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Stéphane GUERRIER, Roberto MOLINARI, Maria-Pia VICTORIA-FESER:
Estimation of Time Series Models via Robust Wavelet Variance . . . . . . . . . . . . . . 267
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Preface
The Tenth International Conference “Computer Data Analysis and Modeling: Com-

plex Stochastic Data and Systems” (CDAM’2013) organized in Minsk by the Belarusian
State University and Vienna University of Technology on September 10-14, 2013, was
devoted to the topical problems in computer data analysis and modeling. There were 99
presentations by more than 130 participants from 19 countries.

The topics of the presentations corresponded to the following actual scientific pro-
blems: robust and nonparametric data analysis; multivariate analysis and design of expe-
riments; statistical analysis of time series and stochastic processes; probabilistic and stati-
stical analysis of discrete data; asymptotic methods in probability and statistics; statistical
signal and image processing; econometric and financial analysis and modeling; survey
analysis and official statistics; computer simulation of stochastic systems; probabilistic
and statistical methods in finance and risk management; computer intensive methods, al-
gorithms and statistical software; computer data analysis in applications.

This Special Issue contains 11 papers of the extended versions of the most significant
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List of referees

W. Charemza, Leicester
G. Dzemyda, Vilnius
K. Ducinskas, Klaipeda
P. Filzmoser, Vienna
Yu. Kharin, Minsk
V. Malugin, Minsk
G. Medvedev, Minsk
E. Stoimenova, Sofia
E. Zhuk, Minsk

Peter Filzmoser, Yuriy Kharin
(Guest Editors)

Yuriy Kharin Peter Filzmoser
Department of Mathematical Modeling Department of Statistics and
and Data Analysis and Probability Theory
Belarusian State University Vienna University of Technology
Independence av. 4 Wiedner Hauptstr. 8–10
220030 Minsk, Belarus A-1040 Vienna, Austria
E-mail: Kharin@bsu.by E-mail: p.filzmoser@tuwien.ac.at

Please note that all papers of this special issue are also available online at

http://www.ajs.or.at

mailto:Kharin@bsu.by
mailto:p.filzmoser@tuwien.ac.at
http://www.ajs.or.at




AJS

Austrian Journal of Statistics
June 2014, Volume 43/3-4, 167–179.
http://www.ajs.or.at/

Sensitivity Analysis for the Decomposition of

Mixed Partitioned Multivariate Models into Two

Seemingly Unrelated Submodels

Eva Fǐserová
Palacký University Olomouc

Lubomı́r Kubáček
Palacký University Olomouc

Abstract

The paper is focused on the decomposition of mixed partitioned multivariate models
into two seemingly unrelated submodels in order to obtain more efficient estimators. The
multiresponses are independently normally distributed with the same covariance matrix.
The partitioned multivariate model is considered either with, or without an intercept. The
elimination transformation of the intercept that preserves the BLUEs of parameter matri-
ces and the MINQUE of the variance components in multivariate models with and without
an intercept is stated. Procedures on testing the decomposition of the partitioned model
are presented. The properties of plug-in test statistics as functions of variance compo-
nents are investigated by sensitivity analysis and insensitivity regions for the significance
level are proposed. The insensitivity region is a safe region in the parameter space of the
variance components where the approximation of the variance components can be used
without any essential deterioration of the significance level of the plug-in test statistic.
The behavior of plug-in test statistics and insensitivity regions is studied by simulations.

Keywords: multivariate model, decomposition, plug-in statistic, joint test, variance compo-
nents, insensitivity region.

1. Introduction

A multivariate approach to modeling (see, e.g., Anderson 1958; Kshirsagar 1972; Kubáček
2008; Seber 2004) has several advantages in comparison with a series of univariate models.
Specifically, multivariate models respect the association between outcomes, and thus, in gen-
eral, procedures are more efficient. Further, they can evaluate the joint influence of predictors
on all outcomes and avoid the issue of multiple testing. On the other hand, there are situa-
tions when the multivariate model can be decomposed to a series of simpler models, univariate
or multivariate, depending on the issue. Moreover, from a practical point of view, collecting
data is usually easier in decomposed models.

The paper deals with a special case of a decomposition of a partitioned multivariate model with
independent multiresponses with the same covariance matrix into two seemingly unrelated
multivariate submodels (Zellner 1962) in order to obtain more efficient estimators. Namely,
the multiresponse variables in the model are partitioned into two sets Y1 and Y2. Similarly,
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the set of predictors is partitioned into two sets X1 and X2. As an example, let us consider the
nutrigenomic study in the mouse. The response variable might be expressions of chosen genes
(Y 1

i·) and concentrations of hepatic fatty acids (Y 2
i·) measured on subjects. The predictors

might be genotype (X1) and type of diet (X2). The problem is to decide, roughly speaking,
if it is possible to explain separately expressions of genes by genotype and hepatic fatty acids
concentrations by diet or not. Fǐserová and Kubáček (2012) proposed tests for the verification
of the significance of a model decomposition under normality of random errors in the case
when the covariance matrix is known or completely unknown. Further, Fǐserová and Kubáček
(2013) shown that the proposed tests may be used in models without an intercept, as well as
in models with an intercept. These tasks are summarized in Section 2. Here, we will focused
on the situation when the covariance matrix includes unknown variance components.

If variance components can be estimated via the maximum likelihood method, the technique
of Kenward and Roger (1996) is useful for testing hypotheses about the decomposition of
the model. Nevertheless, the maximum likelihood approach is suitable for replicated models
or models with large number of observations. In the paper we consider a model without
replications when the minimum norm quadratic unbiased estimators (MINQUE) based on
Rao’s procedure (Rao and Kleffe 1988) are used instead. This approach is valid even for
models with small number of observations. The MINQU estimators are derived in Section 3.
Estimated values of variance components can be plugged into the test statistic for a known
covariance matrix. The investigation of statistical properties of a plug-in test statistic is
rather difficult and therefore we will study the quality of a plug-in test statistic as a function
of the variance components by sensitivity analysis. The sensitivity approach provides the
so-called insensitivity regions (Kubáček 1996) in the space of variance components where
the approximation of variance components do not cause any essential damage of the chosen
statistical characteristic. Namely, we propose the insensitivity region for the significance
level (Kubáček 2007b) as it is shown in Section 4. If we know that the true value of the
variance components is with sufficiently high probability within the insensitivity region for
the significance level, then the significance level of the plug-in test statistic does not exceed the
chosen tolerable value. The sensitivity approach is investigated mostly in univariate models,
e.g., Kubáček (1996); Fǐserová and Kubáček (2003, 2004, 2006); Kubáček and Fǐserová (2003);
Lešanská (2002a,b). Some results for multivariate models are presented in Kubáček (2006,
2007a,b) and Fǐserová and Kubáček (2009). The behavior of plug-in statistics and insensitivity
regions is studied by simulations in Section 5.

2. Tests of the decomposition in case of a known

covariance matrix

Let us consider the multivariate model in a partitioned form

(
Y1

(n×p1)

, Y2

(n×p2)

)
=
(

X1
(n×k1)

, X2
(n×k2)

) B11
(k1×p1)

, B12
(k1×p2)

B21
(k2×p1)

, B22
(k2×p2)

+
(
ε1

(n×p1)

, ε2
(n×p2)

)
. (1)

Here Y = (Y1,Y2) is a random matrix (observation matrix), X = (X1,X2) is a known
design matrix, B11, B12, B21 and B22 are matrices of unknown parameters and ε = (ε1, ε2)
is a random error matrix. We will assume that the matrix X is of full column rank, the
multiresponses are independent with the same positive definite covariance matrix Σ and
the random errors are normally distributed. The covariance matrix Σ of the multiresponse
Y i· = (Yi1, Yi2, . . . , Yip)′ is partitioned in the same way, i.e.,

var
(
Y 1
i·

Y 2
i·

)
=
(

Σ11, Σ12

Σ21, Σ22

)
, i = 1, 2, . . . ,n. (2)
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Further, let us consider a system of two seemingly unrelated (Zellner 1962) multivariate
submodels

Y1

(n×p1)

= X1
(n×k1)

B1
(k1×p1)

+ ε1
(n×p1)

, Y2

(n×p2)

= X2
(n×k2)

B2
(k2×p2)

+ ε2
(n×p2)

(3)

with the covariance matrix Σ of the multiresponse Y i· in the form (2). Note that models in (3)
are seemingly unrelated because there is a link between them described by cov(Y 1

i·,Y
2
i·) = Σ12.

If Σ12 = 0, the models in (3) are independent. The problem is to decide which of the models
(1) and (3) should be chosen for modeling in order to obtain more efficient estimators.

The issue with a decomposition of model (1) into (3) leads to testing the hypothesis that “the
system of two seemingly unrelated multivariate submodels (3) is a true model”, i.e., to test
B12 = 0 and B21 = 0 simultaneously. If the covariance matrix Σ is known, Fǐserová and
Kubáček (2012) proposed the test statistics

T21 = Tr
[
(Y1)′MX1X2(X′2MX1X2)−1X′2MX1Y

1Σ−1
11

] ∼ χ2
p1k2

under B21 = 0, (4)

T12 = Tr
[
(Y2)′MX2X1(X′1MX2X1)−1X′1MX2Y

2Σ−1
22

] ∼ χ2
p2k1

under B12 = 0. (5)

The symbol Tr(Σ) denotes trace of the matrix Σ and MXi = In −Xi(X′iXi)−1X′i, i = 1, 2.
To test the hypotheses B21 = 0 and B12 = 0 simultaneously, one can use, e.g., the Bonferroni
correction in order to preserve the type I error rate α. More precisely, if T21 ≤ χ2

p1k2
(1−α/2)

and T12 ≤ χ2
p2k1

(1 − α/2), where χ2
p1k2

(1 − α/2) denotes the (1 − α/2)-quantile of a χ2
p1k2

distribution, neither of the hypotheses B21 = 0, B12 = 0 can be rejected on the significance
level α.

Note that the decomposition of model (1) leads to two seemingly unrelated submodels. If
the decomposition is significant, the prediction of Y1 conditional on X1 is not improved also
by regressing on X2. However the predictors X2 are necessary for the calculation of the
prediction of Y1. Analogous conclusions hold for the prediction of Y2.

Until now we have considered only the model without an intercept. A partitioned form of the
model with the intercept can be written as

(
Y1

(n×p1)

, Y2

(n×p2)

)
=
(

1
(n×1)

, X1
(n×k1)

, X2
(n×k2)

)


b1
(1×p1)

, b2
(1×p2)

B11
(k1×p1)

, B12
(k1×p2)

B21
(k2×p1)

, B22
(k2×p2)

+
(
ε1

(n×p1)

, ε2
(n×p2)

)
, (6)

where 1 is a vector of ones. We will assume that the design matrix (1,X1,X2) is of full column
rank, and therefore all regression parameters are unbiasedly estimable. If the model includes
also an intercept, then the question is, where the intercept should go in the decomposed
model, in X1, in X2, or in both X1 and X2. Naturally, all cases are possible and results
depend on particular tasks. To avoid this situation, Fǐserová and Kubáček (2013) proposed
the transformation for an elimination of the intercept that leads to the identical BLUEs of
parameter matrices B11, B12, B21 and B22 in model (6) with the intercept and model without
the intercept in the form(

M1Y1,M1Y2
)

=
(
M1X1,M1X2

)(B11, B12

B21, B22

)
+
(
M1ε1,M1ε2

)
. (7)

Here M1 = I − 1(1′1)−11′. Therefore testing the decomposition of the partitioned model
with the intercept can be done similarly as for the model without the intercept. The process
is the following. First we transform model (6) to (7). Next we test hypotheses B12 = 0 and
B21 = 0 simultaneously via test statistics T12, T21 using the substitution

Yj →M1Yj , Xj →M1Xj , Σ→M1ΣM1, j = 1, 2.
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Obviously, test statistics T12 and T21 have the same degrees of freedom in the case of the
model without the intercept since the assumptions on full column rank of the design matrices
imply that the ranks of the transformed design matrices M1Xj are equal to kj , j = 1, 2, as
well.

3. Tests of the decomposition in case of a covariance matrix
with unknown variance components

Now we will consider the covariance matrix Σ of the structure Σ =
∑s

i=1 ϑiVi, where
V1, . . . ,Vs are known (p1 + p2) × (p1 + p2) symmetric and positive semidefinite matri-
ces and ϑi > 0, i = 1, . . . , s, are unknown parameters (variance components). Denote
Σ0 =

∑s
i=1 ϑ0,iVi, where ϑ0 = (ϑ0,1, . . . , ϑ0,s)′ is an approximate value of the vector pa-

rameter ϑ. The ϑ0-locally minimum norm quadratic unbiased estimator (ϑ0-LMINQUE) of
ϑ based on Rao’s procedure (Rao and Kleffe 1988) is stated in the following lemma.

Lemma 1 The ϑ0-locally MINQUE of ϑ in the model (1) is

ϑ̂ =
1

n− k1 − k2
S−1

Σ−1
0

γ̂,

where the ith component of the vector γ̂ = (γ̂1, . . . , γ̂s)′ is

γ̂i = Tr
[(

(Y1)′

(Y2)′

)
M(X1,X2)(Y

1,Y2)Σ−1
0 ViΣ−1

0

]
and the (i, j)th element of (s× s) matrix SΣ−1

0
is{

SΣ−1
0

}
i,j

= Tr(Σ−1
0 ViΣ−1

0 Vj).

Under normality, the covariance matrix of the estimator ϑ̂ at the point ϑ0 is

varϑ0(ϑ̂) =
2

n− k1 − k2
S−1

Σ−1
0

. (8)

Proof. For simplicity, the proof proceeds for the univariate form of model (1) which can be
expressed as

vec(Y1,Y2) ∼ Nn(p1+p2)

{[
Ip1+p2 ⊗ (X1,X2)

]
vec
(

B11, B12

B21, B22

)
,
s∑
i=1

ϑiVi ⊗ In

}
. (9)

Here, the symbol vec(Y1) denotes the column vector composed of the columns of Y1. The
notation ⊗ means the Kronecker multiplication of matrices (Rao and Mitra 1988). Then,
according to Rao and Kleffe (1988), the ϑ0-locally MINQUE of the vector parameter ϑ in
model (9) is

ϑ̂ = S−1
D γ̂, D = [M[I⊗(X1,X2)](Σ0 ⊗ I)M[I⊗(X1,X2)]]

+,

where the ith component of the vector γ̂ is given as

γ̂i =
[
vec(Y1,Y2)

]′D(Vi ⊗ I)Dvec(Y1,Y2), i = 1, . . . , s.

