●●●●●●●

●
●
●●●

●●
●●

●
●
●●●
●●
●●●

●
●

●●
●

●●●●
●●●
●●●●●●●

●

●●●●

●

●●●
●

●●
●●●●●●●
●

●
●
●●●●

●●
●●●

●●
●●●

●●●
●
●●●●
●

●

●●●

●
●
●

●

●●●●●●●

●
●●●
●●●
●●●●●
●●●●●

●●

●●●●●●
●

●
●●●●

●
●●

●●●
●●●

●●●

●●●

●
●
●

●●
●
●

●●●
●
●●
●●●●●
●●●
●●
●●●●●●●●●
●

●●
●●●●

●

●

●●●
●

●
●

●●●●
●●●●

●

●

●●●●●

●●●●●●
●●

●●●●
●●

●
●

●●●
●

●●
●●

●●●

●
●●

●

●
●●●
●●
●
●●●

●●
●

●
●

●

●

●

●
●●●●

●
●●●●●
●●
●●●
●●●
●●●

●●●●●●

●
●●●
●●●

●
●●
●
●
●

●
●

●●●●●
●
●
●●●

●●●

●●
●●

●
●
●

●●●●●●●
●

●●●●●
●●●●

●●●
●

●●●
●

●●
●

●
●●

●●
●●●●●

●●
●

●
●●
●●●●
●●●
●●●●
●

●
●

●●●
●●●

●
●

●●●●●●●●
●

●
●●●●●
●
●

●●
●

●
●

●
●●●

●●●
●●●

●●
●
●
●●●●●

●●●
●●

●●●●●●●●
●●●

●
●

●●●
●

●
●●

●
●

●●●
●●

●●●●
●

●●
●●

●●●●●
●●

●●●●●
●

●●●●●●
●●
●

●
●●

●
●●

●●●
●

●
●●
●●
●●●

●
●●●●●
●●●

●●●
●●
●●●
●
●●●

●●
●●●●

●
●

●
●●●●●●●●

●●
●●

●
●

●
●

●
●

●●
●●

●●●●
●●
●●●
●
●

●●●
●
●●●●●

●●●●●
●●●●●●●
●●

●
●●●●●
●●●●●●

●●●●●●●●●●●
●●
●●●●●

●●●●●●
●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●●
●

●
●●●●●●●●●●●●●●●●
●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●
●

●
●●

●●●
●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●
●

●
●●●●
●

●●●
●
●●

●
●●

●
●●●●●●●

●●●
●●●

●
●

●
●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●

●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

SOC

HAGE

1.02

1.06

1.12

Pareto frontier using
 the (CV2)−standardization

1.02 1.08 1.141.00
1.12

INC

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●
● ●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●
●●●●● ●●●●●●●●●●● ●
●

●●●●●●●●● ●●●●●● ●●●
●● ●●●●●
●

●●●● ●●●●●●●●●●●●●●●●●●●●
●●
●

●●●●● ●●●●●
●

●●●
●●●●

●●●●● ●●●●●
●●

●●
●

●●● ●
● ●●●●●● ●●
●

●●●
●● ●●●●●●
●● ●●●●●●●●●●●●

●●●●● ●●● ●●●●●●●●●
●●●●●●●●●●●●

●●
●●●●● ●●●●● ●

● ●●
● ●●●●
●

●●
●

●●●●● ●●●
●● ●●
●●●●● ●●●

●
●

●
●●●

●●●●●●● ●●●
●

●●●●●●● ●●●●●●●
●●●●●

●●● ●
●

●●●●●●●● ●●● ●● ●●●●● ●●●●●
●●

●● ●●●
●

●●
●

● ●
●●●●●●●

●●
●●●●●●●●●●●●●●●
●●●●●●● ●● ●●●● ●
●

●
●

●● ●
●

●●●●●
●●●●●●
●

●●●
●●●

●●●●●●●●●
●●

●●● ●●●●●●●●●
●●●● ●
●

●●●●●●●●●●● ●
●

●●●●●●●● ●●
●●●●●●
●

●●
●●●●
●

●●● ●●
●●

●●●●
●●●●●

●
●

●
●●●●● ●

●
● ●●

●
●

●
●●●●

●● ●●●●●
●●●

●
●●●●●

●
●

●
●●●

●
●●

●●
●●

●
●●●● ●
●●●● ●●●●●●●

●
●●●

●●●●● ●●●●●●
●

●●
●●●●

●●●●
●

●●●●
●●●●●

●
●●

●
●●

●
●

●
●●

●●●
●●●●●●
●●

●
●●●

●
●● ●●●●●●●●

●
●●●

●● ●●
●●●●●●●
●●

●
●

●●
●

●
●

●● ●
●

●
●

●●
●

●●
●

● ●●
●

●
●

●
●

●●●
●●

●●●●●●●
●●

●●
●

●●●●
●

●●
●● ●

●●●
●●

●
●

●
●

●
●●●

●
●

●●
●

●●
●●●
●●●●

●
●●

●●●
●

●●●
●●

●●●●
●●●●

●●
●●

●●
●●

●

●●
●●●●●●●

●
●●● ●●

●

●●
●

●●●●
●●

●●

●

●
●●

●
●●

●
●●
●

●●
●●●●●

●●●
●●●●● ●●
●

●●
●

●

●
●

●●●●
●

●●● ●

●
●

●
●●

●
●

●●

●

●

●
●

●●
●●●
●

●●●●●
●

●●
●

●●
●

●
●

●
●

●
●

●
●●

●●
●

●
●●

●●

●●
●

● ●
● ●●

●
●

●
●

●
●●

●
●

●●
● ●

●
●●●●

●
●

●●●

●

●●●●
●●

●

●●
●

●●
●●

●

●

●●
●

●
●

●
●●●●●●●●
●

●●

●

●●●

●
●

●●●●●

●●

●●
●●

●

●
●●●●

●●
●

●
●

●●

●●
●●

●

●●
●

●

●
●●

●●
●

●●

●
●●

●●

●

●
●

●

●●

●●

●●●●●
●

●
●

●

●●
●

●●

●
●●●●

●

●
●●●●

●●●●●

●
●

●
●

●
●

●

●
●●●●●●

●
●

●

●●
●●

●

●
●

●
●

●
●

●●●●●●
●

●
●

●
●●●

●

●
●

●●

●

●●

●●●●
●

●
●

●

●
●

●
●●●●●
●

●
●●●●●●●

●●
●●●

●
●

●

●●
●

●
●●

●●●●●●●●●●

●

●

●●

●
●

●

●
●

●●●
●●

●
●●

●●●

●

●
●

●●●
●

●
●●●

●●●●●
●●●

●
●

●●

●

●●●●
●●●

●

●●

●●●●●●●

●

●
●

●●●

●●

●●
●●●

●●●●
●●●●●●●

●
●

●
●

●●
●

●●●

●

●

●
●

●

●
●●●

●●●●

●

●●●
●

●●●
●

●●

●

●
●

●●●

●
●

●
●

●
●●

●

●

●
●

●

●
●●●

●
●●

●

●●●
●●

●
●●●

●
●●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●●●●●●●●

●

●●
●

●
●●●
●

●●● ●

●●

●●●
●●●

●
●

●

●

●

●●●●
●

●

●
●

●
●●

●● ●

●
●

●

●
●

●●●●●

●

●
●

●
●

●●●

●

●●

●

●
●

●
●

●
●●●

●

●
●

●●
●●●●

●●●

●

●
●

●●●●
●

●●●

●

●
●●

●

●

●

●●●●

●
●

●
●

●

●

●

●●
●

●●●
●

●●●● ●●

●

●

●

●

●●
●

●
●●●●

●

●
●●

●●●
●

●●
●

●●●

●
●

●
●●●

●●●

●

●●●

●

●

●

●●
●

●●●●●●

●
●

●
●

●●
●

●
●

●

●

●
●●

●
●

●●

●
●

●

●●●●

●●
●●●

●
●

●

●
●

●●

●

●●
●

●
●

●●
●

●

●●●●●● ●
●●

●●

●

●

●
●●

●●
●

●

●

●

●

●●

●●
●●

●●
●

●
●

●

●●●

●

●

●

●

●
●

●
●

●●

●

●●●
●

●●

●●
●

●

●●●●
●

●
●

●●●●

●
●●

●
●●●

●
●

●

●●●
●

●

●●
●

●
●

●
●●
●

●

●

●●●●●●

●

●

●

●●●
●●

●●●●

●

●●
●

●

●
●

●

●

●

●

●●
●

●

●●
●

●●
●

●
●
●

●

●●●●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●
●●●

●●●●●●
●

●
●●

●

●

●

●

●

●●

●
●●●

●

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●●
●

●

●

●

●●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●

●

●

●

●
●

●●●

●
●

●
●
●
●

●

●

●

●

●
●

●

●

●

●●
●●

●
●

●

●

●

●
●●

●

●
●

●

●●●●
●●

●

●
●

●●

●

●●
●

●

●

●
●

●

●

●
●

●●
●

●

●
●

●●

●

●●
●

●

●

●

●

●
●

●●●

●
●●

●

●
●●

●
●

●

●

●●●

●

●
●

●

●
●●●

●

●

●

●
●

●

●●

●
●

●

●
●

●●●

●
●

●

●

●
●
●

●

●
●●

●

●

●

●

●
●

●

●●

●

●●

●●
●

●
●

● ●●●●

●

●

●
●

●●
●

●● ●

●

●●
●●●
●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●●

●

●●

●

●
●

●

●●
●

●
●

●
●

●
●

●

●

●
●●

●●

●●

●●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●●
●●

●●

●

●
●
●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●●●●

●●
●

●
●

●

●●
●

●
●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●●●

●

●
●

●

●
●●●

●
●

●

●

●

●

●

●
●

●
●
●

●
●

●

●
●

●

●

●●●●
●

●
●

●●●●

●

●

●
●
●

●

●
●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●
●

●●●●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●●●
●

●
●●●

●
●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●●●

●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●●
●

●

●

●

●
●●

●

●
●

●
●

●

●●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●●
●
●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●●

●

●●●
●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●●
●

●

●

●
●

●

●●

●

●

●
●

●●

●
●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●●●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●●●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●
●●●

●●

●●

●

●
●

●

●

●

●

●

●●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●

●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●●

●
●
●

●

●
●
●

●

●

●
●

●
●

●
●

●

●●

●

●●

●

●
●

●

●

●
●

●●●

●

●●●
●

●

●●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●●●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●●

●

●●

●

●●●

●

●
●

●

●●●

●●

●

●

●

●●

●

●

●

●
●

●●
●
●

●

●●

●●

●

●

●●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●●●●
●●●
●

●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●

●

●
●●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●●

●●●●
●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●●

●
●

●

●●●

●

●

●
●

●

●●

●●
●●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●●●●
●●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●●●