Now it is sufficient to take into account the equality D = Σ−1
0 ⊗M(X1,X2), which is substituted

into the previous formulas, and to simplify each of the expressions. 2

The estimator of the variance components and its covariance matrix depends on approximate
values ϑ0. To eliminate this dependency, it is necessary to use an iterative procedure. The
calculated estimated values of the variance components are used in the next iteration as
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approximate ones. The iterative procedure is very robust. It usually stops after two iterations
for any initial value of the variance components even for distributions different from the
Gaussian (Bognárová, Kubáček, and Volaufová 1996).

Note that the iterated MINQUE is practically the same as the maximum likelihood estimator
in the case of Gaussian distribution. Moreover, the MINQUE procedure can be used even for
negative variance components and symmetric matrices Vi for errors with normal distribution.
The formulas for the estimators are the same as under the assumption of positive variance
components and p.s.d. matrices Vi.

If model (1) can be decomposed into (3), the variance components can be estimated on the
basis of either Y1 or Y2 in model (3). The explicit formulas for ϑ0-LMINQUE in the submod-
els follows directly from Lemma 1. Particularly, using the notation Σjj,0 for an approximate
value of matrix Σjj , j = 1, 2, the expressions for ϑ0-LMINQUE of ϑ in submodels (3) are
equal to

ϑ̂ =
1

n− kj S
−1

Σ−1
jj,0

γ̂, varϑ0(ϑ̂) =
2

n− kj S
−1

Σ−1
jj,0

, j = 1, 2.

The ith component of the vector γ̂ and the (p, q)th element of the matrix SΣ−1
jj,0

are given as

γ̂i = Tr
[
(Yj)′MXjY

jΣ−1
jj,0ViΣ−1

jj,0

]
,
{

SΣ−1
jj,0

}
p,q

= Tr(Σ−1
jj,0VpΣ−1

jj,0Vq).

If the mixed partitioned model includes also an intercept, the elimination transformation (7)
can be used. This transformation preserves not only the BLUEs of the regression parameters
matrices, but also the estimates of the variance components, as it will be shown in the following
theorem.

Theorem 1. The ϑ0-locally MINQUE of ϑ in models (6) and (7) are the same.

Proof. For the sake of simplicity, the proof proceeds for the univariate form of model (6).
Let us denote

ε =
(

vec(ε1)
vec(ε2)

)
,Y =

(
vec(Y1)
vec(Y2)

)
, Σ⊗ I =

(
Σ11 ⊗ I, Σ12 ⊗ I
Σ21 ⊗ I, Σ22 ⊗ I

)
,

A1 =
(

I⊗ 1, 0
0, I⊗ 1

)
, A2 =

(
I⊗X1, 0, I⊗X2, 0

0, I⊗X2, 0, I⊗X1

)
β1 = (b1,b2)′ , β2 =

(
vec(B11)′, vec(B22)′, vec(B21)′, vec(B12)′

)′
.

Then the model (6) can be rewritten as

Y = (A1,A2)
(
β1

β2

)
+ ε. (10)

By Rao and Kleffe (1988), the ϑ0-locally MINQUE of ϑ in model (10) is given as

ϑ̂ = S−1
G γ̂, G = [M(A1,A2)(Σ0 ⊗ I)M(A1,A2)]

+,

where γ̂i = Y′G(Vi ⊗ I)GY, i = 1, . . . , s. Further, using the relationships

PA1 = A1(A′1A1)−1A′1, P(A1,A2) = PA1 + PMA1
A2 ,

P(A1,A2)PA1 = PA1 , M(A1,A2) = MA1 −PMA1
A2 ,

we obtain
M(A1,A2)MA1 = M(A1,A2), M(A1,A2)MMA1

A2 = MA1MMA1
A2 .

Thus, the matrix G can be rewritten as

G = [M(A1,A2)(Σ0 ⊗ I)M(A1,A2)]
+ = [MMA1

A2(MA1(Σ0 ⊗ I)MA1)MMA1
A2 ]+ = G̃.
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Therefore, the equalities

G(Vi ⊗ I)G = G̃MA1(Vi ⊗ I)MA1G̃,

γ̂i = Y′G(Vi ⊗ I)GY = Y′MA1G̃MA1(Vi ⊗ I)MA1G̃MA1Y = γ̃i,

also holds. Summarizing the above results we obtain ϑ̂ = S−1
G γ̂ = S−1eG γ̃, i.e., the ϑ0-

LMINQUE of ϑ in model (10) and in the model MA1Y = MA1A2β2 + MA1ε are the same.
Using the relationship MA1 = diag{I ⊗M1, I ⊗M1} (diagonal matrix), the last model can
be rewritten into multivariate form (7), and thus the proof is finished. 2

If the variance components are estimated, the hypothesis about the decomposition of model
(1) can be tested by the plug-in statistics T21 and T12, when the matrices Σ̂jj =

∑s
i=1 ϑ̂iVi,(jj),

where Vi,(jj) is the corresponding part of Vi, j = 1, 2, are plugged into formulas (4). Testing
the decomposition of the model with the intercept (6) can be done by the plug-in statistics T21

and T12 for the transformed model (7), since the transformation affects neither the BLUEs of
the regression parameter matrices nor the MINQUE of the variance components.

Obviously, the substitution of the true values of the variance components by their estimated
values influences the optimum quality of the estimators B̂21, B̂12 and, consequently, the
significance level and the power of the test. The investigation of statistical properties of the
plug-in test statistics T21 and T12 is rather difficult and therefore we will study the quality of
the plug-in test statistic as a function of the variance components by sensitivity analysis as
it is shown in the next section.

4. Sensitivity analysis for the significance level

The main idea of the sensitivity approach (Kubáček 1996) is to consider the plug-in statistic
as a function of the variance components and to find a safe region in the parameter space of
the variance components where the approximation of the variance components does not cause
any essential damage of the significance level of the plug-in test statistic (Kubáček 2007b).
The plug-in test statistic can have a higher significance level. Let ε > 0 be the maximum
admissible increase of the significance level. The goal is to find a region in the parameter space
of the variance components such that shifts δϑ around the true value ϑ∗ within this region
cause the significance level of the plug-in test statistic T21 to be not greater than α/2 + ε/2.
(We consider the significance level α/2+ε/2 since the Bonferroni correction for multiple tests
on B21 = 0 and B12 = 0 is used.) Such a region is called an insensitivity region for the
significance level and will be denoted by Nε,T21 . More precisely, Nε,T21 is a neighborhood of
the vector ϑ∗ with the property

ϑ ∈ Nε,T21 ⇒ P
{
T21(ϑ) ≤ χ2

k2p1(1− α/2)
}
≥ 1− α/2− ε/2.

The derivation of the insensitivity region for the significance level is based on an approximation
of the plug-in test statistic T21 by T12(ϑ) = T21(ϑ∗) + δT21. The variable δT21 = δϑ′ ∂T21

∂ϑ
characterizes the change of the statistic T21(ϑ∗) caused by the shift δϑ around ϑ∗. Obviously,
the significance level of T21 increases with increasing δT21 and vice versa. Hence the problem
is to find the upper limit for δT21 so that the significance level increased by a maximum
tolerated value. Using the Chebyshev inequality it holds that

P
{
|δT21 − E(δT21)| ≥ t

√
var(δT21)

}
≤ 1
t2
, t > 0. (11)

The inequality (11) together with the probability statement for the tolerated significance level

P
{
T21 + δT21 ≥ χ2

k2p1(1− α/2)
} ≤ α/2 + ε/2,
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implies that for a sufficiently large t > 0 such that

P{δT21 < E(δT21) + t
√

var(δT21)} ≈ 1, (12)

the inequality E(δT21) + t
√

var(δT21) ≤ δε,T21 , where

δε,T21 = χ2
k2p1(1− α/2)− χ2

k2p1(1− α/2− ε/2), (13)

is a sufficient condition for the upper limit for δT21. The explicit form of the insensitivity
region Nε,T21 is stated in Theorem 2.

Theorem 2 The insensitivity region Nε,T21 for the significance level of the statistic T21 is

Nε,T21 =
{
ϑ∗ + δϑ :

(
δϑ− δε,T21A

−1a
)′A (δϑ− δε,T21A

−1a
) ≤ δ2

ε,T21

(
1 + a′A−1a

)}
,

where δε,T21 is given by (13),

a = k2

[
Tr(Σ−1

11 V1,(11)), . . . ,Tr(Σ−1
11 Vs,(11))

]′
, A = 2t2k2SΣ−1

11
− aa′,

and t > 0 is a sufficiently large number such that the probability statement (12) holds.

Proof. It is necessary to determine the mean value and the variance of variable δT21 which
characterizes a change of the statistic T21(ϑ∗) caused by the shift δϑ. Let

ξi =
∂T21(ϑ)
∂ϑi

∣∣∣
ϑ=ϑ∗

= −Tr
[
Y′1PMX1

X2Y1Σ
−1
11 (ϑ∗)Vi,(11)Σ

−1
11 (ϑ∗)

]
, i = 1, . . . , s.

The mean value of the variable ξi is

Eϑ∗(ξi) = −Tr
({[

Σ−1
11 (ϑ∗)Vi,(11)Σ

−1
11 (ϑ∗)

]⊗PMX1
X2

}
[Σ11(ϑ∗)⊗ I]

)
= −Tr(PMX1

X2)Tr
[
Σ−1

11 (ϑ∗)Vi,(11)

]
= −k2Tr

[
Σ−1

11 (ϑ∗)Vi,(11)

]
.

Further we calculate the covariance between the variables ξi and ξj :

covϑ∗(ξi, ξj) = 2Tr
({[

Σ−1
11 (ϑ∗)Vi,(11)Σ

−1
11 (ϑ∗)

]⊗PMX1
X2

}
[Σ11(ϑ∗)⊗ I]

×
{[

Σ−1
11 (ϑ∗)Vj,(11)Σ

−1
11 (ϑ∗)

]⊗PMX1
X2

}
[Σ11(ϑ∗)⊗ I]

)
= 2Tr(PMX1

X2)Tr
[
Σ−1

11 (ϑ∗)Vi,(11)Σ
−1
11 (ϑ∗)Vj,(11)

]
= 2k2

{
SΣ−1

11 (ϑ∗)

}
i,j
.

Now we are able to determine the upper limit for δT21 = δϑ′ξ. Let t > 0 be a sufficiently
large number such that (12) holds, i.e., with probability sufficiently near to one it is true that

δϑ′ξ < Eϑ∗(ξ′)δϑ+ t
√
δϑ′varϑ∗(ξ)δϑ ≤ δε,T21 .

Substituting the mean value and the covariance matrix of the vector ξ, and by a simple
calculation we obtain the inequality

δϑ′(2t2k2SΣ−1
11 (ϑ∗) − aa′)δϑ− 2a′δϑ ≤ δ2

ε,T21
,

which is equivalent with[
δϑ− δε,T21(2t2k2SΣ−1

11 (ϑ∗) − aa′)−1a
]′(2t2k2SΣ−1

11 (ϑ∗) − aa′)

× [δϑ− δε,T21(2t2k2SΣ−1
11 (ϑ∗) − aa′)−1a

] ≤ δ2
ε,T21

+ δ2
ε,T21

a′(2t2k2SΣ−1
11 (ϑ∗) − aa′)−1a,

thereby the statement is proved. 2
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Analogous considerations can be made for the plug-in test statistic T12. In this case the
explicit formula for the insensitivity region for the significance level results in

Nε,T12 =
{
ϑ∗ + δϑ :

(
δϑ− δε,T12B

−1b
)′B (δϑ− δε,T12B

−1b
) ≤ δ2

ε,T12

(
1 + b′B−1b

)}
,

where

δε,T12 = χ2
k1p2(1− α/2)− χ2

k1p2(1− α/2− ε/2),

b = k1

[
Tr(Σ−1

22 V1,(22)), . . . ,Tr(Σ−1
22 Vp,(22))

]′
, B = 2t2k1SΣ−1

22
− bb′.

The size of the insensitivity region depends on the parameters ε and t chosen by the user.
The parameter ε is related to the user’s opinion that ε causes a tolerable increase of the
significance level. The larger ε, the larger the insensitivity region, but also a higher significance
level follows. The parameter t corresponds to the approximation of the plug-in test statistic,
namely with the upper limit for the variable δT21 that describes the change of the statistic
T21(ϑ∗) caused by the shift δϑ. For t = 5, from the Chebyshev inequality (11) it follows that
at least 96% of the data values of δT21 must be within 5 standard deviations of the mean
or, equivalently, no more than 4% of the data values can be more than 5 standard deviations
away from the mean. If δT21 is approximately normally distributed, at least 99.7% of the
data values of δT21 must be within 3 standard deviations of the mean. Hence it is reasonable
to choose the parameter t in the interval 〈3, 5〉. The smaller t, the larger the insensitivity
region but also cases a higher tail probability. The procedure for the optimal choice of the
parameter t that maximizes the size of the insensitivity region is derived in Lešanská (2002a).