●
●●

●●

●

●
●

●

●●

●

●●●

●

●●
●

●
●

●●

●
●●

●

●

●●

●●

●●
●

●

●
●

●●

●

●

●●

●
●

●●
●●

●

●
●●

●●

●

●
●

●●

●●

●●

●

●

●
●

●

●
●

●●

●

●

●

●●●

●
●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●●

●●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●●●

●

●
●●

●
●

●

●

●

●

●●
●●

●●

●●●

●

●
●

●

●

●

●

●

●
●

●●
●

●●
●

●

●

●●

●●●

●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●●

●●

●

●●●
●●

●●

●

●

●

●

●

●
●

●●
●
●

●

●●

●

●
●●

●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●●

●●
●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●●
●

●

●●

●

●

●

●●●
●

●

●●
●

●

●
●

●
●

●

●●

●
●

●
●

●

●

●●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●●

●

●●

●
●

●

●●

●

●●

●

●

●
●

●●

●●●
●

●

●
●

●
●

●

●
●
●
●

●

●●●

●

●

●
●

●
●

●●●●●

●

●

●

●
●●●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●●

●

●

●●
●

●

●

●
●

●●

●

●

●

●
●

●●●

●

●

●●
●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●●●

●●
●

●●●

●●

●
●

●

●●

●

●

●

●

●●●

●●

●
●

●

●

●
●

●
●
●

●
●●

●

●

●

●

●

●
●

●
●
●●●

●

●
●

●

●
●

●

●●

●

●

●

●●
●

●
●
●●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●●

●
●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●●

●
●●

●●
●

●

●

●●

●
●

●

●

●
●

●

●

●●

●
●●

●●
●

●

●

●

●

●●
●●●

●

●●

●
●

●
●●

●

●

●

●

●●●

●●

●

●
●

●●

●●

●

●●
●●●

●●●
●

●●
●

●

●
●

●

●
●●

●

●

●

●
●
●●●

●
●●

●

●
● ●●

●

●

●●

●

●
●●

●
●

●

●

●

●

●
●●
●

●●

●
●

●●

●●●●●●

●
●

●●●●

●

●

●

●
●

●●

●

●

●

●
●
●

●
●●

●

●●

●

●●

●

●●

●●
●

●

●

●

●
●●●●

●●

●

●

●

●●

●●

●
●

●

●●
●

●

●

●
●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●●

●
●

●
●
●

●

●●●

●
●

●
●
●●●

●
●

●●

●

●
●●●

●

●

●●

●●●

●

●

●

●

●●

●

●
●●●

●●
●

●

●
●

●

●

●
●

●●
●

●●

●
●●

●
●

●●

●
●

●

●

●●

●

●

●
●

●
●

●
●●●●

●
●

●

●●●

●

●●
●
●●●

●
●

●

●
●
●

●
●

●●

●
●●
●

●

●●
●
●

●

●
●

●●
●

●●

●

●●
●●●

●

●●
●

●●●

●

●●

●

●●
●

●

●●●●●●

●
●
●●●●●●

●

●

●●
●

●
●●

●●●●●
●
●●
●
●

●
●

●

●

●

●●●

●

●●
●

●●

●
●●
●

●●●●●●●
●

●

●
●
●●

●

●
●

●
●●●
●

●●

●
●

●

●

●
●●●

●

●
●

●
●●●●
●

●
●

●●

●

●

●

●●●●●
●

●

●

●
●●
●
●●

●

●
●
●

●●
●●

●●
●●
●●●

●
●
●●●●●●●

●
●

●
●●

●

●●●●
●
●●

●●●●●●
●●

●●
●●

●
●●●●

●
●

●
●

●
●●●

●●
●

●
●●●●

●
●●●●

●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

SOC

HAGE

1.02

1.06

1.12

Pareto frontier using
 the (opt)−standardization

Figure 9: Pareto frontiers for the (CV2)-standardization and (opt)-standardization.

The evaluation of these plots offers valuable support for the decision maker to select the
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preferred solution among all efficient solutions. By using the weighted sum and calculating
the Pareto frontier, the decision is based on a higher level of reliable information. This
contrasts using a p-norm that does not give the user the possibility to choose his preferred
solution.

As the computation of the Pareto frontier requires the solution of many optimal allocation
problems, it is only realizable in a practical time frame if efficient algorithms are used. We
show in Section 4.5 that our algorithms are fast enough to facilitate this analysis of the Pareto
frontier for multivariate allocation problems even for large problem instances. Moreover, this
finding holds for both the continuous and integer problem.

4.3. Comparison of stratum-specific sample sizes

In Figure 10 the stratum-specific sample sizes are presented on the district level. Each boxplot
contains the 40 districts and shows the relative change of the stratum-specific sample sizes
compared to the equal weighting w = (1/3, 1/3, 1/3) in line four.
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Figure 10: Relative differences in stratum-specific sample sizes of the districts.

On the one hand, there is a spread in the stratum-specific sample sizes depending on the
weights (up to 12%), which illustrates the effect of the chosen weighting on the structure of
the optimal allocation and the advantage of knowing the Pareto frontier. On the other hand,
we recognize clear differences between the (CV2)- and (opt)-standardization. The relative
changes of the sample sizes using (opt)-standardization is smaller.

4.4. Comparison of continuous and integer solution
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Figure 11: Absolute differences between district-specific sample sizes for rounded and integer
allocation.
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In Figure 11 we compare the rounded optimal continuous solution of the multivariate al-
location problem, computed by the semismooth Newton method, with the optimal integer
solution, computed by the Greedy method. We plot the cumulative differences in each dis-
trict exemplary for two combinations of weights and both standardization techniques.

The rounded sample sizes differ from the optimal integer sample sizes and the differences
vary from −2 up to +2 per district. The associated RMSEs are also different. This shows the
advantage of the integer optimal allocation – especially when considering that the computing
times of the continuous and integer solver are of the same magnitude (Friedrich et al. 2015).

4.5. Performance of the algorithms

All the numerical results are computed in R on a desktop PC with an Intel Core i7-6700 CPU
at 3.40GHz × 8 and an internal memory of 32 GB.

Münnich et al. (2012b) and Friedrich et al. (2015) show that the fixed-point iteration or semis-
mooth Newton method for the continuous problem as well as the Greedy algorithm for the
integer problem have huge advantages in computing time compared to the R package nloptr

which provides an R interface to the open-source library NLopt for nonlinear optimization.
However, as pointed out in Section 2.2, the separability of the objective function is mandatory
for these algorithms, so they can only be applied using a weighted sum or 2-norm as standard-
ization technique. The following results are based on the weighted sum setting with equal
weights w = (1/3, 1/3, 1/3) and (opt)-standardization. Neither the choice of the weights,
nor the selection of the standardization technique changes the numerical performance of the
algorithms significantly. The initial point λ0 for the continuous solvers is calculated as the
mean of the three separate univariate optimal stratum-specific sample sizes.

Table 1: Performance of the semismooth Newton algorithm compared to nloptr.

R package
nloptr

Semismooth
Newton

Computing time [ms] 6 801 1

Iterations 242 4

The performance of the semismooth Newton algorithm is shown in Table 1 and Table 2. Using
similar predefined precisions, we observe distinct improvements in computing time and the
number of iterations compared to the R package nloptr. Moreover, by analyzing column two
of Table 2, we can numerically confirm a quadratic convergence rate, which is proved (locally)
for the semismooth Newton method in Qi and Sun (1993).

Table 2: Convergence of the semismooth Newton algorithm.

Iteration i Residual ||Φ(λi)||2 Objetive f(n(λi))

0 2.0 · 102 6.0263 · 1012

1 6.1 · 100 6.1512 · 1012

2 6.0 · 10−3 6.1552 · 1012

3 5.8 · 10−9 6.1553 · 1012

4 1.3 · 10−11 6.1553 · 1012

For the computing times of the Greedy methods for the integer allocation problem we refer to
the detailed analysis in Friedrich et al. (2015), who, in particular, prove a worst-case bound
on the running time. The computing times are generally longer than those for the fixed-point
iteration in the continuous case, but still well below one second.
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5. Conclusion

The optimization of stratified sampling designs must consider many requirements, such as
conflicting variables of interest, cost restrictions, or the control of sampling fractions. This
results in a multivariate optimal allocation problem under constraints.

We have proposed several scalarization and standardization techniques for the efficient solu-
tion of multivariate allocation problems. Whereas the scalarization reflects the decision func-
tion when evaluating conflicting goals, the standardization of the variances yields a rescaling
of the variables fostering comparability. Furthermore, we have shown how the entire Pareto
frontier as the set of all Pareto optimal solutions can be computed. The major benefit is the
possibility of an a posteriori choice of a weighting scheme of the variables of interest, so that
the decision maker is able to incorporate additional information to achieve the application-
specific optimal allocation. As a further advantage, it is not necessary to a priori assess the
conflicting goals or rank the variables of interest. Additionally, we have observed considerable
differences in estimation errors and stratum-specific sample sizes when varying the weighting
schemes. We can underline the importance of the chosen scalarization, standardization, and
weighting in multivariate optimal allocation.

We have computed solutions for instances of the continuous and integer allocation problem
using the AMELIA dataset. This simulation study presents the algorithms comparatively,
underlines their advantages, and allows recommendations for their practical use. In contrast
to standard solvers, using the separability and convexity of the given problem yields a sub-
stantial increase in the numerical performance, which enables calculating the Pareto frontier
in high resolution. The integer algorithm avoids rounding. Moreover, the semismooth Newton
method supports extensions with more general restrictions.
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Merkle H, Burgard JP, Münnich R (2016). “The AMELIA Dataset - A Synthetic Universe
for Reproducible Research.” In YG Berger, JP Burgard, A Byrne, A Cernat, C Giusti,
P Koksel, S Lenau, S Marchetti, H Merkle, R Münnich, I Permanyer, M Pratesi, N Salvati,
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Münnich R, Sachs EW, Wagner M (2012b). “Numerical Solution of Optimal Allocation Prob-
lems in Stratified Sampling under Box Constraints.” AStA Advances in Statistical Analysis,
96 , 435–450.

Neyman J (1934). “On the two Different Aspects of the Representative Method: The Method
of Stratified Sampling and the Method of Purposive Selection.” Journal of the Royal Sta-
tistical Society, 97 , 558–625.

Qi L, Sun J (1993). “A Nonsmooth Version of Newton’s Method.” Mathematical Programming,
58 (1), 353–367.
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A. Appendix: Optimality in multi-criteria optimization

It is in general not possible to find all Pareto-optimal points for a multi-criteria optimization
problems by solving the weighted sum problem. In this section we analyze the weighted sum
method for the multivariate allocation problem mathematically. While the sufficient condition
of Theorem A.1 holds in a very general setting, see for example Folks and Antle (1965), this
is not true for the necessary condition of Theorem A.3. We assume that the reader is familiar
with the concept of optimality in multi-objective optimization and in particular with (weak)
Pareto optimality. We refer to Ehrgott (2005, chapter 2) or Jahn (1986, chapter 4) for a
detailed presentation.

Theorem A.1 (Sufficient Condition). Let D ⊆ RH and let fk : D → R, k = 1, . . . ,K.
For every optimal solution n̄ of minn∈D

∑K
k=1wkfk(n) with weights w ∈ RK , the following

statements hold.

1. n̄ is a weakly Pareto optimal solution for minn∈D(f1(n), . . . , fK(n)) if w ≥ 0.

2. n̄ is a Pareto optimal solution for minn∈D(f1(n), . . . , fK(n)) if w > 0.

Proof. Proposition 3.9 in Ehrgott (2005).

In what follows, we show that under convexity assumptions it is possible to find all Pareto
optimal points by solving a weighted sum problem.

Lemma A.2. Let D ⊆ RH be convex and let fk : D → R, k = 1, . . . ,K, be convex functions.
Then the set C+(f) := {(f1(n), . . . , fK(n))T |n ∈ D}+RK+ is convex.

Proof. Theorem 2.6 in Jahn (1986).

Theorem A.3 (Necessary Condition). Let D ⊆ RH be convex and let fk : D → R for
k = 1, . . . ,K be convex functions. Then, for each Pareto optimal solution n̄ of the problem
minn∈D(f1(n), . . .,fK(n)) there exist weights w̄ ∈ RK+ \{0} such that n̄ is an optimal solution

of the weighted sum problem minn∈D
∑K

k=1wkfk(n).

Proof. Using the convexity of the objective function, Lemma A.2 shows that the set C+(f)
mentioned in the lemma is convex. Using this property, the result follows directly from
Theorem 5.4 in Jahn (1986).

As the convexity assumption of Theorem A.3 holds for the optimal allocation problem for-
mulated in (5), we can apply the theorem and we have proved that (up to discretization) the
computations in Sections 3 and 4 describe the entire Pareto frontier of the problem.
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Abstract

By combining two types of uncertainty randomness and vagueness the concept of fuzzy
random variable was introduced in order to integrate fuzzy set theory into a branch of
statistical analysis called “statistics with vague data”. In this paper, a concept of fuzzy
random variable will be presented. Using classical techniques in Probability Theory, some
aspects and results associated to a random variable (including expectation, variance, co-
variance, correlation coefficient, fuzzy (empirical) cumulative distribution function) will
be extended to this notion of fuzzy random variable. This notion provides a useful frame-
work/results in order to extend statistical analysis to situations when the outcomes of
random experiment are fuzzy sets.

Keywords: fuzzy random variable, fuzzy expected value, fuzzy (empirical) cumulative distri-
bution function.

1. Introduction

Statistical data are frequently associated with an underlying imprecision due, for instance, to
inexactitude in the measuring process, vagueness of the involved concepts or a certain degree
of ignorance about the real values. In many cases, such an imprecision can be modeled by
means of fuzzy sets in a more efficient way than considering only a single value or category
(Zadeh 1965). Thus, these kinds of data are jointly affected by two sources of uncertainty:
fuzziness (due to imprecision, vagueness, partial ignorance) and randomness (due to sampling
or measurement errors of stochastic nature). Randomness models the stochastic variability
of all possible outcomes of a situation, and fuzziness relates to the unsharp boundaries of
the parameters of the model. As Zadeh (1995) states that “Probability Theory and Fuzzy
Logic are complementary rather than competitive”, clearly, a natural question is how fuzzy
variables could interact with the type of random variables found in association with many
real-life random experiments from different fields. In this way, by combining ideas, concepts
and results from both theories, this article focuses on one important dimension of this issue,
fuzzy random variables.