Both insensitivity regions Nε,T12 and Nε,T21 are suitable for a justification of the utilization
of plug-in joint tests T12, T21 for a decomposition of model (1) into two seemingly unrelated
submodels (3). The process is as follows. First, we determine estimates of the variance
components. Then we compute the insensitivity regions Nε,T12 and Nε,T21 for the estimated
values of the variance components and chosen values ε and t. Finally, we set the confidence
domain for the variance components for a sufficiently high confidence level and check whether
this confidence domain is embedded into the insensitivity regions. If this confidence domain
is included into both insensitivity regions, plug-in joint tests are admissible and, moreover,
the significance level of plug-in joint tests does not exceed the value of α+ε. If the confidence
domain is not embedded into both insensitivity regions, the experiment requires better design,
other measurement devices, or more observations to be sure that the approximation of the
variance components by their estimates do not cause an increase in significance level by more
than a tolerable ε. The criterion is very demanding, in some cases the confidence domain
is not embedded into the insensitivity regions, however, the estimated values of the variance
components lie in the insensitivity regions what implies that the increase of the significance
level is almost a tolerable one (see Section 5).

The determination of an exact confidence domain for the variance components is difficult
since the distribution of the estimator ϑ̂ is unknown even for a normally distributed vec-
tor vec(Y). Some approximation can be derived using the Bonferroni inequality and the
Chebyshev inequality which imply that

P

{
∀i = 1, . . . , s : |ϑ̂i − E(ϑ̂i)| ≤

√
s

α

√
var(ϑ̂i)

}
≥ 1− α.

Hence at least a (1 − α)100%-confidence domain for the variance components is a set given
by the Cartesian product

I1−α(ϑ) = Xs
i=1

{
u : |u− ϑ̂i| ≤

√
s

α

√
var(ϑ̂i)

}
.

Recall that the covariance matrix of the variance components estimator is given by (8).
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It can be easily proved, similarly as in Lešanská (2002b), that a k2-multiple of ϑ∗ makes a
homothetic change of the boundary of the insensitivity region for the significance level with
the coefficient k2 and the centre at the point 0.

5. Simulation study

By simulations we will study the behavior of the plug-in test statistics T12, T21 for the decom-
position of model (1) and the insensitivity regions for the significance level. We will consider
different choices of the covariance matrix, parameter matrices, number of observations and
the true model (model (1) or the system of seemingly unrelated submodels (3)).

We considered n = 40 and n = 400 observations, a multiresponse Yj
i·, j = 1, 2, with dimen-

sions p1 = 3 and p2 = 4, and the number of regressors equal to k1 = 2 and k2 = 2. The
parameter matrices were chosen as

B1 = B11 =
(

3, 2, 2
2, 3, 3

)
, B2 = B22 =

(
2, 4, 4, 1.5
4, 2, 4, 4

)
, (14)

B12 =
(

1, 3, 1, 15
2, 7, 8, 3

)
, B21 =

(
4, 4, 1
2, 8, 3

)
. (15)

The design matrices were considered in the form of X = 110⊗T and X = 1100⊗T, with the
matrix T

T =


1, 0, 0, 0
1, 1, 0, 0
1, 1, 1, 0
1, 0, 1, 1

 .

The symbol 110 denotes the vector of 10 ones. Similar designs of experiments were used in
the simulation study in Fǐserová and Kubáček (2012).

The observation matrices Y1 and Y2 were generated in a natural way, a normally dis-
tributed error term was added to the true mean. The multiresponses were considered to
be independent with the same covariance matrix Σ chosen in the following two forms: either
V1 = diag{1, 1, 1, 0, 0, 0, 0} and V2 = diag{0, 0, 0, 1, 1, 1, 1} (the corresponding covariance
matrix is denoted by Σ1), or V1 = diag{1, 1, 0, 0, 0, 0, 1} and V2 = diag{0, 0, 1, 1, 1, 1, 0} (co-
variance matrix Σ2). The variance components were chosen either ϑ1 = 5 and ϑ2 = 3, or
ϑ1 = 0.05 and ϑ2 = 0.03.

Table 1: Empirical probabilities (in %) of rejecting the hypothesis “the true model is the
system of two seemingly unrelated models (3)” on the significance level α. Data are simulated
from model (3).

ϑ1 = 5 and ϑ2 = 3 ϑ1 = 0.05 and ϑ2 = 0.03
n = 400 n = 40 n = 400 n = 40

parameter matrices α Σ1 Σ2 Σ1 Σ2 Σ1 Σ2 Σ1 Σ2

(14) 5 5.2 4.9 6.1 5.9 5.2 5.1 5.7 5.6
(14) 1 0.9 1.1 1.5 1.2 0.9 1.1 1.3 1.3

100*(14) 5 5.1 5.1 5.6 5.6 4.6 5.0 6.2 5.6
100*(14) 1 1.1 1.1 1.5 1.1 1.0 1.2 1.3 1.3

10 000 simulations were done for all cases. First, the data were simulated from the system
of two seemingly unrelated submodels (3), i.e., for matrices B1, B2 given by (14) and for
zero matrices B12, B21. The empirical probabilities of rejecting the hypothesis B12 = 0 and
B21 = 0 simultaneously are presented in Table 1. We can see that the obtained empirical
significance levels for plug-in test statistics T12 and T21 are essentially equal to the nominal
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Figure 1: Insensitivity regions for the significance level α = 1% together with 95%-confidence
domain for the variance components for different sample sizes (left: n = 400; right: n = 40).
N5,T21 by solid line, N5,T12 by dashed line. Data are simulated from model (3) for Σ2, ϑ1 = 5,
ϑ2 = 3.

levels. Fǐserová and Kubáček (2012) have shown in a simulation study that the joint test
by T12 and T21 is conservative in case of a known covariance matrix, the obtained empirical
significance level was equal to half of the nominal one. For data simulated from the model
(1), i.e., for matrices B11, B22 and B12, B21 given by (14) and (15), respectively, the plug-in
test statistics T21 and T12 rejected the decomposition of model (1) in all cases.

Finally we will investigate the insensitivity regions for the significance level. Let us assume a
tolerable increase of the significance level α = 1% or α = 5% equal to ε = 5%. It means, we
are satisfied if the true type I error rate is α/2 + ε/2 = 5% (3%) for a nominal significance
level α = 5% (α = 1%) for each of the plug-in test statistic T21 and T12. Further, we assume
that the parameter t equals 3, i.e., at least 89% of data values of δT21 and δT12 must be within
3 standard errors of the mean.

For α = 1%, the resulting insensitivity regions are displayed together with 95%-confidence
domain for the variance components in Figure 1. The data were simulated from model (3) for
the covariance matrix Σ2 and ϑ1 = 5, ϑ2 = 3. We can see that the insensitivity regions N5,T21

and N5,T12 are large enough. The statistic T12 allows greater shifts in direction of ϑ1, and T21

in direction of ϑ2. It means, the statistic T12 is more sensitive to changes in ϑ2, and T21 in
ϑ1. Furthermore, we can notice, that the confidence domain for the variance components is
embedded in both insensitivity regions for sample size n = 400 (left figure). For smaller sample
size, the confidence domain increases more than the insensitivity ones (enlarged only slightly)
and thus the confidence domain is not embedded into the insensitivity regions. Nevertheless,
almost all variance components estimates lie within the insensitivity regions. Unfortunately,
this is not generally true. The observed relative frequencies of the variance components
estimates within the insensitivity regions are indicated in Table 2. The results are averages
of a hundred times repeated 10 000 simulations. Obviously, the confidence region for the
variance components is smaller for greater sample size and thus the relative frequencies are
essentially 100%. However, for smaller sample size and significance level α = 5%, the relative
frequencies are only 55-70%. Nevertheless, in this case the plug-in test is sufficiently good
as it is shown in Table 1. Large differences between the relative frequencies are due to large
differences in size of the insensitivity regions for significance levels α = 5% and α = 1%. For
example, in the case ϑ1 = 5 and ϑ2 = 3, the semiaxes of insensitivity region N5,T21 are 1.75
and 1.28 for α = 5%, and 4.35 and 2.98 for α = 1%. This effect is related to the construction
of the insensitivity regions, namely with the fact that a tolerable increase ε of the significance
level α leads to larger δε,T21 , δε,T12 for smaller α.

Note that the insensitivity regions for the significance level are shown as ellipses in Figure 1,
although, in general, they should be open sets to the right hand corner. This relates to the fact
that the p-values becomes less extreme with increasing variances. However, the construction
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Table 2: Relative frequency (in %) of the variance components estimates within insensitivity
regions for the significance level. Data are simulated from model (3) for Σ2.

ϑ1 = 5 and ϑ2 = 3
n = 400 n = 40

parameters α N5,T21 ∩N5,T12 N5,T21 N5,T12 N5,T21 ∩N5,T12 N5,T21 N5,T12

(14) 5 98.9 99.8 99.6 56.7 66.7 67.6
(14) 1 100 100 100 96.7 98.3 97.9

100*(14) 5 98.8 99.8 99.7 55.1 67.3 64.5
100*(14) 1 100 100 100 96.9 98.5 98.0

ϑ1 = 0.05 and ϑ2 = 0.03
n = 400 n = 40

parameters α N5,T21 ∩N5,T12 N5,T21 N5,T12 N5,T21 ∩N5,T12 N5,T21 N5,T12

(14) 5 98.68 99.35 99.22 54.79 65.61 65.54
(14) 1 100 100 100 97.04 98.47 98.17

100*(14) 5 98.91 99.84 99.78 58.35 68.85 68.30
100*(14) 1 100 100 100 95.94 98.22 97.21

of the insensitivity regions for estimators or the confidence level is different, and thus we
proposed closed regions due to a uniform methodology and for easier handling.

The insensitivity regions for the significance level and the confidence domain for variance
components result in intervals for the covariance matrix Σ1 since in this case the statistic T21

is a function of the parameter ϑ1 only, and T12 is a function of ϑ2. The obtained results are
similar as in the case of the covariance matrix Σ2 and therefore they are omitted.

6. Conclusion

The proposed plug-in joint test seems to be a proper method for a decomposition of a mixed
multivariate model (with independent responses with the same covariance matrix) into two
seemingly unrelated submodels. The decomposition is advantageous at least from two view-
points. The estimators of the regression parameters are more efficient, and data collection
can be easier. The sensitivity approach is an appropriate technique for a justification that the
estimated values of the variance components can be plugged in without any essential deteri-
oration of the regression coefficients estimates and the inference. This is based on identifying
safe regions in the space of the variance components where plug-in estimators cause only
negligible changes of the optimum quality of estimators and test statistics. In particular, the
proposed insensitivity region for the significance level guarantees that the true type I error
rate does not exceed the chosen tolerable value.

The used methodology is general and suitable for more complex (mixed) models, e.g. models
with restrictions on the regression parameters, singular models, and other statistical inference
such as a confidence level or power of a test as well.
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Abstract

We discuss the analysis of count time series following generalised linear models in
the presence of outliers and intervention effects. Different modifications of such models
are formulated which allow to incorporate, detect and to a certain degree distinguish
extraordinary events (interventions) of different types in count time series retrospectively.
An outlook on extensions to the problem of robust parameter estimation, identification
of the model orders by robust estimation of autocorrelations and partial autocorrelations,
and online surveillance by sequential testing for outlyingness is provided.

Keywords: discrete data, model identification, robustness, (partial) autocorrelations, surveil-
lance.

1. Introduction

Time series of counts are measured in various disciplines whenever a number of events is
counted during certain time periods. Examples are the monthly number of car accidents in a
region, the weekly number of new cases in epidemiology, the number of transactions at a stock
market per minute in finance, or the number of photon arrivals per microsecond in a biological
experiment. A natural modification of the popular autoregressive moving average (ARMA)
models for continuous variables is based on the assumption that the observation Yt at time
t is generated by a generalised linear model (GLM) conditionally on the past, choosing an
adequate distribution for count data like the Poisson and a link function η(·). This approach
of time series following a GLM is pursued e.g. by Kedem and Fokianos (2002). Focusing on
first order models, we consider time series (Yt : t ∈ N0) following a Poisson model

Yt|FYt−1 ∼ Pois(λt), (1)
η(λt) = β0 + β1η(Yt−1 + c) + γ1η(λt−1), t ≥ 1,

where FYt−1 stands for the σ-algebra created by {Yt−1, . . . , Y0, λ0}, while β0, β1, γ1 are unknown
parameters, and c is a known constant. Models employing other distributions like the negative
binomial could be treated similarly.
The natural choice for η is the logarithm, and this is the reason for adding the constant c to
Yt−1 in the term η(Yt−1+c), since we need to avoid difficulties arising from observations which
are equal to 0. Following Fokianos and Tjøstheim (2011), who develop ergodicity conditions
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for a subclass of the arising log–linear models, we set c = 1. Another choice for η which has
received some attention is the identity, η = id, see e.g. Ferland, Latour and Oraichi (2006).
In this case we can set c to 0. For ergodicity conditions for this model class see Fokianos,
Rahbek and Tjøstheim (2009).

We briefly discuss possible interpretations of models like those given in (1) in the context
of epidemiology, with Yt denoting the number of new cases observed at time t. For a fixed
population size, the conditional mean λt measures the risk of a person to fall ill at time t then.
Our model assumes that all effects on λt are linear after transformation to a suitable scale by
η. The term η(Yt−1 + c) in the second equation models the dependence of the transformed
conditional mean η(λt) and thus of the observation Yt on the previous value Yt−1, with β1

measuring the strength of this dependence. A large number of cases Yt−1 at time t − 1
can cause a large number of cases Yt at time t because the risk of infection increases. The
term η(λt−1) additionally describes that there can be periods of increased risk also because
of certain weather conditions or expositions, for instance, and γ1 measures the size of such
dependencies.