The concept of fuzzy random variable (frv) (also called“random fuzzy set”(Blanco-Fernández,
Casals, Colubi, Corral, Garćıa-Bárzana, Gil, González-Rodŕıguez, López, Lubiano, Montene-
gro, Ramos-Guajardo, De La Rosa De Sá, and Sinova 2013)) was introduced in order to deal
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with situations where the outcomes of a random experiment are modeled by fuzzy sets (Col-
ubi, Domı́nguez-Menchero, López-Dı́az, and Ralescu 2001; Colubi, Fernández-Garćıa, and Gil
2002; Colubi and Gil 2007; Colubi and González-Rodŕıguez 2007; Couso and Sánchez 2008;
Feng 2000; Gil 2001; Gil, López-Dı́az, and Ralescu 2006; González-Rodŕıguez, Colubi, and Gil
2006a; Krätschmer 2001; Kruse and Meyer 1987; Kwakernaak 1978, 1979; Liu and Liu 2003;
Puri and Ralescu 1985, 1986; Shapiro 2009). An frv is a mapping that associates a fuzzy set of
the final space to each possible result of a random experiment in a provided probability space
structure. Thus, this concept generalizes the definitions of random variable and random set.
Although these generalizations are not unique in the literature but they can be formalized in
equivalent ways. Each definition differs from the others in the structure of the final space and
the way the measurability condition is transferred to this context. For instance, Krätschmer
(2001); Kruse and Meyer (1987) and Puri and Ralescu (1985, 1986) focused on the properties
of the multi-valued mappings associated to the α-cuts. Kwakernaak (1978, 1979) assumes
that the outcomes of the frv are fuzzy real subsets and the extreme points of their α-cuts are
classical random variables. Puri and Ralescu (1985, 1986) require the α-cuts to be measurable
(also different conditions for measurability of multi-valued mappings can be formulated). On
the other hand, Klement, Puri, and Ralescu (1986) and Diamond and Kloeden (1994) define
frv’s, as classical measurable mappings. Couso and Sánchez (2008) present three different
higher order possibility models that represents the imprecise information provided by an frv.

In the literature on frvs, there are only a few references to modeling the distribution of
these random elements. These models are theoretically well stated, but they are not soundly
supported by empirical evidence, since they correspond to restrictive random mechanisms and
hence they are not realistic in practice (González-Rodŕıguez, Colubi, Gil, and Coppi 2006;
Möller, Graf, M., and Sickert 2002). This motivated us to present in this paper another
model that represents the imprecise information provided by an frv. Within this framework,
we use the tools of general Probability Theory (Billingsley 1995) to define fuzzy cumulative
distribution function and fuzzy empirical cumulative distribution function for an frv. We
also extend the concepts of expectation, variance, covariance and correlation coefficient of an
frv by reproducing classical techniques. For instance, when the images of the frv are convex
fuzzy subsets of R, we can use fuzzy arithmetic to derive a method of construction of the
fuzzy expectation. On the other hand, we can make a parallel construction of the variance:
let us consider a particular metric defined over the class of fuzzy subsets of the final space. In
this setting, we define the variance of an frv as the mean (classical expectation of a random
variable) of the squares of the distances from the images of the frv to the (fuzzy) expectation.
In this context the variance of an frv is a (precise) number that quantifies the degree of
dispersion of the images of the frv.

Extending these results is not just a matter of motivation, but the main issue is that the
concepts of fuzzy cumulative distribution function and fuzzy empirical cumulative distribution
function for an frv strongly affects the aim of the Statistics to be developed around (Hesamian
and Chachi 2013). Although in the literature distributions and parameters could be defined in
some senses in connection with the frv through Zadeh’s extension principle (Zadeh 1965), but
the objective of statistical developments refer usually to the distribution and parameters of
the underlying original real-valued random variable (Wu 1999). When the distribution of an
frv can be defined, the objective of statistical developments will only refer to the distribution
and parameters of the frv, since either there is no underlying real-valued random variable
behind the process (as happens when we deal with judgments, valuations, ratings, and so on)
or the interest is just to be focused on the fuzzy perception (Blanco-Fernández et al. 2013).
Therefore, the aim of inferential statistical developments with fuzzy data based on frvs will
be to draw conclusions about the distribution of the involved frvs over populations on the
basis of the information supplied by samples of (fuzzy) observations from these frvs. One of
the relevant inferential problems is to estimate the parameters or measures associated with
the distribution of an frv on the basis of the information provided by a sample of independent
data from it. Furthermore, when Statistics are based on the concept of frv, some additional
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problems arise (see also Conclusion), like

1. the lack of realistic general “parametric” families of probability distribution models for
frvs (Blanco-Fernández et al. 2013);

2. the lack of Central Limit Theorems (CLTs) for frvs which are directly applicable for
inferential purposes (Wu 2000; Krätschmer 2002a,b).

The above first item will be considered in this paper for the proposed frv by defining the
concepts of fuzzy cumulative distribution function and fuzzy empirical cumulative distribution
function. The second item (and also some other items in Conclusion) can be addressed in
feature researches.

The paper is organized as follows. The next section provides the necessary technical back-
ground used for convenience of explaining general concepts concerned with fuzzy sets. In
Section 3, we propose a new definition of frv. In Section 4, using classical techniques in
Probability Theory, we extend some common characteristics of frvs including expectation,
variance, covariance, correlation coefficient. In Section 5, we generalize the concept of fuzzy
cumulative distribution function and fuzzy empirical cumulative distribution function for an
frv. We end the paper with some general concluding remarks and open problems.

2. Preliminary concepts

In this section, first, we shall review the basic definitions and terminologies of the fuzzy set
theory and uncertainty theory which are necessary for our paper (for further details, the
reader is referred to Liu (2002, 2016); Peng and Liu (2004); Viertl (2011); Zimmermann
(2001)). Then, a new definition of distance measure between fuzzy numbers is defined.

2.1. Fuzzy numbers

A fuzzy set Ã of the universal set X is defined by its membership function Ã : X→ [0, 1]. In
this paper, we consider R (the real line) as the universal set. We denote by Ã[α] = {x ∈ R :
Ã(x) ≥ α} the α-level set (α-cut) of the fuzzy set Ã of R, for every α ∈ (0, 1], and Ã[0] is the
closure of the set {x ∈ R : Ã(x) > 0}. A fuzzy set Ã of R is called a fuzzy number if for every
α ∈ [0, 1], the set Ã[α] is a non-empty compact interval. We denote by F(R), the set of all
fuzzy numbers of R.

A specific type of fuzzy number, which is rich and flexible enough to cover most of the appli-
cations, is the so-called LR-fuzzy number. Typically, the LR fuzzy number Ñ = (n, l, r)LR
with central value n ∈ R, left and right spreads l ∈ R+, r ∈ R+, decreasing left and right
shape functions L : R+ → [0, 1], R : R+ → [0, 1], with L(0) = R(0) = 1, has the following
membership function

Ñ(x) =

{
L(n−xl ) if x ≤ n,
R(x−nr ) if x ≥ n.

We can easily obtain the α-cut of Ñ as follows

Ñ [α] = [n− L−1(α)l, n+R−1(α)r], α ∈ [0, 1].

For the algebraic operations of LR-fuzzy numbers, we have the following result on the basis
of Zadeh’s extension principle. Let Ã = (a, l1, r1)LR and B̃ = (b, l2, r2)LR be two LR-fuzzy
numbers and λ ∈ R− {0} be a real number. Then

λ⊗ Ã =

{
(λa, λl1, λr1)LR if λ > 0,
(λa, |λ|r1, |λ|l1)RL if λ < 0,

Ã⊕ B̃ = (a+ b, l1 + l2, r1 + r2)LR,
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2.2. Some notions from uncertainty theory

In the following, we introduce an index to compare fuzzy number Ã ∈ F(R) and crisp value
x ∈ R. The index is used for defining a new notion of frv.

Definition 1 (Liu and Liu (2002)). Let Ã ∈ F(R) and x ∈ R. The index

C : F(R)× R −→ [0, 1],

which is defined by

C{Ã ≤ x} =
supy≤x Ã(y) + 1− supy>x Ã(y)

2
,

shows the credibility degree that Ã is less than or equal to x. Similarly, C{Ã > x} =
1− C{Ã ≤ x} shows the credibility degree that Ã is greater than x (see also Liu (2016)).

Definition 2 (Liu (2002)). Let Ã ∈ F(R) and α ∈ [0, 1], then

Ãα = inf{x ∈ Ã[0] : C{Ã ≤ x} ≥ α},

is called the α-pessimistic value of Ã. It is clear that Ãα is a non-decreasing function of
α ∈ (0, 1] (see also Peng and Liu (2004)).

Lemma 1. Let Ã, B̃ ∈ F(R) and λ be a real number. Then

(Ã⊕ B̃)α = Ãα + B̃α.

(λ⊗ Ã)α =

{
λ× Ãα if λ > 0,

λ× Ã1−α if λ < 0,

Example 1. Suppose that Ã = (a, l, r)LR is a LR-fuzzy number, and let x ∈ R, then

C{Ã ≤ x} =

{
1
2L(a−xl ) if x ≤ a,
1− 1

2R(x−ar ) if x ≥ a.

We can easily obtain the α-pessimistic values of Ã as follows

Ãα =

{
a− lL−1(2α) if 0.0 < α ≤ 0.5,
a+ rR−1(2(1− α)) if 0.5 ≤ α ≤ 1.0.

As an example, consider the triangular fuzzy number Ã = (a, l, r)T , then

C{Ã ≤ x} =





0 if x ∈ (−∞, a− l),
x−a+l

2l if x ∈ [a− l, a),
x−a+r

2r if x ∈ [a, a+ r),
1 if x ∈ [a+ r,∞).

Ãα =

{
a− l(1− 2α) if 0.0 < α ≤ 0.5,
a− r(1− 2α) if 0.5 ≤ α ≤ 1.0.

2.3. A new distance measure between fuzzy numbers

In the literature one can find many useful metrics between fuzzy numbers. Valuable references
on this topic can be found in Blanco-Fernández et al. (2013); Feng and Liu (2006); Liu and
Liu (2002). In the following, a new definition of metrics between fuzzy numbers is defined.
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Definition 3. The distance measure is defined as the mapping D : F(R) ⊗ F(R) → [0,∞)
such that it associates with two fuzzy numbers Ã, B̃ ∈ F(R) the following value

D(Ã, B̃) =

∫ 1

0

(
Ãα − B̃α

)2
dα.

One can conclude that the mapping D : F(R)⊗F(R)→ [0,∞) satisfies the following condi-
tions:

1. For any Ã, B̃ ∈ F(R), D(Ã, B̃) = 0 if and only if Ã = B̃.

2. For any Ã, B̃ ∈ F(R), D(Ã, B̃) = D(B̃, Ã).

3. For any Ã, B̃, C̃ ∈ F(R), such that Ã ⊆ B̃ ⊆ C̃, thenD(Ã, C̃) ≥ max{D(Ã, B̃), D(B̃, C̃)}.

4. For any Ã, B̃, C̃ ∈ F(R), D(Ã, C̃) ≤ D(Ã, B̃) +D(B̃, C̃).

As an example, we can easily obtain the distance between two LR-fuzzy numbers Ã =
(a, l1, r1)LR and B̃ = (b, l2, r2)LR as follows

D(Ã, B̃) = (a− b)2 +
(l1 − l2)2

2

∫ 1

0

(
L−1(α)

)2
dα+

(r1 − r2)2

2

∫ 1

0

(
R−1(α)

)2
dα

−(a− b)(l1 − l2)

∫ 1

0
L−1(α) dα+ (a− b)(r1 − r2)

∫ 1

0
R−1(α) dα.

For symmetric fuzzy numbers Ã = (a, l, l)L and B̃ = (b, r, r)L, we have

D(Ã, B̃) = (a− b)2 + (l − r)2

∫ 1

0

(
L−1(α)

)2
dα.