Given a model as formulated in (1), a basic question is whether it properly describes all the
observations of a given time series, or whether some observations have been influenced by
extraordinary effects, which are called interventions in what follows. Outlier and intervention
analysis for ARMA processes of continuous variables has been developed by Fox (1972), Box
and Tiao (1975), Tsay (1986), Chang, Tiao and Chen (1988) and Chen and Liu (1993), among
others. However, counts are positive and typically right-skewed, causing a need for especially
designed models and procedures.

The remainder of the paper is organised as follows. Section 2 generalises the intervention
models proposed by Fokianos and Fried (2010, 2012) for time series which are Poisson condi-
tionally on the past, with η being the identity and the log-link, respectively. Section 3 reviews
first attempts of robust fitting of models with known link function and model orders. Sec-
tion 4 reports a first study of model identification for the linear model applying the identity
link, using robust estimators of the autocorrelations and partial autocorrelations. Section 5
provides an outlook to surveillance, that is online monitoring by sequential outlier detection.

2. Models for Intervention Analysis

A possibility to introduce an extraordinary effect on a time series (Yt) generated by (1) is the
assumption that from a time point τ on the underlying conditional mean process is changed
by adding terms ωδt−τI(t ≥ τ) to η(λt), so that instead of (Yt) we observe a contaminated
process (Zt) generated from a model with contamination,

Zt|FZt−1 ∼ Pois(λct), (2)
η(λct) = β0 + β1η(Zt−1 + c) + γ1η(λct−1) + ωδt−τI(t ≥ τ), t ≥ 1.

In obvious notation, (λct) is the contaminated process of conditional means, which coincides
with (λt) until time τ − 1 and then becomes affected, while FZt−1 denotes the σ-algebra
representing the information on the past of the contaminated process and the initial values,
analogous to FYt−1. The new parameter ω determines the size of the effect, I(t ≥ τ) indicates
whether t ≥ τ or not, and δ ∈ [0, 1] determines whether the effect is concentrated on time τ
(in case of δ = 0), causing a spiky outlier, whether the whole level is shifted from time τ on
(δ = 1), or whether a geometrically decaying transient shift with rate δ ∈ (0, 1) occurs. Note
that even in case of δ = 0 the whole future of the process is affected by an intervention, since
its effect enters the dynamics both via Zt and η(λct), t ≥ τ . Continuing the explanations given
above in the context of epidemiology, an intervention according to (2) can be interpreted as
an internal change of the data generating process. For some reason, e.g. due to particular
weather conditions or other expositions, the conditional mean of the process (the risk) changes
in an unpredictable manner at time τ , and this changes the observation for that time point,
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and also the observations thereafter.

Liboschik et al. (2013) explore another intervention model in case of the identity link. In their
approach, an intervention affects the observation at time τ , but not the underlying conditional
mean. This can be understood as an external change, as the contaminated observation Zτ
equals the sum of the uncontaminated value Yτ plus a random number Cτ , which arises
because of extraordinary reasons and enters the dynamics of the process in the same way as
Yτ , while the underlying risk λτ initially is not affected. An example might be people being
infected due to external reasons, e.g. on a journey. The modified intervention model with a
general link function η reads

Zt|FZt−1 ∼ Pois(λct), (3)
η(λct) = η(λt) + ωδt−τI(t ≥ τ),
η(λt) = β0 + β1η(Zt−1 + c) + γ1η(λt−1), t ≥ 1.

The last two equations describing the conditional mean process can be summarised as

η(λct) = β0 + β1η(Zt−1 + c) + γ1

(
η(λct−1)− ωδt−1−τI(t− 1 ≥ τ)

)
+ ωδt−τI(t ≥ τ) .

This shows the difference to model (2) more clearly.

If the time point τ and the type of an intervention, i.e. the value of δ, both are known, an
intervention model as formulated in (2) or (3) can be fitted by maximising the conditional
likelihood iteratively, starting from suitable initial values. The existence of such a known
intervention can be confirmed by comparing the test statistics of the corresponding score
test to the upper percentiles of its asymptotical χ2

1-distribution, as described in the papers
mentioned above. If only the time point τ is unknown, but the type is known, simulation
experiments indicate that parametric bootstrap procedures work rather well: fit the model
without intervention effects and calculate the score test statistics for all time points. Use
the maximum of all score test statistics for all time points as the final test statistic. Then
generate artificial time series without interventions from the fitted model and calculate the
corresponding maximum score test statistic as well. Opt for an intervention at that time
point which maximises the score test statistic for the real data, if it is among the largest
100α-percent of all maximum score test statistics. If the type of the intervention is unknown
as well, the maximum score test statistics can be calculated for each type given either model
(2) or (3). The simulations suggest that preference should be given to level shifts (δ = 1)
if they turn out to be significant, since a level shift usually causes the test statistics for the
other types of intervention effects also to become large, while the reverse effect is much less
pronounced. Multiple interventions can be dealt with by estimating the effect of a detected
intervention and subtracting it from the time series, before the cleaned data are analysed with
respect to further interventions.

Note that the above intervention models are not able to describe so called additive outliers
representing e.g. pure measurement or reporting errors, i.e. the case where a single observation
is changed without any effects on the future of the process. Actually, such additive outliers
are difficult to deal with by a frequentist approach, since we would need to condition on
the unobserved value Yτ instead of the contaminated Zτ . Fried et al. (2013) develop a
Bayesian approach for additive outliers, applying Markov Chain Monte Carlo techniques.
Their simulation results provide evidence that in this way it is possible to deal with additive
outliers if there are several of them. A single or very few additive outliers pose difficulties to
a Bayesian approach based on little informative prior distributions, since they do not provide
enough information on that component of the underlying mixture distribution which causes
the outliers.

Furthermore it should be noted that we implicitly assume intervention effects to be additive
when using the identity link, and multiplicative on the original scale when using the log-link,
since for simplicity we introduce the intervention effects in the same way as the dependencies
on the past. Another assumption underlying the intervention models formulated above, and



184 Outliers and Interventions in Count Time Series

also the common outlier and intervention models which have been proposed for ARMA pro-
cesses in the literature, is that the dynamics of the process does not change and follows the
same model after an intervention as before it.

For an illustration we analyse an artificial time series of length n = 200 generated from model
(2) with η = id, β0 = 3, β1 = 0.4, γ1 = 0.3, an internal level shift of size ω1 = 4 at time
τ1 = 100 and an internal spike of size ω2 = 30 at time τ2 = 150.
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Figure 1: Results obtained from fitting both intervention models to a time series with an
internal level shift at time 100 and an internal spike at time 150.

The results obtained from fitting both intervention models to these data are illustrated in
Figure 1. The spike and the level shift are detected when using either of these two models,
albeit with some differences between the estimated parameter values and outlier sizes, ac-
cording to the different influences of such patterns on the time series. These findings confirm
those of Liboschik et al. (2013): interventions can be detected successfully even if the wrong
model is used. This is good news and also bad news: it is good news since it implies a certain
robustness against model misspecification, but it makes a statement about the cause of an
intervention effect and about its mechanism (internal / external) difficult. More work on
model selection is needed for this.

3. Robust estimation

First attempts are available concerning the robust estimation of the model parameters in
the presence of outliers and intervention effects. This is even more important because of the
difficulties in specifying intervention effects correctly and because of the remaining difficulties
in dealing with a single or a few additive outliers outlined above.

M-estimators are a popular generalisation of (conditional) maximum likelihood estimators
which provide some robustness against outliers by replacing the log-likelihood or the score
function by more robust alternatives. An M-estimator of a parameter θ can be defined as the
solution of a score equation

n∑
t=1

ψ(yt, θ̂) = 0 . (4)

Maximum likelihood estimation is derived by choosing ψ(y, θ) as the derivative of the log-
density ln fθ(y) with respect to θ, i.e. as the usual score function, while ψ(y, θ) = y − θ
corresponds to least squares and ψ(y, θ) = sign(y − θ) to least absolute deviation estimation
of location. The popular Huber M-estimator of the location parameter θ in a location-scale
model with known (or preliminarily estimated) scale σ is derived from

ψ(y, θ) =
y − θ
σ

I(−kσ ≤ y − θ ≤ kσ) + k sign(y − θ)I(|y − θ| > kσ),
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where k is a tuning constant which determines the efficiency and the robustness of the resulting
estimator. For k = 0 we get least absolute deviations and for k → ∞ we get least squares.
The score function of the Huber M-estimator is monotone. This guarantees a unique solution
which can easily be determined iteratively starting from any initial value. The score function
of the Tukey M-estimator,

ψ(y, θ) =
y − θ
σ

(
k2 − (y − θ)2

σ2

)2

I(−kσ ≤ y − θ ≤ kσ),

however, is redescending to 0 as y−θ approaches ±kσ. This leads to the possibility of multiple
solutions of the defining score equations (4).

M-estimation of generalised linear models using the Huber ψ-function has been treated by
Cantoni and Ronchetti (2001). However, in our basic model (1) we regress on previous ob-
servations and previous conditional means, and it is well known that monotone M-estimators
like those based on the Huber function need further modifications to become robust against
outlying regressors. Cantoni and Ronchetti (2001) consider covariates following an elliptical
distribution and use weights based on robustly estimated Mahalanobis distances to down-
weight observations with outlying regressors. This approach is not natural in our context,
since we regress on previous observations, which are conditionally Poisson, or some transfor-
mation of them. Empirical work on model (2) with the log-link and γ1 = 0, that is a model
without feedback, indicates that in the cases of level shift and transient shift there are no
significant differences between the classical maximum likelihood estimation and the approach
based on Cantoni and Ronchetti (2001). This agrees with findings for Gaussian ARMA mod-
els, that maximum likelihood and least squares work rather well in case of outliers which
conform to the dynamics of the process. In the case of additive outliers, the weighted ap-
proach through robust Mahalanobis distances was found to perform much better than the
classical maximum likelihood estimation, especially as the number of outliers increases. In
fact, some further empirical work on the feedback case (γ1 6= 0) indicates that the Cantoni
and Ronchetti (2001) estimation approach performs better with weights (Kitromilidou and
Fokianos, 2014).

Maronna, Martin and Yohai (2006) recommend Tukey’s ψ-function since its redescending
behavior completely eliminates the influence of huge outliers and provides some robustness
even in the case of outlying regressors. However, we need to use highly robust initial parameter
estimates then, in order not to get trapped in a wrong solution when trying to solve (4)
iteratively. This and the discreteness and strong asymmetries of Poisson models pose further
problems which are not encountered in ordinary symmetric location-scale models. This will
briefly be illustrated in the context of independent Poisson data in the following.

Cadigan and Chen (2001) investigate a modification of the Huber score function for the
Poisson distribution. Under Poisson assumptions, the variance σ2 equals the mean θ, so that
we can replace σ by

√
θ in the above score functions, see also Elsaied (2012). Furthermore, the

expectation of ψ(Y, θ) has to be zero for getting asymptotically unbiased estimates. This can
be accomplished by introducing a bias correction a and replacing (y− θ)/σ by (y− θ)/√θ−a
in the above formulae. Given the need for a highly robust initial estimate when using the
Tukey ψ-function, we might want to apply the median of the data, but this only works if it
is not zero because of our scaling by

√
θ̂, and it provides only a very rough estimate if the

sample median is small. Elsaied (2012) proposes an adaptive estimate instead, combining the
sample median with an estimate derived from the frequency of zero observations.

The asymptotical distribution of an M-estimator under suitable regularity conditions is
N(θ, Vψ(θ)), with the asymptotical variance Vψ(θ) = E(ψ(Y, θ)/Bθ)2, where
Bθ = ∂Eψ(Y, θ)/∂θ, see e.g. Maronna, Martin and Yohai (2006). The relative efficiency of an
M-estimator as compared to the maximum likelihood estimator, which is the sample mean,
under these conditions thus becomes θ/Vψ(θ), and is illustrated in Figure 2. Note that an
estimator with a fixed tuning constant k does not achieve a desirable high level of efficiency
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Figure 2: Asymptotical efficiencies of the Huber and the Tukey M-estimator with different
tuning constants k for different values of the mean θ.

for all possible values of θ. For further investigations in this respect and a first approach to
robust M-estimation for model (1) with the identity link see Elsaied (2012).

4. Robust model identification

Besides the robust estimation of the parameters of a specific model, the proper identification
of the link function and the model orders gets more complicated in the presence of outliers.
In the following we provide a first robustness study for the identification of the model orders
in case of a linear model with the identity link.
Two common tools for the choice of the model orders of linear time series models are the
sample autocorrelation function (SACF) and the sample partial autocorrelation function
(SPACF). However, these are strongly affected by outlying observations so that there is a
need for robust and efficient alternatives. Let y = (y1, . . . , yn)′ be an observed time se-
ries. We consider estimation of the autocorrelation at lag h by a robust bivariate correlation
estimator applied to the vector yht = (y1+h, . . . , yn)′ and the vector of lagged observations
yht−h = (y1, . . . , yn−h)′. We consider the rank-based correlation estimators Spearman’s ρ,
Kendall’s τ and Gaussian rank (for a comparison in the bivariate context see Boudt et al.,
2012). Another class of autocorrelation estimators, which is based on an idea of Gnanadesikan
and Kettenring (1972), employs any robust univariate scale estimator v̂ar(·). We use a variant
bounded between -1 to 1 inclusive, which at lag h is given by

âcfGK(y;h) =
v̂ar(yht + yht−h)− v̂ar(yht − yht−h)
v̂ar(yht + yht−h) + v̂ar(yht − yht−h)

.