3. Fuzzy random variables

In the context of random experiments whose outcomes are not numbers (or vectors in Rp)
but they are expressed in inexact terms, the concept of frv turns out to be useful. Random
fuzzy numbers (or, more generally, random fuzzy sets (Blanco-Fernández et al. 2013)) is a
well-stated and supported model within the probabilistic setting for the random mechanisms
generating fuzzy data. They integrate randomness and fuzziness, so that the first one affects
the generation of experimental data, whereas the second one affects the nature of experimental
data which are assumed to be intrinsically imprecise. The notion of random fuzzy set can be
formalized in several equivalent ways. Thus, in this regard, different notions of frv have been
introduced and investigated in the literature (Colubi et al. 2001; Couso and Sánchez 2008;
Feng 2000; Gil et al. 2006; González-Rodŕıguez et al. 2006a; Hesamian and Chachi 2013;
Krätschmer 2001; Kruse and Meyer 1987; Kwakernaak 1978, 1979; Liu and Liu 2003; Puri
and Ralescu 1985, 1986; Shapiro 2009).

Definition 4. Suppose that a random experiment is described by a probability space (Ω,A,P),
where Ω is a set of all possible outcomes of the experiment, A is a σ-algebra of subsets of Ω
and P is a probability measure on the measurable space (Ω,A). The fuzzy-valued mapping
X̃ : Ω→ F(R) is called an frv if for any α ∈ [0, 1], the real-valued mapping X̃α : Ω→ R is a
real-valued random variable on (Ω,A,P). Throughout this paper, we assume that all random
variables have the same probability space (Ω,A,P)

Kwakernaak (1978, 1979) introduced the notion of frvs which has been later formalized in
a clear way by Kruse and Meyer (1987) as: given a probability space (Ω,A,P), a mapping
X̃ : Ω→ F(R) is said to be an frv if for all α ∈ (0, 1] the two real-valued mappings X̃L

α : Ω→ R
and X̃U

α : Ω→ R are real-valued random variables.
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It can be easily investigated that the following relationships are held between the notion of
frv proposed in Definition 4 and Kwakernaak and Kruse’s definition of frv (see also, Example
1)

X̃α =

{
X̃L

2α for 0.0 < α ≤ 0.5,

X̃U
2(1−α) for 0.5 ≤ α ≤ 1.0,

X̃[α] = [X̃α
2
, X̃1−α

2
], α ∈ (0, 1].

The first relation shows that the information contained in the two-dimensional variable
(X̃L

α , X̃
U
α ) is summarized in the one-dimensional variable X̃α making the computational pro-

cedures in the problems more easier.

Definition 5. Two frvs X̃ and Ỹ are said to be independent if X̃α and Ỹα are independent,
for all α ∈ [0, 1]. In addition, we say that two frvs X̃ and Ỹ are identically distributed if X̃α

and Ỹα are identically distributed, for all α ∈ [0, 1]. Similar arguments can be used for more
than two frvs. We also say that X̃1, . . . , X̃n is a fuzzy random sample if X̃i’s are independent
and identically distributed frvs. We denote by x̃1, . . . , x̃n the observed values of fuzzy random
sample X̃1, . . . , X̃n.

4. Fuzzy expected value, variance and covariance of an frv

In analyzing fuzzy data two main types of summary measures/parameters may be distin-
guished:

1. fuzzy-valued summary measures, like the mean value of an frv or the median of an frv
as measures for the central tendency of their distributions;

2. real-valued summary measures, like the variance of an frv as a measure for the mean er-
ror/dispersion of the distributions of the frv, or the covariance and correlation coefficient
as measures of the (absolute) linear dependence/association of an frv.

Definition 6. Let (Ω,A,P) be a probability space and X : Ω→ R be a real-valued random
variable. We say that X has finite mean and write X ∈ L1(Ω,A,P) if and only if E(X) =∫

ΩX dP < M , for some constant M <∞.

Definition 7. Given a probability space (Ω,A,P) and an associated frv X̃ : Ω→ F(R) such
that for any α ∈ [0, 1] the real-valued random variable X̃α : Ω → R on (Ω,A,P) has finite
mean then the mean value of X̃ is the fuzzy value Ẽ(X̃) ∈ F(R) such that for all α ∈ [0, 1]

Ẽ(X̃)α = E(X̃α) =

∫

Ω
X̃α dP.

The mean value of an frv satisfies the usual properties of linearity and it is the Fréchet’s
expectation w.r.t. D, which corroborates the fact that it is a central tendency measure
(Näther 2001). In this way,

Proposition 1. Ẽ is additive (i.e., equivariant under the sum of frvs), that is, for frvs X̃ and
Ỹ associated with the same probability space (Ω,A,P) and such that X̃α, Ỹα ∈ L1(Ω,A,P),
we have that

1. Ẽ(λ⊕ X̃) = λ⊕ Ẽ(X̃), for any constant number λ ∈ R.

2. Ẽ(λ⊗ X̃) = λ⊗ Ẽ(X̃), for any constant number λ ∈ R.

3. Ẽ(X̃ ⊕ Ỹ ) = Ẽ(X̃)⊕ Ẽ(Ỹ ).
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Proposition 2. Ẽ is the Fréchet’s expectation of X̃ w.r.t. D, that is,

Ẽ(X̃) = argmin
Ũ∈F(R)

Ẽ
[
D(X̃, Ũ)

]
,

so that the mean is the fuzzy value leading to the lowest mean squared D-distance (or error)
with respect to the frv distribution, and this corroborates the fact that it is a central tendency
measure.

Definition 8. The variance of an frv X̃ is defined as

ν(X̃) = E
[
D(X̃, Ẽ(X̃))

]

= E

(∫ 1

0

(
X̃α − E(X̃α)

)2
dα

)

=

∫

Ω

∫ 1

0

(
X̃α − E(X̃α)

)2
dα dP

=

∫ 1

0

∫

Ω

(
X̃α − E(X̃α)

)2
dP dα

=

∫ 1

0
V ar(X̃α) dα.

The situation with the usual random variable is a special case of the proposed procedure.
By using the indicator function I{X} as the membership function for the frv, the variance of
the crisp random variable X, i.e. V ar(X), coincides with ν(X), therefore, we have ν(X) =
V ar(X).

Now, if we define the scalar multiplication between frvs X̃ and Ỹ as follows

〈X̃, Ỹ 〉 =

∫ 1

0
X̃αỸα dα,

then, it is easy to conclude that ν(X̃) = E〈X̃, X̃〉 − 〈Ẽ(X̃), Ẽ(X̃)〉.
Proposition 3. Let X̃ = (X̃1, X̃2, . . . , X̃n) be a fuzzy random sample, and

S2
n(X̃) =

1

n− 1

n∑

i=1

D
(
X̃i,

¯̃
X
)
,

be the crisp variance value of the fuzzy sample X̃, where
¯̃
X = 1

n ⊕ni=1 X̃i is the fuzzy sample
mean value. Then the following properties are held:

1. E[S2
n(X̃)] = ν(X̃), i.e. S2

n(X̃) is an unbiased estimator of the parameter ν(X̃) (popula-
tion variance).

2. limn→∞ S2
n(X̃) = ν(X̃).

3. ν(λ⊗ X̃) = λ2ν(X̃), for any constant number λ ∈ R.

4. ν(λ⊕ X̃) = ν(X̃), for any constant number λ ∈ R.

Definition 9. The covariance and correlation coefficient of frvs X̃ and Ỹ are defined as
follows, respectively,

Cov(X̃, Ỹ ) = E〈X̃, Ỹ 〉 − 〈Ẽ(X̃), Ẽ(Ỹ )〉,

ρ(X̃, Ỹ ) = Cov


X̃ 	 Ẽ(X̃)√

ν(X̃)
,
Ỹ 	 Ẽ(Ỹ )√

ν(Ỹ )


 .

We can easily show that
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Table 1: Data set in Example 2
x̃1 = (0.23, 0.04, 0.07)T x̃11 = (0.41, 0.03, 0.08)T x̃21 = (0.64, 0.11, 0.07)T
x̃2 = (0.76, 0.05, 0.02)T x̃12 = (0.86, 0.08, 0.04)T x̃22 = (0.94, 0.09, 0.04)T
x̃3 = (0.98, 0.12, 0.09)T x̃13 = (1.02, 0.03, 0.10)T x̃23 = (1.08, 0.10, 0.06)T
x̃4 = (1.14, 0.06, 0.09)T x̃14 = (1.23, 0.03, 0.14)T x̃24 = (1.37, 0.08, 0.06)T
x̃5 = (1.46, 0.10, 0.07)T x̃15 = (1.53, 0.13, 0.15)T x̃25 = (1.64, 0.02, 0.08)T
x̃6 = (1.69, 0.05, 0.12)T x̃16 = (1.78, 0.04, 0.06)T x̃26 = (1.83, 0.09, 0.05)T
x̃7 = (1.95, 0.05, 0.11)T x̃17 = (1.99, 0.08, 0.09)T x̃27 = (2.04, 0.11, 0.06)T
x̃8 = (2.17, 0.03, 0.05)T x̃18 = (2.25, 0.04, 0.04)T x̃28 = (2.36, 0.05, 0.09)T
x̃9 = (2.40, 0.08, 0.12)T x̃19 = (2.45, 0.01, 0.08)T x̃29 = (2.49, 0.13, 0.05)T
x̃10 = (2.51, 0.10, 0.14)T x̃20 = (2.57, 0.07, 0.02)T x̃30 = (2.61, 0.08, 0.06)T

1. Cov(X̃, λ) = 0 for any constant number λ ∈ R.

2. Cov(X̃, X̃) = ν(X̃).

3. Cov(X̃, Ỹ ) = 0 for independent frvs X̃ and Ỹ .

4. Let λ1, λ2, µ1, µ2 ∈ R, then

Cov
(
λ1 ⊕ (λ2 ⊗ X̃), µ1 ⊕ (µ2 ⊗ Ỹ )

)
= λ1µ1Cov(X̃, Ỹ ),

ρ
(
λ1 ⊕ (λ2 ⊗ X̃), µ1 ⊕ (µ2 ⊗ Ỹ )

)
=

λ1µ1

|λ1µ1|
ρ(X̃, Ỹ ).

5. Fuzzy cumulative distribution function

In this section, we extend the concepts of Fuzzy Cumulative Distribution Function (F.C.D.F.)
and Fuzzy Empirical Cumulative Distribution Function (F.E.C.D.F.) for an frv.

Definition 10. The F.C.D.F. of frv X̃ at x ∈ R is defined as fuzzy set F̃
X̃

(x) with the
following membership function

F̃
X̃

(x)(y) = sup
{
α ∈ [0, 1] : P

(
X̃α ≤ x

)
= y
}
, y ∈ [0, 1],

Definition 11. We say that F.C.D.F. F̃
X̃

(x) is continuous at x ∈ R, if for every α ∈ [0, 1], the

function (F̃
X̃

(x))Uα is continuous at x (or equivalently, for every α ∈ [0, 1], the crisp random

variable X̃α is continuous).

Definition 12. Suppose that X̃1, X̃2, . . . , X̃n is a fuzzy random sample. The F.E.C.D.F. of

fuzzy random sample X̃1, X̃2, . . ., X̃n, at x ∈ R is defined to be the fuzzy set F̃n(x) with the
following membership function

F̃n(x)(y) = sup

{
α ∈ [0, 1] :

#(x̃iα ≤ x)

n
= y

}
, y ∈ [0, 1],

Example 2. Suppose that, based on a fuzzy random sample of size n = 30, we observe
the triangular fuzzy numbers given in Table 1 (Hesamian and Chachi 2013; Viertl 2011).
According to Definition 12, the F.E.C.D.F. of this fuzzy random sample is obtained and
the 3-dimensional curve of its membership function is shown in Fig. 1, for every x ∈ [0, 3].
Moreover, in order to make the 3-dimensional curve of the membership function in Fig. 1
more clear, the α-cut of this membership function is shown in Fig. 2, for α = 0.3.
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Figure 1: The plot of membership function of F.E.C.D.F. of the fuzzy observations in Table
1 for values of x ∈ [0, 3]

Figure 2: The α-cut of the 3-dimensional curve of the membership function shown in Figure
1 for α = 0.3. For each value of x ∈ [0, 3], the vertical line is the domain of the α-cut.

Example 3. Let X̃ = Θ̃⊕Ξ, where Ξ is a (usual) normal random variable with mean 0 and
variance σ2, i.e. Ξ ∼ N(0, σ2), and Θ̃ is a constant fuzzy set. For example, suppose Θ̃ is
a LR-fuzzy number, i.e. Θ̃ = (θ, l, r)LR with known θ, l, r, and fixed functions L, and R.
Therefore, X̃ = (Ξ + θ, l, r)LR and for each ω, X̃(ω) = (Ξ(ω) + θ, l, r)LR is an observation of
X̃. Now, we have (see also, Example 1)

X̃α =

{
Ξ + θ − lL−1(2α) if α ∈ [0, 0.5],
Ξ + θ + rR−1(2(1− α)) if α ∈ [0.5, 1].