Ma and Genton (2000) study this Gnanadesikan-Kettenring (GK) approach in the Gaussian
framework, using the highly robust Qn estimator of scale proposed by Croux and Rousseeuw
(1992). We additionally consider the median absolute deviation from the median (MAD),
the 10% and 20% winsorised variance, the interquartile range (IQR), as well as the highly
robust Sn (Croux and Rousseeuw, 1992) and τ (Maronna and Zamar, 2002) estimators of
scale. Apart from the winsorised variance, these estimators are on the scale of the original
data and need to be squared.
We compare estimators which are corrected such that they achieve consistency at the normal
distribution. Note that the normal distribution is a limiting case of a Poisson distribution
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Figure 3: Efficiency of autocorrelation estimators at lag h = 1 relatively to the SACF. Time
series of length 100 are simulated from model (1) with the marginal mean given on the
horizontal axis and from a N(λt, λt) model with a marginal mean of 50 (points on the very
right of each plot).

with mean tending to infinity. However, we cannot expect this Fisher-consistency correction
to hold true, especially in the case of a clearly skewed Poisson distribution with a small mean.
Moreover, the marginal distribution of a time series from model (1) is strictly speaking only
Poisson under the null hypothesis of independence.

In our simulation study we generate time series with 100 observations from the first order
linear Poisson model (1) with η = id, c = 0 and γ1 = 0. We consider scenarios with a true
autocorrelation at lag h = 1 of zero (β1 = 0) and of 0.5 (β1 = 0.5). The results are averaged
over 10 000 repetitions for each scenario and reported as a function of the marginal mean
µ = β0/(1−β1). The shown relative efficiencies are the ratio of the mean square errors of the
SACF and the respective estimator.

The GK autocorrelation estimators based on Qn (see Figure 3), Sn, MAD and IQR are
unsuitable for small counts, as these estimators are unstable due to the high proportion
of ties in such data. It frequently happens that the scale estimations v̂ar(yht + yht−h) and
v̂ar(yht − yht−h) coincide, resulting in an autocorrelation estimate of zero, or that one or both
of them collapse to zero, resulting in an estimate of ±1 or a non-computable autocorrelation
estimation, respectively. Particularly for small marginal means, we get zero estimates with
high probability, causing a super-efficient performance if the true autocorrelation is zero.
Implosion, that is breakdown to zero, is a known problem of many robust scale estimators.
But not even the Qn estimator, which showed the best performance with respect to implosion
among many other alternatives in a study of Gather and Fried (2003), does perform acceptably
in the case of small counts. We also tried variants of the Qn using the 50%- and 75%-quantile
of the pairwise distances, instead of the 25%-quantile as it is usually employed. Yet, for
counts with low means none of these alternatives perform well. The τ estimator of scale
as implemented by Maronna and Zamar (2002) is based on the variance estimation of the
MAD and hence also performs poorly. We conclude that none of these popular highly robust
scale estimators seems to be appropriate for small counts. Particularly for a low winsoring
proportion, the winsorised variance estimator results in smaller problems with stability than
the estimators mentioned before and will be considered further.

Figure 3 reconfirms the result that the efficiency of the estimators relatively to the SACF
tends to its value achieved under a normal distribution. The Gaussian rank estimator has a
very high relative efficiency both for uncorrelated and autocorrelated data, which does not
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Figure 4: Efficiency of autocorrelation estimators at lag h = 1 for contaminated Poisson data
relatively to the SACF for uncontaminated Poisson data. We contaminated 5% of the 100
observations with additive outliers of size five times the marginal standard deviation. Left:
Patchy outliers in the centre. Right: Isolated outliers at arbitrarily chosen positions 17, 40,
55, 72 and 92.

depend a lot on the marginal mean. Spearman’s ρ correlation estimator behaves in a similar
fashion, but has a lower relative efficiency of about 90% on uncorrelated data. In contrast,
the relative efficiency of Kendall’s τ depends very much on the marginal mean. In case of
uncorrelated data its relative efficiency is below 50% for small means and even for large means
slightly below Spearman’s ρ.

To study the robustness properties of the estimators, we contaminate the time series of in-
dependent data, that is β1 = 0, with a patch of 5% additive outliers in the centre and the
autocorrelated ones with 5% of isolated additive outliers. The first outlier scenario is known
to bias the estimation towards one and the latter one biases towards zero, which is away from
the true values of zero and 0.5, respectively. For autocorrelation estimation when β1 = 0,
outlier patches are the worst case, whereas for time series with β1 > 0 they can even compen-
sate for an existing downward bias in finite samples. The simulation results in Figure 4 can
be interpreted as the loss of efficiency compared to the SACF for uncontaminated data from
the same model.

The outlier patch has a strong effect on the efficiency of the autocorrelation estimators for
uncorrelated data (see Figure 4 left). The ordinary SACF is not robust and drops down to a
relative efficiency of around 5%. The rank-based autocorrelation estimators show qualitatively
the same pattern of increasing relative efficiency for increasing marginal mean. The Gaussian
rank correlation, which has been the most efficient rank-based estimator for clean uncorrelated
data, is the least robust one, because it gives more influence to the largest and the smallest
observations. The 10%-winsorised variance has an efficiency of around 10% relatively to the
SACF for clean data, which also increases with the marginal mean to about 40%. The 20%-
winsorised variance is in principle slightly less efficient and shows a similar behaviour but is,
as for uncontaminated data, quite unstable for low means.

The same number of isolated outliers for moderately correlated data has a weaker effect on the
efficiency of the autocorrelation estimators than the outlier patch for uncorrelated data (see
Figure 4 right). Unlike in the latter situation, we observe a decreasing relative efficiency for
an increasing marginal mean for all estimators, except for the instability of the GK estimation
based on the 20%-winsorised variance, which has been discussed before. Again, the Gaussian
rank based estimator is the least efficient among the rank-based estimators, but this time
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Figure 5: Estimated PACF of a simulated INARCH(2) time series of length 100 with pa-
rameters β0 = 0.4, β1 = 0.5 and β2 = 0.3. Left: Clean data. Right: Contaminated with
five additive outliers of size five times the marginal standard deviation at arbitrarily chosen
positions 17, 40, 55, 72 and 92.

Kendall’s τ is much more efficient than Spearman’s ρ, particularly for low marginal means.

Because of the instability of most of the other estimators we recommend to use one of the
rank-based autocorrelation estimators for count time series with small counts. When choosing
an autocorrelation estimator one should take into account both, the desired efficiency at clean
data and the desired robustness properties.

We illustrate the usefulness of robust autocorrelation estimation for identification of the model
order with a simulated example. Consider a time series (Yt : t ∈ N0) from an integer-valued
ARCH model of unknown order p ∈ N0, called INARCH(p), with Yt|FYt−1 ∼ Pois(λt) and
conditional mean equation λt = β0 + β1Yt−1 + · · ·+ βpYt−p for t ≥ 1. We want to determine
the model order p. The time series (Yt : t ∈ N0) has the same second-order properties as an
AR(p) model (cf. Ferland et al., 2006). Hence, it is known that the partial autocorrelation
function (PACF) is non-zero for lags up to p and zero for larger lags. We obtain the estimated
partial autocorrelation function from the estimated autocorrelation function by applying the
Durbin-Levinson algorithm (see for example Morettin, 1984).

Looking at Figure 5, we see that one can correctly identify the model order of an INARCH(2)
model by looking at the SPACF or at the estimated PACF derived from the ACF estimation
based on Spearman’s ρ: both estimations are clearly larger than zero for the first two lags
and close to zero for all other lags. In case of a contamination with isolated outliers the
non-robust estimation with the SPACF is pushed towards zero, such that one might falsely
identify a model of order p = 0. As opposed to this, the robust estimation of the PACF with
Spearman’s ρ is not so strongly affected by the outliers and would still allow a correct model
specification.

Since the Spearman correlation coefficient measures monotone, but not necessarily linear de-
pendence, one might speculate about its possible value for the identification of the model
orders in case of models applying (monotone) link functions different from the identity. How-
ever, a thorough examination of this is beyond the scope of this work.

5. Surveillance

The methods for detection of intervention effects in count time series described above can be
applied retrospectively, i.e. when we observe the whole time series before it is analysed. An
open problem so far is how these models can be used for surveillance, i.e. online detection of
changes. This is an interesting problem for example in epidemiology, where we want to detect
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Figure 6: Simulated example for the proposed monitoring procedure. The value observed at
time 51 is beyond the 99.9% percentile of the prediction, but not the marginal distribution,
and would thus be identified as an outlier. A normal approximation would provide somewhat
different critical values but the same conclusion in this case.

the outbreak of an epidemic with only short time delays.

An intuitive approach is to compare an incoming observation yn+1 to its 1-step prediction
λ̂n+1, obtained by fitting model (1) from the data observed until time point n, plugging in the
estimated parameters into the formula for η(λn+1) and applying the inverse transform η−1.
Given such a model, there is evidence of an extraordinary effect at time n+ 1 if yn+1 is larger
than the upper 1 − αN percentile of a Poisson distribution with mean λ̂n+1. Assuming the
model and its parameters to be known exactly, choosing αN = 1−(1−α)1/N ensures that we do
not falsely detect any outlier with probability 1−α when applying this rule to N subsequent
predictions. This follows along the same lines as in Davies and Gather (1993), who treat
the independent case, since we control the probability of detecting an outlier conditionally
on the past FYn . As an example, for N = 50 predictions an individual level of αN = 0.1%
yields a global level of α = 4.9%. Other error probabilities αN can be chosen for tuning the
sensitivity and the specificity of the sequential detection procedure. For large means λ̂n+1 of
the prediction distribution one would also need to consider downward outliers. In this case
one defines, in the terminology of Davies and Gather (1993), an outlier identifier by a lower
and an upper bound both depending on αN .

We illustrate the approach outlined above with a simulated example. We generate a time
series from the first order linear Poisson model (1) with η = id, c = 0, β0 = 1, β1 = 0.3
and γ1 = 0.2 (see Figure 6 top). In order to assess whether observation y51 is notably large,
we fit the model on the previous observations y1, . . . , y50 and, based on this, compute its
1-step ahead prediction λ̂51. Compared with the 99, 9% percentile of the 1-step prediction
distribution for y51, a Poisson with mean λ̂51, the observed value y51 is large and therefore
identified as a potential outlier (see Figure 6 bottom left). In this case, one would have
come to the same decision if we compare y51 with the 99.9% percentile of a N(λ̂51, λ̂51), a
normal approximation of the 1-step prediction distribution. Note that we would not have
identified this observation as a potential outlier if we compare it with the 99.9% percentile
of the marginal distribution of the process (see Figure 6 bottom right). Since no analytical
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formula for this percentile is available, we approximated it by simulation of a time series with
100 000 observations.

An analysis of a single observation cannot tell us which type of intervention occurs, e.g.
whether there is a spiky outlier or a level shift. For this we need to wait some more time
points until further values yn+2, yn+3, . . . , yn+m are observed, with a suitably chosen delay
m ∈ N. Instead of its 1-step ahead prediction, a comparison of yn+h to its h-step ahead
prediction might be advantageous then, since the 1-step ahead prediction will strongly be
affected by a level shift at time n + 1 due to its use of yn+1, . . . , yn+h−1. To the best of our
knowledge, so far there are no simple formulae available for the conditional expectation of
Yn+h given FYn if h ≥ 2, which is the natural candidate for h-step ahead prediction, so that
we would need to rely on simulating the future given the fitted model, or use simple linear
predictions instead, sticking the previous predictions ŷt+h−1 = λ̂t+h−1 into the formula for
η(λ̂t+h) for h = 2, 3, . . . ,m. However, note that the conditional distribution of Yn+h given
FYn is not Poisson for h ≥ 2, so that there is need for more research on these models.
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Sequential Testing under Functional Distortions in

L1-metric
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Abstract

The problem of sensitivity analysis for the sequential probability ratio test under func-
tional distortions of the observation probability distribution is considered. For the situa-
tion where distorted densities of the log likelihood ratio statistic belong to ε-neighborhoods
of hypothetical centers in the L1-metric the least favorable distributions that maximize the
conditional error probabilities are constructed. The instability coefficient is obtained to
enable robustness evaluation for the sequential probability ratio test and its modification –
trimmed sequential probability ratio test.

Keywords: sequential probability ratio test, error probability, distortion, L1-metric, least fa-
vorable distribution, instability coefficient, robustness.

1. Introduction

The sequential approach to hypothesis testing (Wald 1947) is applied in various practical
problems of statistical data analysis (Mukhopadhyay and de Silva 2009). If hypothetical
suppositions are fulfilled, sequential tests require less observations at average in comparison
with classical analogues based on the fixed number of observations, to provide the fixed small
levels of error probabilities. However, in practice there are distortions in statistical data,
i.e. the factual probability distribution of observations deviate from the hypothetical model
(Kharin and Voloshko 2011). Therefore it is important to characterize the influence of the
distortions on the error probabilities.

Similar problems of robustness analysis were investigated in Kharin (2002), Kharin and Kishy-
lau (2005), Kharin (2013a) for discrete data under “contamination” (Huber and Ronchetti
2009). The problems of robustness analysis and of robust decision rules construction for
case of composite hypotheses are investigated in Kharin (2008), Kharin (2011a) using the
methodology of the asymptotic expansion construction for the characteristics w.r.t. the small
parameter of distortion developed in Kharin and Shlyk (2009), Kharin (2005).

In Chernov and Kharin (2013) error probabilities of the sequential probability ratio test
(SPRT) under functional distortions described by neighborhoods in the L2-metric were stud-
ied.



196 Robustness Evaluation for Sequential Testing

In this paper we consider the case of continuos probability distribution of observations and
analyze the influence of the distortions in the L1-metric on the error probabilities of the SPRT.
For a given maximal possible distance between the factual and the hypothetical probability
distributions of the log likelihood ratio statistic the least favorable distributions (LFD) that
maximize the conditional error probability of the SPRT are constructed. This maximal value
of the error probability is required for the quantitative robustness analysis of sequential tests.