Since Ξ is a normal random variable, therefore, it is clear that X̃α is a normal random variable
for each α ∈ [0, 1], i.e.

X̃α ∼
{
N
(
θ − lL−1(2α), σ2

)
if α ∈ [0, 0.5],

N
(
θ + rR−1(2(1− α)), σ2

)
if α ∈ [0.5, 1].
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α

Φ(x− 1)

Φ(x + 1)

y

1

1
0 α = 1

2(x + 1− Φ−1(y))

Φ(x + 1− 2α)

Figure 3: The graphical solution of the equation Φ(x+ 1− 2α) = y in Example 3

Φ(x− 1) Φ(x + 1)
y

1

1
0

˜
F˜X(x)(y) = 1

2(x + 1− Φ−1(y))

Figure 4: The membership function of the fuzzy cumulative distribution function F̃
X̃

(x) in
Example 3

So, according to Definition 4, X̃ is an frv. We can easily show that Ẽ(X̃) = Θ̃, and ν(X̃) = σ2.

Now, we are going to obtain the membership function of fuzzy set F̃
X̃

(x), i.e. the F.C.D.F.

of the frv X̃ at x ∈ R. Its membership function is defined as

F̃
X̃

(x)(y) = sup
{
α ∈ [0, 1] : P

(
X̃α ≤ x

)
= y
}
, y ∈ [0, 1],

in which

P
(
X̃α ≤ x

)
=





Φ
(
x−θ+lL−1(2α)

σ

)
if α ∈ [0, 0.5],

Φ
(
x−θ−rR−1(2(1−α))

σ

)
if α ∈ [0.5, 1],

where, Φ is the cumulative distribution function of standard normal random variable Z, i.e.
if Z ∼ N(0, 1) then P(Z ≤ z) = Φ(z), z ∈ R. We consider a simplification of the parameters
Θ̃ and σ2, therefore, we take Θ̃ = (0, 1, 1)T and σ = 1 as special cases. Substituting these
values in the above equations, we can easily obtain

P
(
X̃α ≤ x

)
= Φ(x+ 1− 2α) if α ∈ [0, 1].

Thus, the membership function of fuzzy set F̃
X̃

(x) is given as follows for any y ∈ [0, 1]

F̃
X̃

(x)(y) = sup{α ∈ [0, 1] : Φ(x+ 1− 2α) = y}.
Note that, the function Φ(x+ 1− 2α) is strictly decreasing with respect to α ∈ [0, 1], for any
fixed x ∈ R (see Fig. 3). Therefore, for any y ∈ [0, 1]

Φ(x+ 1− 2α) = y ⇔ α =
1

2
(x+ 1− Φ−1(y)).
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The above obtained α must be between 0 and 1, so

0 ≤ 1

2
(x+ 1− Φ−1(y)) ≤ 1⇔ 0 ≤ Φ(x− 1) ≤ y ≤ Φ(x+ 1) ≤ 1.

Finally, according to the above equations, the membership function of F̃
X̃

(x) at x ∈ R is
given by

F̃
X̃

(x)(y) =
1

2
(x+ 1− Φ−1(y)), y ∈ [Φ(x− 1),Φ(x+ 1)] ⊆ [0, 1].

The membership function F̃
X̃

(x) is depicted in Fig. 4.

This notion of frv is the definition of normality for frvs and X̃ = Θ̃⊕ Ξ, (Ξ ∼ N(0, σ2), and
Θ̃ is a constant fuzzy set) is called the normal (Gaussian) frv in the literature (Feng 2000;
Puri and Ralescu 1985).

6. Conclusions

In this paper the concept of modeling fuzzy random variable is presented dealing with situ-
ations where the outcomes of a random experiment are modeled by fuzzy sets. In order to
model the imprecise information of random experiments the notions of fuzzy cumulative dis-
tribution function and fuzzy empirical cumulative distribution function are considered (Möller
et al. 2002). To achieve suitable statistical methods dealing with imprecise data and extend
the usual approaches to imprecise environments several probabilistic definitions have been
obtained in connection with this random element, some of them having immediate statistical
implications. Fuzzy set theory seems to have suitable tools for modeling the imprecise infor-
mation of random experiments and provides appropriate statistical methods based on them
(see, for instance, Bandemer and Näther (1992); Chachi and Taheri (2011); Chachi, Taheri,
and Viertl (2012); Colubi (2009); Colubi and Gil (2007); Colubi and González-Rodŕıguez
(2007); Colubi, González-Rodŕıguez, Lubiano, and Montenegro (2006); Coppi, Gil, and Kiers
(2006); Gebhardt, Gil, and Kruse (1998); González-Rodŕıguez, Montenegro, Colubi, and Gil
(2006b); Hesamian and Chachi (2013); Kruse and Meyer (1987); Taheri and Hesamian (2011)).
As a consequence, different approaches can also be provided for developing fuzzy statistical
methods using the new concept of frv proposed in this paper. We end the paper with some
general concluding remarks and open problems.

1- The new concept of frv proposed in this paper can be used to develop some kind of linear
estimation theory. The attempt can be done to develop a certain kind of linear theory for frvs
with respect to extended addition and scalar multiplication. However, the classical estimation
problem in a linear regression model in view of fuzzy data can be a potential topic for further
researches (see, for instance, Wünsche and Näther (2002)).

2- The new concept of frv can be studied successfully for limit theorems, and can be applied
to asymptotic statistics with vague data (see, for instance, Klement et al. (1986)). Notice
that there are lack of Central Limit Theorems (CLTs) for frvs which are directly applicable
for inferential purposes (actually, there exist some CLTs for frvs according to which the
normalized distance sample-population fuzzy mean converges in law to the norm of a Gaussian
random element but with values often out of the cone) (Wu 2000; Krätschmer 2002a,b). Also,
the essential large sample properties of the fuzzy empirical distribution function (like Cantelli-
Glivenko’s Lemma (Govindarajulu 2003)) can be stated and proved.

3- From a statistical point of view, fuzzy expected value and fuzzy median play important
roles as central summary measures. The point estimation of these measures can be one of
the first statistical analysis concerning frvs. Later, the initial hypothesis testing procedures
can be studied, although they need some theoretical/practical constraints (see, for instance,
Colubi (2009)).



64 On Distribution Characteristics of an FRV

4- The bootstrap techniques have empirically shown to be efficient and powerful in hypothesis
testing. Furthermore, analogous two-sample tests and, in general, multi-sample tests for the
equality of fuzzy expected values can also be obtained (see, for instance, González-Rodŕıguez
et al. (2006b)).

5- As for the real/vectorial-valued case, hypotheses could either concern parameters/measures
of the distribution of the frv(s) (see items 3 and 4 above) or concern the distribution itself
(parametric/non-parametric). Therefore, testing hypothesis related to the distribution(s) of
one-sample or multi-sample of observations can be considered. In this regard, non-parametric
tests (like goodness-of-fit tests) can be developed to determine whether two underlying one
dimensional distributions (or multi underlying one dimensional distributions) are the same or
not. Here based on the definition of fuzzy empirical cumulative distribution functions, test
statistics and test functions can be defined (see, for instance, Lin, Wu, and Watada (2010);
Hesamian and Chachi (2013); Hryniewicz (2006); Taheri and Hesamian (2011))

6- It has been shown that the distribution of any real-valued random variable can be rep-
resented by means of a fuzzy set. The characterizing fuzzy sets correspond to the expected
value of a certain frv based on a family of fuzzy-valued transformations of the original real-
valued ones (González-Rodŕıguez et al. 2006a). They can be used for descriptive/exploratory
or inferential purposes. This fact adds an extra-value to the fuzzy expected value and the
preceding statistical procedures, that can be used in statistics about real distributions.
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Bandemer H, Näther W (1992). Fuzzy Data Analysis. Kluwer Academic Publisher, Dordrecht.

Billingsley P (1995). Probability and Measure. John Wiley and Sons, New York. 3rd ed.

Blanco-Fernández A, Casals MR, Colubi A, Corral N, Garćıa-Bárzana M, Gil MA, González-
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González-Rodŕıguez G, Colubi A, Gil MA, Coppi R (2006). “A Method to Simulate Fuzzy
Random Variables.” Advances in Soft Computing, 6, 103–110.
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Wünsche A, Näther W (2002). “Least-Squares Fuzzy Regression with Fuzzy Random Vari-
ables.” Fuzzy Sets and Systems, 130, 43–50.

Zadeh LA (1965). “Fuzzy sets.” Informtion and Control, 8, 338–353.



Austrian Journal of Statistics 67

Zadeh LA (1995). “Discussion: Probability Theory and Fuzzy Logic Are Complementary
Rather Than Competitive.” Technometrics, 37, 271–276.

Zimmermann HJ (2001). Fuzzy Set Theory and Its Applications. Kluwer Nihoff, Boston. 4th
ed.

Affiliation:

Jalal Chachi
Department of Mathematics, Statistics and Computer Sciences
Semnan University
Semnan 35195-363, Iran
Telephone: +98/233/336-6205
Fax: +98/233/335-4059
E-mail: jchachi@semnan.ac.ir

Austrian Journal of Statistics http://www.ajs.or.at/

published by the Austrian Society of Statistics http://www.osg.or.at/

Volume 47 Submitted: 2016-07-16
February 2018 Accepted: 2017-02-27





AJS

Austrian Journal of Statistics
February 2018, Volume 47, 69–89.

http://www.ajs.or.at/

doi:10.17713/ajs.v47i2.580

The Generalized Odd Gamma-G Family of

Distributions: Properties and Applications

B. Hosseini
Persian Gulf Univ.

M. Afshari*
Persian Gulf Univ.

M. Alizadeh
Persian Gulf Univ.

Abstract

Recently, new continuous distributions have been proposed to apply in statistical anal-
ysis in a way that each one solves a particular part of the classical distribution problems.
In this paper, the Generalized Odd Gamma-G distribution is introduced . In particu-
lar, G has been considered as the Uniform distribution and some statistical properties
such as quantile function, asymptotics, moments, entropy and order statistics have been
calculated. We survey the theoretical outcomes with numerical computation by using R
software.The fitness capability of this model has been investigated by fitting this model
and others based on real data sets. The maximum likelihood estimators are assessed with
simulated real data from proposed model. We present the simulation in order to test
validity of maximum likelihood estimators .

Keywords: generalized odd gamma-G, maximum likelihood, moment, entropy.

1. Introduction

The classic statistical distributions which have essential limitations and problems in data
modeling, has led statistical researcher to make of the new flexible distributions. The new
distributions are often made through the classic distributions and give the required flexibility
to the classic distributions. The most important distributions among them are Marshall-Olkin
generated (MO-G) by Marshall and Olkin (1997), Kumaraswamy-G (Kw-G) by Cordeiro
and de Castro (2011), McDonald-G (Mc-G) by Alexander, Cordeiro, Ortega, and Sarabia
(2012), Weibull-G by Bourguignon, Silva, and Cordeiro (2014), exponentiated half-logistic
by Cordeiro, Alizadeh, and Ortega (2014a), transformer (T-X) by Alzaatreh, Lee, and Famoye
(2013), Logistic-X by Tahir, Cordeiro, Alzaatreh, Mansoor, and Zubair (2016) and Lomax
generator by Cordeiro, Ortega, Popović, and Pescim (2014b), Kumaraswamy Marshal-Olkin
family by Alizadeh, Tahir, Cordeiro, Mansoor, Zubair, and Hamedani (2015b), Beta Marshal-
OLkin family by Alizadeh, Cordeiro, De Brito, and Demétrio (2015a), type I half-logistic
family by Cordeiro, Alizadeh, and Diniz Marinho (2016).

Based on T-X idea by Alzaatreh et al. (2013), by the following definition, the Generalized
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Odd Gamma-G distribution (GOGa-G) would be made

F (x;α, β, ξ) =

∫ G(x;ξ)β

1−G(x;ξ)β

0

tα−1e−t

Γ(α)
dt =

γ
(
α, G(x;ξ)β

1−G(x;ξ)β

)

Γ(α)
. (1)

where α, β > 0 are two additional shape parameters, ξ is the parameter for baseline G and
γ(α, x) =

∫ x
0 t

α−1e−tdt denote the incomplete gamma function.

In this case, the probabilty density function (pdf) of the GOGa-G distribution will be as
follows:

f(x;α, β, ξ) =
βg(x; ξ)G(x; ξ)αβ−1

Γ(α)
[
1−G(x; ξ)β

]α+1 e
−G(x;ξ)β

1−G(x;ξ)β . (2)

where g(x; ξ) is the pdf of the G(x; ξ) distribution. From now on, the random variable X
with pdf (2) is shown with X ∼ GOGa-G(α, β, ξ). According to (1) and (2) hrt of X is as
follows:

τ(x;α, β, ξ) =
βg(x; ξ)G(x; ξ)αβ−1e

−G(x;ξ)β

1−G(x;ξ)β

[
1−G(x; ξ)β

]α+1 [
Γ(α)− γ

(
α, G(x;ξ)β

1−G(x;ξ)β

)] . (3)

An interpretation of the GOGa-G family (1) can be given as follows:
Let T be a random variable describing a stochastic system by the cdf G(x)β (for β > 0).
If the random variable X represents the odds ratio, the risk that the system following the

lifetime T will be not working at time x is given by G(x)β

1−G(x)β
. If we are interested in modeling

the randomness of the odds ratio by the Gamma pdf r(t) = 1
Γ(α) t

α−1 e−t (for t > 0), the cdf
of X is given by

Pr(X ≤ x) = R

(
G(x)β

1−G(x)β

)
.

which is exactly the cdf (1) of the new family.

Theorem 1 provides some relations of the GOGa family with other distributions.

Theorem 1. Let X ∼GOGa-G(α, β, ξ) and Y =
G(X; ξ)β

1−G(X; ξ)β
, then Y ∼ Γ(α, 1).

Proof: It is clear.

The basic motivations for using the GOGa family in practice are the following:
(i) to make the kurtosis more flexible compared to the baseline model; (ii) to produce a
skewness for symmetrical distributions; (iii)to construct heavy-tailed distributions that are
not longer-tailed for modeling real data; (iv)to generate distributions with symmetric, left-
skewed, right-skewed and reversed-J shaped; (v) to define special models with all types of
the hrf; (vi) to provide consistently better fits than other generated models under the same
baseline distribution.

In the following, the paper would be like this: In Section 2, a special distribution is introduced
by selecting G. In Section 3, the features of the GOGa- model will be assessed using quantile
function, asymptotics, functions expansion, quantile power series, moments, entropy and order
statistics. In Section 4, MLE calculation method and in Section 5, estimability of the model
additional parameters will be discussed using simulation. In Section 6, the proposed model is
fitted based on two real data sets and compared to other famous models.
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Figure 1: The sample curves of density function of GOG-U(α, β, 0, 10).

2. Special models

2.1. The generalized odd gamma-uniform (GOGa-U)

Different distributions family can be reached by selecting different Gs in equation (2). Torabi
and Hedesh (2012), G has been considered as uniform distribution. In this case, by letting
ξ = (a, b) equation (2) will changed as follows:

f(x;α, β, a, b) =
β(b− a)β(x− a)αβ−1e

−(x−a)β
(b−a)β−(x−a)β

Γ (α)
[
(b− a)β − (x− a)β

]α+1 , a ≤ x ≤ b . (4)

where α, β > 0, a, b ∈ R and a < b. If X be a random variable with density function (4), then
it will be displayed by GOGa-U(α, β, a, b). In Figure 1 some density and hazard functions for
GOGa-U have been drawn.

One can see in the curves of Figure 1 that the different states of density function including
symmetric density function (approximately), mild and high skewed (right and left) and bi-
modal (in the right bottom curve, one mode is in point zero) have been produced. In Figure 2
one can see some curves of the hazard function of the GOGa-U distribution for some para-
mentreters. According to Figure 2 you see that the U shape hazard functions are producible
by GOGa-U.

2.2. The generalized odd gamma-Weibull (GOGa-W)

In GOGa-G, suppose G is as follows Weibull distribution function:

G(x;λ, k) = 1− e−( xλ)
k

, x ≥ 0 .

In this case, by letting ξ = (λ, k) equation ( 2) will be changed as follows
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Figure 2: The sample curves of hazard function of GOGa-U(α, β, 0, 10).

f(x;α, β, λ, k) =

βk
(
x
λ

)k−1
e−( xλ)

k
[
1− e−( xλ)

k
]αβ−1

λΓ (α)

{
1−

[
1− e−( xλ)

k
]β}α+1 e

−


1−e−( xλ)

k

β

1−


1−e−( xλ)

k

β

, x ≥ 0 . (5)

where α, β, λ, k > 0. If X be a random variable with density function (5), then it will be
displayed by GOGa-W(α, β, λ, k). In Figure 3 some pdfs for GOGa-W have been drawn.

3. Main features

3.1. Quantile function

By considering (1) quantile function (qf) X is obtained as follows: If V ∼ Γ(α, 1) then the

solution of nonlinear equation xv = QG

[(
V

1+V

) 1
β

]
has cdf (1).

3.2. Asymptotics

Proposition 1. Let a = inf {x|f(x) > 0}, then the asymptotic of equation (1), (2) and (3)
when x→ a are given by

F (x) ∼ G(x)αβ

αΓ(α)

f(x) ∼ βg(x)G(x)αβ−1

Γ(α)

τ(x) ∼ βg(x)G(x)αβ−1

Γ(α)

Proposition 2. The asymptotic of equation (1), (2) and (3) when x→ +∞ are given by

F (x) ∼ 1−
γ
(
α, 1

βG(x)

)

Γ(α)
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Figure 3: The sample curves of density and hazard function of GOGa-W(α, β, 1, 1.5).

f(x) ∼ g(x)

βαΓ(α)G(x)α+1 e
−1

βG(x)

τ(x) ∼ g(x)e
−1

βG(x)

βα
[
Γ(α)− γ

(
α, 1

βG(x)

)]
G(x)α+1

3.3. Expansion for Pdf and Cdf and hrf

Using generalized binomial and taylor expansion one can obtain

f(x) =
βg(x)G(x)αβ−1

Γ(α)
[
1−G(x)β

]α+1

∞∑

i=0

(−1)i
(

G(x)β

1−G(x)β

)i

i!

=
βg(x)

Γ(α)

∞∑

i=0

∞∑

j=0

(−1)i

i!

(
−α− i− 1

j

)
G(x)β(α+i+j)−1

=
∞∑

i=0

∞∑

j=0

wi,jhβ(α+i+j)(x) . (6)

where

wi,j =

(−1)i
(
−α− i− 1

j

)

i! [α+ i+ j] Γ(α)
.

and hβ(x) = βg(x)G(x)β−1, denote the pdf of exp-G distribution with power parameter β.
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By integrating from equation (6) with respect to x, we have

F (x) =
∞∑

i=0

∞∑

j=0

wi,jHβ(α+i+j)(x) . (7)

where Hβ(x) = G(x)β.

By considering G(x) = 1− [1−G(x)] and binomial expansion we have:

G(x)β(α+i+j) =

∞∑

l=0

(−1)l
(
β(α+ i+ j)

l

)
[1−G(x)]l

=
∞∑

l=0

l∑

k=0

(−1)l+k
(
β(α+ i+ j)

l

)(
l
k

)
G(x)k

=

∞∑

k=0

∞∑

l=k

(−1)l+k
(
β(α+ i+ j)

l

)(
l
k

)
G(x)k

In this case, regarding to (7) cdf extends as follows

F (x) =
∞∑

i=0

∞∑

j=0

∞∑

k=0

∞∑

l=k

wi,j(−1)l+k
(
β(α+ i+ j)

l

)(
l
k

)
G(x)k .

then

F (x) =
∞∑

k=0

bkG(x)k (8)

where

bk =
∞∑

i=0

∞∑

j=0

∞∑

l=k

wi,j(−1)l+k
(
β(α+ i+ j)

l

)(
l
k

)
(9)

and finally regarding to (8) for cdf we also have

f(x) =
∞∑

k=0

bk+1 hk+1(x)

3.4. Moments

The rth ordinary moment of X is given by

µ′r = E(Xr) =

∫ +∞

−∞
xrf(x)dx .

Using (1), we obtain the following:

µ′r =

∞∑

k=0

bk+1E(Y r
k+1) . (10)

Hereafter, Yk+1 denotes the Exp-G distribution with power parameter (k + 1). Setting r = 1
in (10), We have the mean f X. The last integration can be computed numericaly for most
parent distributions. The skewness and kurtosis measures can be calculated from the ordinary
moments using well-known relationships. The nth central moment of X, say Mn, follows as

Mn = E(X − µ)n =
n∑

h=0

(−1)h
(
n
h

)(
µ′1
)n
µ′n−h .
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Figure 4: Skewness and kurtosis for GOGa-U.

The cumulants (κn) of X follow recursively from

κn = µ′n −
n−1∑

r=0

(
n− 1
r − 1

)
κrµ

′
n−r .

where κ1 = µ′1, κ2 = µ′2 − µ′12, κ3 = µ′3 − 3µ′2µ
′
1 + µ′1

3, etc. The skewness and kurtosis
measures also can be calculates from the ordinary moment using well-known relationships.
The moment generating function (mgf) of X, say MX(t) = E

(
etX
)
, is given by

MX(t) =

∞∑

r=0

tr

r!
µ′r =

∞∑

k,r=0

trbk+1

r!
E(Y r

k+1)

3.5. Incomplete moments

The main application of the first incomplete moment refers to Bonferroniand Lorenz curves.
These curves are very useful in economics, reliability, demography, insurance and medicine.
The answers to many important questions in economics require more than just knowing the
mean of the distribution, its shape as well. This is obvious both in the study of econometrics
and in areas as well. The sth incomplete moments, say ϕs (t), is given by

ϕs (t) =

∫ t

−∞
xsf(x)dx

Using equation (8), we obtain

ϕs (t) =
∞∑

k=0

bk+1

∫ t

−∞
xshk+1(x)dx . (11)

The first incomplete of the GOGa-G family, ϕ1 (t), can be obtained by setting s = 1 in (11).
Another application of the first incomplete moment is related to meanresidual life and mean
waiting tie given by m1 (t) = [1− ϕ1 (t)] /R(t)− t and M1 (t) = t− [ϕ1 (t) /F (t)], respectively.

3.6. Entropy

Entropy is an index for measuring variation or uncertainty of a random variable. The measure
of entropy, Rrnyi (1961), is defined as follows

IR(γ) =
1

1− γ log

(∫ ∞

0
fγ(x)dx

)
.
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Figure 5: Curves of the GOGa-U entropy function for some parameter values.

for γ > 0 and γ 6= 1. The Shannon entropy measure is also defined by E {− log [f(x)]} that
is a special state of the Rényi entropy when γ ↑ 1.

f(x)γ =


 βgGαβ−1e

−Gβ
1−Gβ

Γ(α)[1−Gβ]
α+1



γ

=
βγgγGγ(αβ−1)e

−Gβ
1−Gβ

[Γ(α)]γ [1−Gβ]
γ(α+1)

=
βγ

[Γ(α)]γ

∞∑

i=0

(−1)i

i!
γi
Gγ(αβ−1)+βie

−Gβ
1−Gβ

[1−Gβ]
γ(α+1)+i

gγ

=
βγ

[Γ(α)]γ

∞∑

i=0

∞∑

j=0

(−1)i+j

i!

(
−γ (α+ 1)− i

j

)
γigγGγ(αβ−1)+β(i+j)

⇒ IR(γ) =
1

1− γ log

[∫ +∞

−∞
fγ(x)dx

]

=
γ

1− γ log

[
β

Γ(α)

]
+

1

1− γ log



∞∑

i=0

∞∑

j=0

vi,jI (γ, α, β, i, j)


 .

where vi,j = (−1)i+jγi

i!

(
−γ (α+ 1)− i

j

)
and I (γ, α, β, i, j) =

∫ +∞
−∞ g(x)γG(x)γ(αβ−1)+β(i+j)dx.

In Figure 5 one can see some curves of the entropy function of the GOGa-U distribution for
some parameters.
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3.7. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Sup-
pose X1, . . . , Xn is a random sample from any GOGa-G distribution. Let Xi:n denote the ith
order statistic. The pdf of Xi:n can be expressed as

fi:n(x) = c f(x)F i−1(x) {1− F (x)}n−i = c

n−i∑

j=0

(−1)j
(
n− i
j

)
f(x)F (x)j+i−1 .

where c = 1
B(i,n−i+1) .