2. Mathematical Model

Consider the mathematical model from Kharin and Chernov (2011). Let x1, x2, . . . ∈ R be
independent and identically distributed random observations on a probability space (Ω,F ,P).
Let f(x, θ) be the probability density function (p.d.f.) of xi, i ∈ N = {1, 2, . . .}, with a
parameter θ ∈ Θ = {θ0, θ1}; F (x, θ) be the cumulative distribution function that corresponds
to f(x, θ).

There are two simple hypotheses concerning the unknown value of the parameter θ:

H0 : θ = θ0, H1 : θ = θ1. (1)

Denote the accumulated log likelihood ratio test statistic:

Λn = Λn(x1, . . . , xn) =
n∑
k=1

λk, (2)

where
λk = λ(xk) = ln

f(xk, θ1)
f(xk, θ0)

(3)

is the logarithm of the likelihood ratio statistic calculated for the observation xk, k ∈ N.

To test hypotheses (1) by observations x1, x2, . . . the SPRT (Wald 1947) can be used:

N = min{n ∈ N : Λn 6∈ (C−, C+)}, (4)

d =
{

0, ΛN ≤ C− ,
1, ΛN ≥ C+ , (5)

where N is the random stopping time; at this time point the decision d is made according
to (5). In (4) the parameters C−, C+ ∈ R are the test thresholds defined according to Wald
(1947):

C− = ln
β0

1− α0
, C+ = ln

1− β0

α0
, (6)

where α0, β0 ∈ (0, 1
2) are given maximal admissible values of probabilities of type I (to accept

H1 provided H0 is true) and II (acceptance of H0 provided the true hypothesis is H1) errors
respectively.

Let α(f) and β(f) be the error probabilities of the test (4), (5) for the case where observations
x1, x2, . . . have the probability density function f(·).
It is known that α0 and β0 are only approximate values of the factual error probabilities α(f)
and β(f) of types I and II for the SPRT (4) – (6) (see Wald 1947) and can deviate from α(f)
and β(f) significantly (Kharin 2013a).

Without loss of generality, suppose that the hypothesis H0 is true, so the value of the type
I error probability α is considered. To make formulation shorter, introduce the simplified
notation:

F (x) = F (x, θ0), f(x) = f(x, θ0), Fλ(x) = PH0{λ1 ≤ x},
where PH0{·} means the probability under the hypothesis H0. Let the probability density
function pλ(x) corresponds to the cumulative distribution function Fλ(x).
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3. Inequalities for Error Probabilities of the SPRT

Let x(ω) and y(ω) be random variables on some probability space (Ω,F ,P) with some prob-
ability density functions a(x) and b(y) respectively; let also 1A(·) be the indicator function of
the set A.

Lemma 1 If the inequality λ(x(ω)) ≥ λ(y(ω)) is satisfied for every ω ∈ Ω, then the inequality

α(a) ≥ α(b)

takes place.

Proof. It follows from the Lemma condition that

Λn(a) =
n∑
k=1

λ(xk) ≥
n∑
k=1

λ(yk) = Λn(b). (7)

From (5) we have
α(a) = PH0{ΛN (a) ≥ C+},

where N is the random stopping time. Because of (7) we get the relation between the random
events:

{ΛN (a) ≥ C+} ⊇ {ΛN (b) ≥ C+},
therefore, α(a) ≥ α(b).

Lemma 2 If the inequality λ(x) ≥ λ(y) is satisfied for

x ∈Ma>b = {z : a(z) > b(z)}, y ∈Mb≥a = R \Ma>b,

then the inequality α(a) ≥ α(b) holds.

Proof. From the norm conditions for a(·), b(·) we have:∫
Ma>b

a(x)dx+
∫
Mb≥a

a(x)dx ≡ 1 ≡
∫
Mb≥a

b(x)dx+
∫
Ma>b

b(x)dx.

Using these equations denote

p =
∫
Ma>b

(a(x)− b(x))dx =
∫
Mb≥a

(b(x)− a(x))dx ∈ [0, 1].

Note that if p = 0, then a(·) and b(·) coincide, if p = 1, they are orthogonal in the sense that
a(x)b(x) = 0, ∀x.

Let η = η(ω) be the Bernoulli random variable with the parameter value p:

P{η = 1} = p, P{η = 0} = 1− p;
ξ = ξ(ω), ξ+ = ξ+(ω) and ξ− = ξ−(ω) be random variables with the p.d.f.s

pξ(x) =
min{a(x), b(x)}

1− p ,

pξ+(x) =
1Ma>b

(x)(a(x)− b(x))
p

, (8)

pξ−(x) =
1Mb≥a(x)(b(x)− a(x))

p
,

respectively, and η, ξ, ξ+, ξ− be independent.
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The norm condition is satisfied for the functions determined by (8):

∫ +∞

−∞
pξ(x)dx =

1
1− p

(∫
Ma>b

b(x)dx+
∫
Mb≥a

a(x)dx

)
=

1
1− p

(
1−

∫
Mb≥a

b(x)dx+
∫
Mb≥a

a(x)dx

)
=

1
1− p

(
1−

∫
Mb≥a

(b(x)− a(x)) dx

)
=

1
1− p(1− p) ≡ 1;

∫ +∞

−∞
pξ+(x)dx =

1
p

∫
Ma>b

(a(x)− b(x)) dx ≡ 1;

∫ +∞

−∞
pξ−(x)dx =

1
p

∫
Mb≥a

(b(x)− a(x)) dx ≡ 1.

The p.d.f.s pξ+(·) and pξ−(·) are orthogonal, and ξ−(ω) ≥ ξ+(ω), ω ∈ Ω.

Construct random variables ξa = ξa(ω), ξb = ξb(ω) on (Ω,F ,P):

ξa(ω) = (1− η(ω))ξ(ω) + η(ω)ξ+(ω), ξb(ω) = (1− η(ω))ξ(ω) + η(ω)ξ−(ω). (9)

The p.d.f.s of random variables (9) can be found by (8):

pξa(x) = p · pξ+(x) + (1− p) · pξ(x) =

1− p
1− p ·min{a(x), b(x)}+

p

p
· 1Ma>b

(x) · (a(x)− b(x)) ={
b(x) + a(x)− b(x), if a(x) > b(x),
a(x) + 0, if a(x) ≤ b(x),

≡ a(x). (10)

Analogously we get
pξb(x) = p · pξ−(x) + (1− p) · pξ(x) ≡ b(x). (11)

From the construction of ξ−, ξ+ and the condition of this Lemma it follows that λ(ξ+) ≥
λ(ξ−).

Analyze now the two available cases using (9).

1. If ω: η(ω) = 1, then ξa(ω) = ξ+, ξb(ω) = ξ−.

2. If ω: η(ω) = 0, then ξa(ω) = ξb(ω) = ξ(ω).

Combining these two results, we have λ(ξa) ≥ λ(ξb), ∀ω ∈ Ω.

Finally, using Lemma 1 we get
α(pξa) ≥ α(pξb),

that is equivalent to α(a) ≥ α(b) because of (10), (11).

4. Robustness Evaluation for SPRT

Let the hypothetical model described in Section 1 be not satisfied, so the log likelihoods
λn = λ(xn), n ∈ N, are independent and identically distributed random variables with some
p.d.f. p̃λ(x), that may deviate from the hypothetical p.d.f. pλ(x), but the distance between
p̃λ(x) and pλ(x) in the L1-metric does not exceed ε:

ρL1 (p̃λ(·), pλ(·)) =
∫
R
|p̃λ(x)− pλ(x)|dx ≤ ε, (12)

where 0 ≤ ε ≤ ε0, and the maximal admissible deviation ε0 is a priori known.
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Denote by L1(pλ, ε) the family of probability density functions p̃λ(x) that satisfy the inequality
(12) for the fixed value of ε. Let the cumulative probability distribution function F̃λ(x)
corresponds to the p.d.f. p̃λ(x). Let α(p̃λ, ε) be the type I error probability for the SPRT (4),
(5), when the log likelihood (3) has the p.d.f. p̃λ(·) ∈ L1(pλ, ε).

Let us construct the least favorable probability distribution of λn, i.e. the p.d.f. that maxi-
mizes the value of α(·, ε) within the set L1(pλ, ε).

Consider the p.d.f.
p̄λ(x) = 1(g−,+∞)(x)pλ(x) +

ε

2
δ(x− g+), (13)

where δ(·) is the Dirac δ-function,

g+ = C+ − C−, Fλ(g−) =
ε

2
.

Lemma 3 The function p̄λ(·) belongs to L1(pλ, ε).

Proof. Find ρL1(p̄λ(·), pλ(·)) using (13):∫
R
|p̄λ(x)− pλ(x)|dx =

∫
(−∞,g−)

pλ(x)dx+
∫
(g−,+∞)

|p̄λ(x)− pλ(x)|dx =

ε

2
+
ε

2
·
∫
(g−,+∞)

δ(x− g+)dx = ε. (14)

Lemma is proved.

Now let us prove that if the random variables {λn} have the p.d.f. p̄λ(x), then the type I
error probability α(p̄λ) is the highest value within the neighborhood L1(pλ, ε).

Theorem 1 If the p.d.f. p̃λ(·) belongs to L1(pλ, ε), then the following inequality holds:

α(p̃λ, ε) ≤ α(p̄λ, ε). (15)

Proof. Take any p.d.f. p̃λ(·) ∈ L1(pλ, ε). Denote as in Lemma 2:

p =
∫
(p̃λ>pλ)

(p̃λ(x)− pλ(x)) dx =
∫
(p̃λ≤pλ)

(pλ(x)− p̃λ(x)) dx;

ε−(q) =
∫
(−∞,g−)

q(y)dy,

where q(·) is some arbitrary p.d.f.

Note that p ≤ ε/2 and construct the auxiliary p.d.f.s q1(·) and q2(·):
q1(x) = 1(p̃λ≤pλ)(x)p̃λ(x) + 1(p̃λ>pλ)(x)pλ(x) + p · δ(x− g+) =

1(p̃λ<pλ)(x)p̃λ(x) + 1(p̃λ≥pλ)(x)pλ(x) + p · δ(x− g+),

q2(x) = 1(g−,+∞)∩(p̃λ<pλ)(x)p̃λ(x) + 1(g−,+∞)∩(p̃λ≥pλ)(x)pλ(x)+

ε−(q1)δ(x− g−) + p · δ(x− g+). (16)

The p.d.f. q1(x) is constructed from p̃λ(x) by “transferring” of the probability measure equals
to p from the set {p̃λ > pλ} to the point {g+}. The p.d.f. q2(x) is constructed from q1(x)
by “transferring” of the probability measure (equaled to ε−(q1) =

∫
(−∞,g−) q1(y)dy) from the

sets {p̃λ < pλ} ∩ (−∞, g−) and {p̃λ ≥ pλ} ∩ (−∞, g−) to the point {g−}.
Compare the four error probabilities α(p̃λ), α(q1), α(q2) and α(p̄λ) using (16). Consider the
sets, where the mentioned p.d.f.s differ from each other:

{x : p̃λ(x) < q1(x)} ⊆ {g+}, {x : p̃λ(x) > q1(x)} ⊆ {x : p̃λ(x) > pλ(x)} \ {g+},
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{x : q1(x) < q2(x)} ⊆ {g−}, {x : q1(x) > q2(x)} ⊆ (g−,+∞),

{x : q2(x) < p̄λ(x)} ⊆ ((g−,+∞) ∩ {x : p̃λ(x) < pλ(x)}) ∪ {g+},
{x : q2(x) > p̄λ(x)} ⊆ {g−}.

According to Lemma 2 we have inequalities

α(p̃λ, ε) ≤ α(q1, ε) ≤ α(q2, ε) ≤ α(p̄λ, ε).

Therefore, the inequality (15) holds.

Corollary 1 The error probability α(p̄λ, ε) is a monotone function w.r.t. the neighborhood
size ε, and ∀ε ∈ [0, ε0] the following inequality holds:

α(p̄λ, ε) ≤ α(p̄λ, ε0).

Proof follows from the result of Lemma 2.

Calculate now the instability coefficient κ (Kharin 2013b) that characterizes the relative incre-
ment of the type I error probability for the SPRT under distortion (12) from the hypothetical
version:

κ =
α+ − α0

α0
≥ 0,

where
α0 = α(pλ), α+ = sup

p̃λ∈L1(pλ,ε), ε∈[0,ε0]
α(p̃λ, ε).

Corollary 2 The instability coefficient for the error type I probability of the SPRT is equal
to

κ =
α(p̄λ, ε0)− α(pλ)

α(pλ)
≥ 0.

Proof. The result follows from Lemma 3, Theorem 1 and Corollary 1.

5. Robustness Evaluation for Trimmed SPRT

To decrease the influence of distortions on the error probabilities of the test (4), (5) we
construct the trimmed probability density function pλ(x) for the log likelihood (3) following
the idea of Kharin (2002):

pgλ(x) = 1(g−,g+)pλ(x) + ε−δ(x− g−) + ε+δ(x− g+), (17)

where g−, g+ ∈ R, g− < g+, are some trimming parameters for λn;

ε− = ε−(pλ) = Fλ(g−), ε+ = ε+(pλ) = 1− Fλ(g+). (18)

Note that the function pgλ(x) defined by (17) is some probability density function as it is
nonnegative and the norm condition holds:∫

R
pgλ(y)dy =

∫
R

1(g−,g+)pλ(y)dy +
∫
R
ε−δ(y − g−)dy +

∫
R
ε+δ(y − g+)dy =∫

(g−,g+)
pλ(y)dy + ε− + ε+ = (Fλ(g+)− Fλ(g−)) + Fλ(g−) + (1− Fλ(g+)) = 1.