We use the result 0.314 of Gradshteyn and Ryzhik (2000) for a power series raised to a positive
integer n (for n ≥ 1)

( ∞∑

i=0

ai u
i

)n
=
∞∑

i=0

cn,i u
i . (12)

where the coefficients cn,i (for i = 1, 2, . . .) are determined from the recurrence equation (with
cn,0 = an0 )

cn,i = (i a0)−1
i∑

m=1

[m(n+ 1)− i] am cn,i−m . (13)

By using equations (9), (12), (13), We can demonstrate that the density function of the ith
order statistic of any GOGa-G distribution can be expressed as follows:

fi:n(x) =
∞∑

r,k=0

mr,k hr+k+1(x) . (14)

where hr+k+1(x) denotes the exp-G density function with parameter r + k + 1,

mr,k =
n! (r + 1) (i− 1)! br+1

(r + k + 1)

n−i∑

j=0

(−1)j fj+i−1,k

(n− i− j)! j! ,

br is given by equation (9) and the quantities fj+i−1,k can be determined given that fj+i−1,0 =

bj+i−1
0 and recursively for k ≥ 1

fj+i−1,k = (k b0)−1
k∑

m=1

[m (j + i)− k] bm fj+i−1,k−m .

We can obtain the ordinary and incomplete moments, generating function and mean devia-
tions of the GOGa-G order statistics from equation (14) and some properties of the exp-G
model.

4. The maximum likelihood estimator

The MLE is one of the most common point estimators. This estimator is very applicable in
confidence intervals and hypothesis testing. By MLE, various statistics is built for assessing
the goodness-of-fit in a model, such as: the maximum log-likelihood (ˆ̀

max), Akaike Infor-
mation Criterion (AIC), Bayesian Information Criterion (BIC), Anderson-Darling (A∗) and
Cramér–von Mises (W ∗), described by Chen and Balakrishnan (1995). The lower values of
these statistics indicate that the model have better fitting. We use these statistics in section
5.
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Figure 6: Three density functions for simulation study.

To calculating the MLE, let x1, x, ..., xn are observations from pdf (2). In this case, by letting
θ = (α, β, ξ) we have

`n(θ) = n ln(β) +

n∑

i=0

ln(g(xi; ξ)) + (αβ − 1)

n∑

i=0

ln(G(xi; ξ))

−
n∑

i=0

G(xi; ξ)β

1−G(xi; ξ)β
− n ln(Γ(α))− (α+ 1)

n∑

i=0

ln(1−G(xi; ξ)β)

By numerically solving the following equations, the maximum likelihood estimators can be
obtained.



∂`n(θ)
∂α = β

n∑
i=0

lnG(xi)− nΓ′(α)
Γ(α) +

n∑
i=0

ln(1−G(xi)
β) = 0

∂`n(θ)
∂β = n

β + α
n∑
i=0

lnG(xi)−
n∑
i=0

G(xi)
β lnG(xi)

(1−G(xi)β)
2 + (α+ 1)

n∑
i=0

lnG(xi)G(xi)
β

(1−G(xi)β
= 0

∂`n(θ)
∂ξ =

n∑
i=0

g(xi)
(ξ)

g(xi)
+ (αβ − 1)

n∑
i=0

Gi
(ξ)

G(xi)
−

n∑
i=0

βGi
(ξ)G(xi)

β−1

(1−G(xi)
β)

2 + (α+ 1)
n∑
i=0

βGi
(ξ)G(xi)

β−1

1−G(xi)
β = 0

where gi
(ξ) = ∂g(xi;ξ)

∂ξ and Gi
(ξ) = ∂G(xi;ξ)

∂ξ

5. Simulation study

In this section, the Maximum likelihood estimators for additional parameters α and β in pdf
(4) for three different states, has been assessed by simulating: (α, β) = (0.6, 1.6), (α, β) =
(2, 2) and (α, β) = (13, 0.1). In each three case, the uniform distribution parameters in (4)
are (a, b) = (0, 10). The density functions for one of the three states, has been indicated in
Figure 6. One can see three different states of GOGa-U density functions, means skewed to
the left, right and the symmetric .

To verify the validity of the maximum likelihood estimator, Mean Square Error of the Estimate
(MSE), Coverage Probability (CP) and Coverage Lenght (CL) have been used. For example,
as described in Section 3.1, for (α, β) = (0.6, 1.6), N = 10000 times have been simulated
samples of n = 30, 40, ..., 500 of GOGa-U(0.6, 1.6, 0, 10). To estimate the numerical value of
the maximum likelihood, the optim function (in the stat package) and L-BFGS-B method in
R software has been used. If θ = (α, β), for any simulation by n volume and i = 1, 2, ..., N ,
the maximum likelihood estimates are obtained as θ̂i = (α̂i, β̂i). The standard deviation of
estimations, which is obtained through the information matrix is shown by s

θ̂i
= (sα̂i , sβ̂i).

In this case, the MLE, Bias, MSE, CP and CL are calculated by the following formula

MLE
θ̂
(n) =

1

N

N∑

i=1

θ̂i
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Figure 7: Biases, MSEs, CPs and CLs of α̂, β̂ versus n when (α, β) = (0.6, 1.6).

Bias
θ̂
(n) =

1

N

N∑

i=1

(θ̂i − θi)

MSE
θ̂
(n) =

1

N

N∑

i=1

(θ̂i − θi)
2

CP
θ̂
(n) =

1

N

N∑

i=1

I(θ̂i − 1.96s
θ̂i
, θ̂i + 1.96s

θ̂i
)

CL
θ̂
(n) =

3.92

N

N∑

i=1

s
θ̂i

In Figures 7 represent the Biases, MSEs, CPs and CLs plots for (α, β) = (0.6, 1.6) . As
expected, the biases and MSE of estimated parameters converges to zero while n growing.
The CPs plots should converge to 0.95 and CLs plots should be descending they are correct
in Figures 7. Plots of parameters vector (α, β) = (2, 2) and (α, β) = (13, 0.1) have the same
position that one can see in Appendix 7.1.

6. Applications

In this section, fitting of GOGa-U and some famous models to the two real data sets has been
assessed. The Akaike information criterion (AIC), Bayesian information criterion (BIC),
Anderson-Darling (A∗) and Cramér-von Mises (W ∗) , KolmogorovâĂŞSmirnov (K.S) and
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Figure 8: Histogram and estimated pdfs for the AG negative data.

the P-Value of K.S test , have been chosen to comparison of the models. The distribu-
tions: Beta Exponential (BE) (Nadarajah and Kotz (2006)), Beta Generalized Exponential
(BGE) (Barreto-Souza, Santos, and Cordeiro (2010)), Beta Genearlized Half-Normal (BGHN)
(Pescim, Demétrio, Cordeiro, Ortega, and Urbano (2010)), Beta Pareto (BP) (Akinsete,
Famoye, and Lee (2008)), Exponentiated Pareto (EP) (Kuş (2007)), Genearlized Half-Normal
(GHN) (Cooray and Ananda (2008)), Gamma-Uniform (GU) (Torabi and Hedesh (2012)), Ku-
maraswamy Gumbel (KwGu) (Cordeiro, Nadarajah, and Ortega (2012)) and Weibull-G{E}
(Alzaatreh, Lee, and Famoye (2015)) have been selected for comparison. The parameters of
models have been estimated by the MLE method.

6.1. The myelogenous leukemia data for AG negative

This sub-section is related to study of AG data which presented by Feigl and Zelen (1965) that
include 16 observations. Observed survival times (weeks) for AG negative were identified by
the presence of Auer rods and significant granulative of the leukemic cells in the bone marrow
at diagnosis. For the AG negative patients these factors were absent. The data set is: 56, 65,
17, 17, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43.

The Tables 1 and 2 display a summary of the fitted information criteria and MLEs for this data
with different models, respectively. Models have been sorted from the lowest to the highest
value of AIC. As you see, the GOGa-U is selected as the best model with all the criteria.
Note that P-Value for GOGa-U is also more than all other distributions. The histogram of
the AG nagative data and the plots of fitted pdf are displayed in Figure 8.

Table 1: Information criteria for the AG negative data.

Model AIC BIC W ∗ A∗ K.S P-Value
GOGa-U 121.29 124.38 0.07 0.46 0.18 0.687
G-U 122.68 125.77 0.06 0.39 0.18 0.678
EP 129.09 130.64 0.1 0.65 0.21 0.475
BE 129.66 131.98 0.1 0.72 0.3 0.105
GHN 130.21 131.76 0.11 0.65 0.22 0.422
BP 131.41 134.5 0.11 0.66 0.22 0.404
Weibull-G{E} 131.55 134.64 0.11 0.68 0.22 0.441
BGHN 131.83 134.93 0.11 0.67 0.23 0.356
BGE 132.55 135.64 0.1 0.67 0.23 0.343
KwGu 134.22 137.31 0.1 0.65 0.3 0.123
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Table 2: MLEs for the the AG negative data.

Model Parameters

GOGa-U (α̂, β̂, â, b̂) = (0.01, 51.13, 1.99, 66.67)
(sα̂, sβ̂ , sâ, sb̂) = (0.01, 62.04, 0.01, 2.63)

G-U (α̂, β̂, â, b̂) = (0.40, 0.81, 1.99, 98.91)
(sα̂, sβ̂ , sâ, sb̂) = (0.15, 1.20, 0.01, 53.41)

EP (λ̂, β̂) = 1.01, 0.04)
(sλ̂, sβ̂) = (1.88, 0.02)

BE (â, b̂, λ̂) = (8.24, 0.04, 1.54)
(sâ, sb̂, sλ̂) = (40.43, 0.08, 2.85)

GHN (α̂, θ̂) = (0.74, 22.79)
(sα̂, sθ̂) = (0.15, 6.04)

BP (α̂, β̂, θ̂, k̂) = (98.66, 3.01, 0.01, 0.53)
(sα̂, sβ̂ , sθ̂, sk̂) = (593.87, 17.51, 0.02, 1.80)

Weibull-G{E} (ĉ, γ̂, α̂, β̂) = 0.48, 3.09, 5.02, 1.40)
(sĉ, sγ̂ , sα̂, sβ̂) = (0.09, 1.47, 0.50, 0.01)

BGHN (â, b̂, α̂, θ̂) = (0.03, 76.12, 508.34, 270.67)
(sâ, sb̂, sα̂, sθ̂) = (0.04, 4235.56, 1349.84, 471.83)

BGE (â, b̂, λ̂, α̂) = (14.23, 6.84, 0.00, 0.13)
(sâ, sb̂, sλ̂, sα̂) = (33.74, 4.52, 0.00, 0.27)

KwGu (â, b̂, µ̂, σ̂) = (0.01, 0.11, 10.51, 1.93)
(sâ, sb̂, sµ̂, sσ̂) = (0.01, 0.03, 0.01, 0.02)

6.2. The sum of skin folds data

The second data set which contains 202 observation can be seen in Weisberg (2005) that have
been used in Alzaatreh (2015) (article not yet published). These data are the sum of skin
folds in 202 athletes collected at the Australian Institute of Sports and are as follows:
28.0, 98, 89.0, 68.9, 69.9, 109.0, 52.3, 52.8, 46.7, 82.7, 42.3, 109.1, 96.8, 98.3, 103.6, 110.2,
98.1, 57.0, 43.1, 71.1, 29.7, 96.3, 102.8, 80.3, 122.1, 71.3, 200.8, 80.6, 65.3, 78.0, 65.9, 38.9,
56.5, 104.6, 74.9, 90.4, 54.6, 131.9, 68.3, 52.0, 40.8, 34.3, 44.8, 105.7, 126.4, 83.0, 106.9, 88.2,
33.8, 47.6, 42.7, 41.5, 34.6, 30.9, 100.7, 80.3, 91.0, 156.6, 95.4, 43.5, 61.9, 35.2, 50.9, 31.8,
44.0, 56.8, 75.2, 76.2, 101.1, 47.5, 46.2, 38.2, 49.2, 49.6, 34.5, 37.5, 75.9, 87.2, 52.6, 126.4,
55.6, 73.9, 43.5, 61.8, 88.9, 31.0, 37.6, 52.8, 97.9, 111.1, 114.0, 62.9, 36.8, 56.8, 46.5, 48.3,
32.6, 31.7, 47.8, 75.1, 110.7, 70.0, 52.5, 67, 41.6, 34.8, 61.8, 31.5, 36.6, 76.0, 65.1, 74.7, 77.0,
62.6, 41.1, 58.9, 60.2, 43.0, 32.6, 48, 61.2, 171.1, 113.5, 148.9, 49.9, 59.4, 44.5, 48.1, 61.1, 31.0,
41.9, 75.6, 76.8, 99.8, 80.1, 57.9, 48.4, 41.8, 44.5, 43.8, 33.7, 30.9, 43.3, 117.8, 80.3, 156.6,
109.6, 50.0, 33.7, 54.0, 54.2, 30.3, 52.8, 49.5, 90.2, 109.5, 115.9, 98.5, 54.6, 50.9, 44.7, 41.8,
38.0, 43.2, 70.0, 97.2, 123.6, 181.7, 136.3, 42.3, 40.5, 64.9, 34.1, 55.7, 113.5, 75.7, 99.9, 91.2,
71.6, 103.6, 46.1, 51.2, 43.8, 30.5, 37.5, 96.9, 57.7, 125.9, 49.0, 143.5, 102.8, 46.3, 54.4, 58.3,
34.0, 112.5, 49.3, 67.2, 56.5, 47.6, 60.4, 34.9

the Tables 3 and 4 display a summary of the fitted information criteria and MLEs for this
data with different models , respectively. Models have been sorted from the lowest to the
highest value of AIC. As you see, the GOGa-U is selected as the best model with all the
criteria. Here P-Value for GOGa-U is also more than all other distributions. The histogram
of the sum of skin folds data and the plots of fitted pdf are displayed in Figure 9.
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Figure 9: Histogram and estimated pdfs for the sum of skin folds data.

Table 3: Information criteria for the sum of skin folds data.

Model AIC BIC W ∗ A∗ K.S P-Value
GOGa-U 1897.11 1910.34 0.09 0.55 0.05 0.731
G-U 1897.15 1910.38 0.08 0.47 0.05 0.668
KwGu 1906.25 1919.48 0.11 5.05 0.06 0.393
BP 1915.68 1928.91 0.18 1.57 0.07 0.228
Weibull-G{E} 1916.04 1929.27 0.2 2.4 0.07 0.34
BGE 1920.58 1933.81 0.26 0.76 0.08 0.179
BGHN 1925.11 1938.34 0.32 1.21 0.08 0.135
BE 1930.2 1940.13 0.4 1.25 0.09 0.063
GHN 1978.34 1984.96 0.86 2.36 0.13 0.002
EP 2119.1 2125.71 0.41 1.89 0.35 0

Table 4: MLEs for the sum of skin folds data.

Model Parameters

GOGa-U (α̂, β̂, â, b̂) = (8.95, 0.04, 27.99, 650.04)
(sα̂, sβ̂ , sâ, sb̂) = (1.96, 0.01, 0.02, 169.55)

G-U (α̂, β̂, â, b̂) = (1.27, 0.07, 27.88, 579.87)
(sα̂, sβ̂ , sâ, sb̂) = (0.17, 0.05, 0.25, 334.16)

KwGu (â, b̂, µ̂, σ̂) = (0.01, 0.21, 68.93, 7.15)
(sâ, sb̂, sµ̂, sσ̂) = (0.01, 0.06, 2.22, 1.78)

BP (α̂, β̂, θ̂, k̂) = (102.94, 4.20, 3.31, 1.14)
(sα̂, sβ̂ , sθ̂, sk̂) = (183.57, 4.22, 3.43, 0.63)

Weibull-G{E} (ĉ, γ̂, α̂, β̂) = (0.01, 0.21, 68.93, 7.15)
(sĉ, sγ̂ , sα̂, sβ̂) = (0.01, 0.06, 2.22, 1.78)

BGE (â, b̂, λ̂, α̂) = (1.23, 0.73, 0.05, 8.77)
(sâ, sb̂, sλ̂, sα̂) = (1.98, 0.25, 0.01, 16.52)

BGHN (â, b̂, α̂, θ̂) = (0.27, 34.18, 43.46, 13.78)
(sâ, sb̂, sα̂, sθ̂) = (0.10, 37.32, 31.62, 0.50)

BE (â, b̂, λ̂) = (5.34, 5.86, 0.01)
(sâ, sb̂, sλ̂) = (0.53, 1.62, 0.00)

GHN (α̂, θ̂) = (1.65, 86.05)
(sα̂, sθ̂) = (0.09, 2.89)

EP (λ̂, β̂) = (0.01, 0.01)
(sλ̂, sβ̂) = (1.65, 86.05)
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7. Conclusions

In many applied areas there is a clear need for extended forms of the well-known distributions.
Generally, the new distributions are more flexible to model real data that present a high de-
gree of skewness and kurtosis. We propose Generalized Odd Gamma-G (GOGa-G) family
of distributions. Many well-known models emerge as special cases of the GOGa-G family
by using special parameter values. Some mathematical properties of the new class including
explicit expansions for the ordinary and incomplete moments, quantile and generating func-
tions, mean deviations, entropies and order statistics are provided. The model parameters are
estimated by the maximum likelihood estimation method. We prove empirically by means of
an application to a real data set that special cases of the proposed family can give better fits
than other models generated from well-known families.
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Figure 10: Biases, MSEs, CPs and CLs of α̂, θ̂ versus n when (α, β) = (2, 2).

n

m
ea

n_
si

m
ul

at
ed

_d
at

a[
, "

bi
as

a"
]

−
1.

4
−

1.
0

−
0.

6
−

0.
2

B
ia

s 
of

 M
LE

 o
f  

α

n

m
ea

n_
si

m
ul

at
ed

_d
at

a[
, "

bi
as

b"
]

0.
00

00
0.

00
10

0.
00

20

B
ia

s 
of

 M
LE

 o
f  

β

n

m
ea

n_
si

m
ul

at
ed

_d
at

a[
, "

m
se

a"
]

0
5

10
15

20

M
S

E
 o

f M
LE

 o
f  

α

n

m
ea

n_
si

m
ul

at
ed

_d
at

a[
, "

m
se

b"
]

1e
−

04
4e

−
04

7e
−

04

M
S

E
 o

f M
LE

 o
f  

β

n

m
ea

n_
si

m
ul

at
ed

_d
at

a[
, "

cl
a"

]

0.
93

0.
94

0.
95

0.
96

0.
97

C
P

 o
f  

α

n

m
ea

n_
si

m
ul

at
ed

_d
at

a[
, "

cl
b"

]

0.
89

0.
91

0.
93

0.
95

C
P

 o
f  

β

n

m
ea

n_
si

m
ul

at
ed

_d
at

a[
, "

cp
a"

]

100 200 300 400 500

2
3

4
5

6
7

n

C
L 

of
  α

n

m
ea

n_
si

m
ul

at
ed

_d
at

a[
, "

cp
b"

]

100 200 300 400 500

0.
02

0.
03

0.
04

0.
05

n

C
L 

of
  β

Figure 11: Biases, MSEs, CPs and CLs of α̂, θ̂ versus n when (α, β) = (13, 0.1).
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Appendices B

Program developed in R to obtain the value of density (dGOGaG), distribution (pGOGaG),
hazard (hGOGaG), quantile (qGOGaG) function and random generation (rGOGaG) for the
GOGa-G distribution.

dGOGaG = function(x, par, Ge = ”uniform”)
{
if (Ge == ”uniform”)
{
G = punif(x,par[3],par[4])
g = dunif(x,par[3],par[4])
}

if (Ge == ”weibull”)
{
G = pweibull(x,par[3],par[4])
g = dweibull(x,par[3],par[4])
}

Gb = G∧par[2]
pdf = par[2]*g*G∧(par[1]*par[2]-1)*exp(-Gb/(1-Gb))/

(gamma(par[1])*(1-Gb)∧(par[1]+1))
pdf[!is.finite(pdf)] = NA
pdf
} # end of dGOGaG

pGOGaG = function(x, par, Ge = ”uniform”)
{
if (Ge == ”uniform”)
{
G = punif(x,par[3],par[4])
g = dunif(x,par[3],par[4])
}

if (Ge == ”weibull”)
{
G = pweibull(x,par[3],par[4])
g = dweibull(x,par[3],par[4])
}

Gb = G∧par[2]
cdf = pgamma(Gb/(1-Gb),par[1],1)
cdf[!is.finite(cdf)] = NA
cdf
} # end of pGOGaG

qGOGaG = function(p, par, Ge = ”uniform”)
{
a = qgamma(p,par[1],1)
b = (a/(1+a))∧(1/par[2])
if (Ge == ”uniform”)
{
return(qunif(b,par[3],par[4]))
}

if (Ge == ”weibull”)
{
return(qweibull(b,par[3],par[4]))
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}
} # end of qGOGaG

hGOGaG = function(x, par, Ge = ”uniform”)
{
pdf = dGOGaG(x=x, par=par, Ge = Ge)
cdf = pGOGaG(x=x, par=par, Ge = Ge)
hrf = pdf/(1 - cdf)
hrf[!is.finite(hrf)] = NA
hrf
} # end of hGOGaG

rGOGaG = function(n, par, Ge = ”uniform”)
{
GI=rgamma(n,par[1],1)
if (Ge == ”uniform”)
{
return(qunif((GI/(1+GI))∧(1/par[2]),par[3],par[4]))
}

if (Ge == ”weibull”)
{
return(qweibull((GI/(1+GI))∧(1/par[2]),par[3],par[4]))
}

} # end of rGOGaG

Program developed in R of claculatition for one-dimensional integral based on observations
and the trapezoidal rule integration:

intob = function(x, y) 0.5*sum(diff(x)*(y[1:length(x)-1]+y[2:length(x)]))

Program developed in R of claculatition for the value of Rényi entropy:

REntropy = function(par, gamma)
{
fgamma = function(x) dGOGaG(x, par = par, Ge = ”uniform”)∧gamma
x = seq(par[3], par[4], le=10000)
y = fgamma(x)
ent = log(intob(x,y))/(1-gamma)
ent = ent[!is.finite(ent)] = NA
return(ent)
} # end of REntropy

Program developed in R of claculatition for the value of moment, skewness and kurtosis:

moment = function(par, order)
{
x = seq(par[3], par[4], le=10000)
y = dGOGaG(x = x, par = par, Ge = ”uniform”)
return(intob(x, x∧order * y))
} # end of moment

skew = function(par)
{
x = seq(par[3], par[4], le=10000)
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y = dGOGaG(x = x, par = par, Ge = ”uniform”)
m1 = intob(x, x*y)
m2 = intob(x, (x-m1)∧2*y)
return(intob(x, ((x-m1)∧3*y))/sqrt(m2)∧3)
} # end of skew

kurt = function(par)
{
x = seq(par[3], par[4], le=10000)
y = dGOGaG(x = x, par = par, Ge = ”uniform”)
m1 = intob(x, x*y)
m2 = intob(x, (x-m1)∧2*y)
return(intob(x, (x-m1)∧4*y)/sqrt(m2)∧4)
} # end of kurt

Program developed in R of optimization for simulations and applications. The initpar need
to change for some observations.

loglikeSimulation = function(alpha,beta)
-sum(log(dGOGaG(x, c(alpha,beta,par[3],par[4]), Ge = ”uniform”)))

optim(par = initpar, fn = loglikeSimulation, lower=c(0.005,0.005),
upper=c(Inf,Inf), method=”L-BFGS-B”, hessian = TRUE)

loglikeApplication = function(alpha,beta,a,b)
-sum(log(dGOGaG(x, c(alpha,beta,a,b), Ge = ”uniform”)))

optim(par = initpar, fn = loglikeApplication,
lower=c(0.005,0.005, min(x)-.001,max(x)+0.001),
upper=c(Inf,Inf,-Inf,Inf), method=”L-BFGS-B”, hessian = TRUE)



Austrian Journal of Statistics 89

Affiliation:

Bistoon Hosseini
Department of Statistics, Faculty of Sciences
Persian Gulf University of Bushehr
Bushehr, Iran
E-mail: bistoon.hosseini@gmail.com

Mahmoud Afshari*
Department of Statistics, Faculty of Sciences
Persian Gulf University of Bushehr
Bushehr, Iran
Corresponding Author E-mail: afshar.5050@gmail.com

Morad Alizadeh
Department of Statistics, Faculty of Sciences
Persian Gulf University of Bushehr
Bushehr, Iran
E-mail: moradalizadeh78@gmail.com

Austrian Journal of Statistics http://www.ajs.or.at/

published by the Austrian Society of Statistics http://www.osg.or.at/

Volume 47 Submitted: 2016-07-11
February 2018 Accepted: 2017-01-11





ISSN 1026–597X

Contents

Page

Matthias TEMPL: Editorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Ivo MÜLLER, Karel HRON, Eva FIŠEROVÁ, Jan ŠMAHAJ, Panajotis CA-
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