The sequential test (4) – (6) constructed using the test statistic with the trimmed probability
density function (17) instead of λ(·) will be called the trimmed SPRT. If g− = −∞ and
g+ = +∞, then the trimmed p.d.f. pgλ(·) coincides with pλ(·), i.e. we have no trimming.
Prove now that if the p.d.f. p̃λ(·) belongs to the ε-neighborhood in the L1-metric of the
function pλ(·), then the trimmed p.d.f. p̃gλ(x) belongs to the ε-neighborhood of the function
pgλ(·) in the same metric.
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Lemma 4 If p̃λ ∈ L1(pλ, ε), then p̃gλ ∈ L1(pgλ, ε).

Proof. Using (17), (18) evaluate the distance:∫
R
|p̃gλ(x)− pgλ(x)|dx =

∫
(g−,g+)

|p̃λ(x)− pλ(x)|dx+

|ε−(s̃)− ε−(s)| ·
∫
R
δ(x− g−)dx+ |ε+(s̃)− ε+(s)| ·

∫
R
δ(x− g+)dx =∫

(g−,g+)
|p̃λ(x)− pλ(x)|dx+ |ε−(s̃)− ε−(s)|+ |ε+(s̃)− ε+(s)| =

∫
(g−,g+)

|p̃λ(x)− pλ(x)|dx+

∣∣∣∣∣
∫
(−∞,g−)

(p̃λ(x)− pλ(x)) dx

∣∣∣∣∣+∣∣∣∣∣
∫
(g+,+∞)

(p̃λ(x)− pλ(x)) dx

∣∣∣∣∣ ≤
∫
R
|p̃λ(x)− pλ(x)|dx ≤ ε,

that proves the statement of the Lemma.

Let us find now the least favorable probability distribution for the fixed parameters of trim-
ming g− and g+, that maximizes the value of α(·, ε) within L1(pgλ, ε). In other words, let us
prove that if p̄λ(·) corresponds to the LFD in L1(pλ, ε), then p̄gλ(·) corresponds to the LFD in
L1(pgλ, ε).

If p̄λ(·) satisfies (13), then p̄gλ(·), constructed according to (17), is determined by the equation

p̄gλ(x) = 1(g−,g+)(x) pλ(x) +
(
ε− − ε

2

)
δ(x− g−) +

(
ε+ +

ε

2

)
δ(x− g+). (19)

Theorem 2 If the probability density function p̃λ(·) belongs to the set L1(pλ, ε), then the
following inequality holds:

α(p̃gλ, ε) ≤ α(p̄gλ, ε).

Proof. The Theorem statement follows from Lemma 4 and Theorem 1.

Corollary 3 The error probability α(p̄gλ, ε) is a monotone function w.r.t. the variable ε, and
for every ε, 0 ≤ ε ≤ ε0, the following inequality takes place:

α(p̄gλ, ε) ≤ α(p̄gλ, ε0).

Proof. The Corollary statement follows from Lemma 4 and Theorem 1.

Now calculate the instability coefficient (Kharin 2011b) for the type I error probability of the
SPRT under distortion (12).

Corollary 4 The instability coefficient for the error type I probability of the trimmed SPRT
is equal to

κ =
α(p̄gλ, ε0)− α(pgλ)

α(pgλ)
≥ 0.

Proof follows from Lemma 4, Theorem 2 and Corollary 3.

6. Conclusions

The least favorable probability distributions of the log likelihood ratio statistic are constructed
in the paper for the distortions in the L1-metric. The obtained results are useful for evalu-
ation of the difference between hypothetical and actual error probabilities under functional
distortions in observation distributions, adjusted in the mentioned metric.
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The results for the error type II probabilities are obtained in the same way.

The instability coefficient characterizes robustness of the SPRT and of the trimmed SPRT
quantitatively.

The research is partially supported by the ISTC Project B-1910.
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Markov Chain of Conditional Order: Properties

and Statistical Analysis

Yuriy Kharin
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Mikhail Maltsau
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Abstract

The paper deals with finite Markov chain of conditional order, that is a special case
of high-order Markov chain with a small number of parameters. Statistical estimators
for parameters and statistical tests for parametric hypotheses are constructed and their
properties are analyzed. Results of computer experiments on simulated and real data are
presented.

Keywords: markov chain, conditional order, ergodicity, statistical estimator, hypothesis test-
ing.

1. Introduction

Finite Markov chain of the order s (1 ≤ s < ∞) described by Doob (1953) is a well-known
universal mathematical model to analyze long memory discrete-valued time series in many
applied fields. It is used for statistical data analysis in genetics (see Waterman 1999), eco-
nomics (see Ching 2004), signal processing (see Li, Dong, Zhang, Zhao, Shi, and Zhao 2010)
and other areas.

Unfortunately, there is a significant disadvantage of this model. It has exponential complexity
since the number of independent parameters D(s) of the N -state Markov chain of the order
s increases exponentially w.r.t. s:

D(s) = (N − 1)N s = O(N s+1).

Because of the “curse of dimensionality” to identify this model one needs time series of big
size (length of time series) n ≥ D(s) not available in practice Kharin (2013), Kharin (2005),
Kharin and Shlyk (2009). Therefore, small-parametric or parsimonious models are developed
to overcome this difficulty. These models are special cases of the s-order Markov chain, but
the number of parameters required to determine the one-step transition probability matrix is
much less than D(s). Let us give some examples of such parsimonious models: the Markov
chain of the order s with r partial connections (see Kharin and Petlitskii 2007), Raftery
model (see Raftery 1985), variable length Markov chain (see Buhlmann and Wyner 1999).
For example, the conditional probability distribution of the current state of the Markov chain
of the order s with r partial connections depends not on all s previous states, but only on r
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selected states. This paper is devoted to a new parsimonious model called Markov chain of
conditional order proposed by authors in Kharin and Maltsew (2012).

2. Mathematical model

At first let us introduce the notation: N is the set of positive integers,
N ∈ N, 2 ≤ N < ∞, A = {0, 1, . . . , N − 1} is the finite state space with N elements;
Jmn = (jn, . . . , jm) ∈ Am−n+1, m ≥ n, is the multiindex (subsequence of indices from a
sequence j1, j2, . . . ); {xt ∈ A : t ∈ N} is a homogeneous Markov chain of the order s,
(2 ≤ s <∞) with (s+ 1)-dimensional matrix of transition probabilities P = (pJs+1

1
):

pJs+1
1

= P{xt+s = js+1|xt+s−1 = js, . . . , xt = j1}, Js+1
1 ∈ As+1, t ∈ N;

L ∈ {1, 2, . . . , s − 1}, K = NL − 1 are some positive integers; Q(1), . . . , Q(M) are M
(1 ≤M ≤ K + 1) different square stochastic matrices of the order N :

Q(m) = (q(m)
i,j ), 0 ≤ q(m)

i,j ≤ 1,
∑
j∈A

q
(m)
i,j ≡ 1, i, j ∈ A, 1 ≤ m ≤M ;

< Jmn >=
m∑
k=n

Nk−njk ∈ {0, 1, . . . , Nm−n+1 − 1} is the numeric representation of the multiin-

dex Jmn ∈ Am−n+1; I{C} is the indicator function of event C.

The Markov chain {xt ∈ A : t ∈ N} is called the Markov chain of conditional order (see Kharin
and Maltsew 2012), if its one-step transition probabilities have the following parsimonious
form:

pJs+1
1

=
K∑
k=0

I{< Jss−L+1 >= k}q(mk)
jbk

,js+1
, (1)

where 1 ≤ mk ≤M , 1 ≤ bk ≤ s−L, 0 ≤ k ≤ K, min
0≤k≤K

bk = 1; it is assumed that all elements

of the set {1, 2, . . . ,M} occur in the sequence m0, . . . ,mK . The sequence of elements Jss−L+1

is called the base memory fragment (BMF) of the random sequence, L is the length of BMF;
the value sk = s − bk + 1 is called the conditional order. Thus the conditional probability
distribution of the state xt at time t depends not on all s previous states, but it depends only
on L + 1 selected states (jbk , J

s
s−L+1). Note that if L = s − 1, s0 = s1 = · · · = sK = s, we

have the fully-connected Markov chain of the order s. If M = K + 1, then each transition
matrix corresponds to only one value of the BMF, otherwise there exists a common matrix
which corresponds to several values of BMF.

Therefore the Markov chain of conditional order is determined by the following parameters:

• unconditional order s of the Markov chain;

• the length of BMF L;

• K + 1 conditional orders {sk : 0 ≤ k ≤ K};

• K + 1 parameters {mk : 0 ≤ k ≤ K} which determine the transition matrices;

• M stochastic matrices of the order N which are described by MN(N − 1) independent
parameters.

Hence the transition matrix P = (pJs+1
1

), Js+1
1 ∈ As+1, of the Markov chain of conditional

order is determined by
d = 2(NL + 1) +MN(N − 1) (2)
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independent parameters. For example, we need no more than 66 parameters for the Markov
chain of conditional order if s = 10, L = 2, whereas the fully-connected Markov chain of this
order requires D(s) = 1024 parameters.

3. Statistical estimators for parameters

In this section we present statistical estimators for parameters of the Markov chain of con-
ditional order. Introduce the notation: Xn

1 ∈ An is the observed time series of length n,
π0
Js
1

= P{x1 = j1, . . . , xs = js}, Js1 ∈ As, is the initial probability distribution of the Markov
chain of conditional order (1);

νsl,y(J
l
1) =

n−s∑
t=1

I{xt+s−l−y+1 = j1, X
t+s
t+s−l+2 = J l2}, l ≥ 2, 0 ≤ y ≤ s− l + 1,

is frequency of the state J l1 ∈ Al with the time gap of length y between the elements j1 and
J l2; νs+1(Js+1

1 ) = νss+1,0(Js+1
1 ) is frequency of (s+ 1)-tuple Js+1

1 .
At first, let us give ergodicity conditions for the Markov chain of conditional order.
Theorem 1. The Markov chain of conditional order is ergodic if and only if there exists a
number m ∈ N, s ≤ m <∞, such that the following inequality holds:

min
Js
1 ,J

s+m
1+m∈As

∑
Jm

s+1∈Am−s

m∏
i=1

K∑
k=0

I{< J i+s−1
i+s−L >= k}q(mk)

jbk+i−1,ji+s
> 0. (3)

Proof. Consider the first-order vector-valued Markov chain

{Xt = (xt, xt+1, . . . , xt+s−1) ∈ As : t ∈ N}
with the extended state space like in Doob (1953) which is equivalent to the s-order Markov
chain {xt ∈ A : t ∈ N}. The transition matrix for Xt has the following form:

P̄ = (p̄J2s
1

), J2s
1 ∈ A2s, p̄J2s

1
= I{Js2 = J2s−1

s+1 }pJs
1 j2s . (4)

According to Kemeny and Snell (1963) the Markov chain Xt is ergodic if and only if there
exists a number m ∈ N, such that the following inequality holds:

min
Js
1 ,J

s+c
1+c∈As

p̄
(c)

Js
1J

s+c
1+c

> 0,

where p̄(c)

Js
1J

s+c
1+c

is the c-step transition probability from Js1 to Js+c1+c for the Markov chain Xt.

Using properties of probability and definition (1) we come to the criterion (3). Theorem is
proved.
In the sequel we will consider ergodic Markov chains. It is known, that the probability
distribution of an ergodic Markov chain tends to a stationary probability distribution. The
next theorem determines conditions under which the stationary distribution is uniform.
Theorem 2. If the Markov chain of conditional order is ergodic, then its stationary distri-
bution is uniform if and only if the following equations hold (k = 0, 1, . . . ,K): q

(mk)
ij = 1/N,∀i, j ∈ A, if sk ∈ {L+ 1, . . . , s− 1},∑
i∈A

q
(mk)
ij = 1,∀j ∈ A ( that is Q(mk) is a doubly stochastic matrix), if sk = s.

(5)

Proof. As in the proof of Theorem 1 consider the first-order vector Markov chain Xt. It is
known from Borovkov (1998b), that the stationary distribution for Xt is uniform if and only
if P̄ is a doubly stochastic matrix, that is∑

Js
1∈As

p̄J2s
1

= 1, ∀J2s
s+1 ∈ As. (6)
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Define k =< J2s−1
2s−L > and transform (6) using (4) and (1):∑

Js
1∈As

p̄J2s
1

=
∑
Js
1∈As

I{Js2 = J2s−1
s+1 }q(mk)

jbk
,j2s

=
∑
j1∈A

q
(mk)
jbk

,j2s
= 1. (7)

If sk = s, then bk = 1 and
∑
j1∈A

q
(mk)
j1,j2s

= 1. Hence Q(mk) is a doubly stochastic matrix, and we

have the second row in (5). If sk < s, then bk > 1,
∑
j1∈A

q
(mk)
jbk

,j2s
= Nq

(mk)
jbk

,j2s
= 1, and we have

the first row in (5). Theorem is proved.

We will use the likelihood function to estimate transition probability matrices {Q(mk)} and
conditional orders {sk}. In order to build it we have to find n-dimensional probability distri-
bution for the observed time series Xn

1 generated by the model (1).

Lemma 1. The n-dimensional probability distribution (n > s) for the Markov chain of
conditional order (1) has the following form:

P{x1 = j1, . . . , xn = jn} = π0
Js
1

n−1∏
t=s

K∑
k=0

I{< J tt−L+1 >= k}q(mk)
t−s+bk,jt+1

, j1, . . . , jn ∈ A. (8)

Proof. Using theorem on compound probabilities and the Markov property we have:

P{x1 = j1, . . . , xn = jn} = π0(Js1)
n−1∏
t=s

pJt+1
t−s+1

.

Hence, taking into account definition (1), we come to (8). Lemma is proved.

Corollary 1. The loglikelihood function for the Markov chain of conditional order (1) has
the following form:

ln(Xn
1 , {Q(i)}, L, {sk}, {mk}) = lnπ0

Xs
1
+

+
∑

JL+1
0 ∈AL+2

K∑
k=0

I{< JL1 >= k}νsL+2,sk−L−1(JL+1
0 ) ln q(mk)

j0,jL+1
.

Now we can construct maximum likelihood estimators (MLEs) for the transition probabilities
{Q(mk) : k = 0, . . . ,K} and the conditional orders {sk : k = 0, . . . ,K}.
Theorem 3. If the true values s, L, {sk : k = 0, . . . ,K} and {mk : k = 0, . . . ,K} are known,
then the MLEs for the one-step transition probabilities {q(mk)

j0,jL+
, j0, jL+1 ∈ A : k = 0, . . . ,K}

are

q̂
(mk)
j0,jL+1

=



∑
JL
1 ∈Mmk

νsL+2,g(sk,L)(J
L+1
0 )

∑
JL
1 ∈Mmk

νsL+1,g(sk,L)(J
L
0 )

, if
∑

JL
1 ∈Mmk

νsL+1,g(sk,L)(J
L
0 ) > 0,

1/N, if
∑

JL
1 ∈Mmk

νsL+1,g(sk,L)(J
L
0 ) = 0,

(9)

where Mi = {JL1 ∈ AL : m<JL
1 >

= i}, i = 1, . . . ,M ,
M⋃
i=1

Mi = AL, g(i, j) = i− j − 1.

Proof. In order to construct the MLEs we need to solve the following problem:

ln(Xn
1 , {Q(i)}, L, {sk}, {mk})→ max

{Q(mk)}1≤mk≤M

,∑
jL+1∈A

q
(mk)
j0,jL+1

= 1, j0 ∈ A, 1 ≤ mk ≤M.
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This maximization problem splits into NL+1 subproblems (j0 ∈ A, JL1 ∈ AL):

∑
jL+1∈A

K∑
k=0

I{< JL1 >= k}νL+2,g(sk,L)(J
L+1
0 ) ln q(mk)

j0,jL+1
→ max

q
(mk)

j0,jL+1

,

∑
jL+1∈A

q
(mk)
j0,jL+1

= 1.

Solve these subproblems with Lagrange multiplier method and come to the estimators (9).
Theorem is proved.

In the rest of the paper we will assume that M = K + 1, i.e. K + 1 independent matrices
correspond to K + 1 different values of BMF, and mk = k + 1, k = 0, 1, . . . ,K. In this case
estimators (9) have the following form:

q̂
(k+1)
j0,jL+1

=


∑

JL
1 ∈AL

I{< JL1 >= k}ν
s
L+2,g(sk,L)(J

L+1
0 )

νsL+1,g(sk,L)(J
L
0 )

, if νsL+1,g(sk,L)(J
L
0 ) > 0,

1/N, if νsL+1,g(sk,L)(J
L
0 ) = 0.

(10)

We will also use the following notation for transition probabilities and their estimators:

q(JL+1
0 ) =

K∑
k=0

I{< JL1 >= k}q(k+1)
j0,jL+1

, q̂(JL+1
0 ) =

K∑
k=0

I{< JL1 >= k}q̂(k+1)
j0,jL+1

.

According to Kharin and Maltsew (2011) we construct estimators for the conditional orders
{sk}.
Theorem 4. If s and L are known, then the MLEs for conditional orders {sk : k = 0, . . . ,K}
are

ŝk = arg max
L+1≤y≤s

∑
JL
1 ∈AL

I{< JL1 >= k}
∑

j0,jL+1∈A
νsL+2,g(y,L)(J

L+1
0 ) ln(q̂(k+1)

j0,jL+1
). (11)

In order to estimate the order s and the BMF length L we use Bayesian information crite-
rion (BIC) (see Csiszar and Shields 1999):

(ŝ, L̂) = arg min
2≤s′≤S+, 1≤L′≤L+

BIC(s′, L′), (12)

BIC(s′, L′) = −2
∑

JL′+1
0 ∈AL′+2

K∑
k=0

I{< JL
′

1 >= k}νs′L′+2,ĝ(sk,L′)(J
L′+1
0 ) ln q̂(k+1)

j0,jL′+1
+

+ d ln(n− s′),
where S+ ≥ 2, 1 ≤ L+ ≤ S+ − 1, are maximal admissible values of s and L respectively, d is
the number of independent parameters of the model (1) defined by formula (2).

4. Asymptotic properties of statistical estimators

Let us assume that the Markov chain (1) satisfies the stationarity condition. Define the
probability distribution of the l-tuple Xt

t+l−1 ∈ Al, l ∈ N:

πl(J l1) = P{xt = j1, . . . , xt+l−1 = jl}, J l1 ∈ Al, t = 1, 2, . . . .

At first, let us present results on consistency of the constructed statistical estimators from
the previous section.



210 Markov Chain of Conditional Order

Theorem 5. If Markov chain of conditional order (1) is stationary, then the statistical
estimators (9) are consistent estimators as n→∞:

q̂
(k+1)
ij

P−→ q
(k+1)
ij , i, j ∈ A, k = 0, . . . ,K. (13)

Proof. It is known from Basawa and Prakasa Rao (1980) that frequencies of the states for
the first-order vector Markov chain Xt (considered in the proof of Theorem 1) tend to the
stationary probability distribution as n→∞:

1
n− s

n−s∑
t=1

I{Xt = Js1 , Xt+1 = Js+1
2 } P−→ πs+1(Js+1

1 ), Js+1
1 ∈ As+1.

Thus we can prove that π̂s+1(Js+1
1 ) = νs+1(Js+1

1 )/(n− s) P−→ πs+1(Js+1
1 ). Then we consider

νsL+2,g(sk,L)(J
L+1
0 ) and νsL+1,g(sk,L)(J

L
0 ) as sums of the frequencies of (s+1)-tuples νs+1(Js+1

1 ):

νsl+1,g(sk,L)(J
l
0) =

∑
Is+1
1 ∈As+1(g(sk,L),J l

0)

νs+1(Js+1
1 ), l ∈ {L,L+ 1},

where As+1(y, J l0) = {Is+1
1 ∈ As+1 : i1 = j0, I

y+l
y+2 = J l2}, y = 0, 1, . . . . So the following

convergence holds:

νsl+2,g(sk,L)(J
l+1
0 ) P−→ πl+1,g(sk,L)(J

l
0) = P{xt = j0, X

t+sk−L+l−1
t+sk−L = J l1}.

Note that πL+2,g(sk,L)(J
L+1
0 ) =

K∑
k=0

I{< JL1 >= k}πL+1,g(sk,L)(JL0 )q(k+1)
j0,jL+1

; using this equation

and theorem on functional transformations of convergent random
sequences from Borovkov (1998a), we come to (13). Theorem is proved.

Theorem 6. Under conditions of Theorem 5 statistical estimators (11) are consistent as
n→∞:

ŝk → sk, k = 0, . . . ,K + 1. (14)

Proof. Introduce the notation:

Ik(y) =
∑

j0,jL+1∈A
πL+2,g(y,L)(J

L+1
0 ) ln

πL+2,g(y,L)(J
L+1
0 )

πL+1,g(y,L)(JL0 )π1(jL+1)
, y ∈ {L+ 1, . . . , s},

is the Shannon information on the random symbol xL+1 contained in the random symbol x0

under the fixed BMF XL
1 = JL1 ;

Īk =
∑

Hs−L
1 ∈As−L

∑
jL+1∈A

πs+1(Hs−L
1 JL+1

1 ) ln
πs+1(Hs−L

1 JL+1
1 )

πs(Hs−L
1 JL1 )π1(jL+1)

, y ∈ {L+ 1, . . . , s},

is the Shannon information on the random symbol xs+1 contained in the (s−L)-tuple Xs−L
1

under the fixed BMF Xs
s−L+1 = JL1 ;

Îk(y) =
∑

j0,jL+1∈A
π̂L+2,g(y,L)(J

L+1
0 ) ln

π̂L+2,g(y,L)(J
L+1
0 )

π̂L+1,g(y,L)(JL0 )π̂1(jL+1)
, y ∈ {L+ 1, . . . , s},

is the plug-in statistical estimator for Ik(y). At first, note that

arg max
L+1≤y≤s

∑
j0,jL+1∈A

νsL+2,g(y,L)(J
L+1
0 ) ln(q̂(k+1)

j0,jL+1
) = arg max

L+1≤y≤s
Îk(y), (15)



Austrian Journal of Statistics 211

where < JL1 >= k. The second statement we need to prove the theorem, is the following:

Ik(sk) = Īk. (16)

Using (16) and properties of Shannon information we can show that Ik(sk) ≥ Ik(y),
∀y 6= sk. Thus applying the first continuity theorem from Borovkov (1998a) and the equa-
tion (15) we come to (14). Theorem is proved.

Theorem 7. Under conditions of Theorem 5 statistical estimators (12) are consistent as
n→∞:

(ŝ, L̂) P−→ (s, L).

Proof. Let πl,y(J l1) = P{xt = j1, X
t+y+l−1
t+y+1 = J l2}, l ≥ 2, y ≥ 0. Then

q
(k+1)
j0,jL+1

=
πL+2,g(sk,L)(J

L+1
0 )

πL+1,g(sk,L)(JL0 )
, where < JL1 >= k. Note that if XL′

1 = JL
′

1 is fixed, then

− ∑
j0,jL′∈A

πL′+2,y(JL
′+1

0 ) ln
πL′+2,y(JL

′+1
0 )

πL′+1,y(JL
′

0 )
is a conditional entropy H

JL′
1 ,y
{xL′+1|x0} of xL′+1

given x0. Using asymptotic properties of the estimators (10) and (11) it is easy to show that
for n→∞ the following asymptotics holds:

− 1
n

∑
JL′+1
0 ∈AL′+2

K∑
k=0

I{< JL
′

1 >= k}νs′L′+2,g(ŝk,L′)(J
L′+1
0 ) ln

νs
′
L′+2,g(ŝk,L′)(J

L′+1
0 )

νs
′
L′+1,g(ŝk,L′)

(JL′0 )
P−→

P−→
∑

JL′
1 ∈AL′

K∑
k=0

I{< JL
′

1 >= k}H
JL′
1 ,g(yk,L′)

{xL′+1|x0},

where L′ + 1 ≤ yk ≤ s′. Using properties of entropy and methods described in Csiszar and
Shields (1999) we can prove that P{(ŝ, L̂) ∈ {[2, S+] × [1, L+]} \ {(s, L)}} P−→ 0 at n → ∞.
Theorem is proved.

Now let us analyze the asymptotic normality property for estimators (10). Theorem 8 es-
tablishes asymptotic probability distribution of the normalized deviations of the statistical
estimators for transition probabilities:

q̄(JL+1
0 ) =

√
n− s(q̂(JL+1

0 )− q(JL+1
0 )) , JL+1

0 ∈ AL+2.

Theorem 8. Under conditions of Theorem 5 as n→∞ the normalized deviations {q̄(JL+1
0 ) :

JL+1
0 ∈ AL+2} have joint asymptotically normal probability distribution with zero mean and

covariance matrix Σq = Σq(HL+1
0 , JL+1

0 ), HL+1
0 , JL+1

0 ∈ AL+2:

Σq(HL+1
0 , JL+1

0 ) = I{HL
0 = JL0 }q(HL+1

0 )
I{hL+1 = jL+1} − q(HL

0 jL+1)
π(HL

0 )
. (17)

Proof. Let us give only a scheme of the proof. Complete proof can be found in Kharin and
Maltsew (2012). The theorem is proved using asymptotic normality property for frequencies
νs+1(Js+1

1 ) from Kharin and Petlitskii (2007). We represent the estimator q̄(JL+1
0 ) as a

function of these frequencies. Therefore using the third continuity theorem from Borovkov
(1998a) we can establish asymptotic normality property for estimators (10) and come to (17).
Theorem is proved.

5. Statistical testing of hypotheses on the values of {Q(k)}
Using the results of Section 4 let us construct a statistical test for two hypotheses:

H0 = {Q(1) = Q
(1)
0 , . . . , Q(K+1) = Q

(K+1)
0 }, H1 = H̄0, (18)
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where Q(1)
0 , . . . , Q

(K+1)
0 are some fixed K + 1 stochastic matrices of the order N .

For the decision making we will use the following statistic:

ρ = ρ(n) =
∑

JL
0 ∈AL+1

∑
jL+1∈Q(JL

0 )

q̄20(JL+1
0 )πL+1(JL0 )/q(JL+1

0 ),

Q(JL0 ) = {jL+1 ∈ A : q(JL+1
0 ) > 0},

where q̄20(JL+1
0 ) =

√
n− s(q̂(JL+1

0 )− q0(JL+1
0 )).

Theorem 9. Under conditions of Theorem 5 as n → ∞ the probability distribution of the
random variable ρ(n) tends to the standard χ2-distribution with u degrees of freedom,

u =
∑

JL
0 ∈AL+1

(
|Q(JL0 )| − 1

)
.

Proof. Let us give only a scheme of the proof. Complete proof can be found in Kharin
and Maltsew (2012). Since normalized deviations {q̄(JL+1

0 ) : JL+1
0 ∈ AL+1} have the joint

asymptotically normal distribution according to Theorem 8, we can establish the probability
distribution of ρ(n) using the theorem on quadratic forms for multidimensional Gaussian
vectors and the second continuity theorem from Borovkov (1998a). Theorem is proved.

Now we can construct the statistical test for the hypotheses (18) based on the statistic ρ(n):

accept the hypothesis
{
H0, if ρ(n) ≤ ∆,
H1, if ρ(n) > ∆,

(19)

where ∆ = G−1
u (1− α) is the (1− α)-quantile of the standard χ2-distribution with u degrees

of freedom, α ∈ (0, 1) is the given significance level.

Corollary 2. Under conditions of Theorem 5 as n→∞ the asymptotic size of the test (19)
is equal to the given significance level α ∈ (0, 1):

αn = P{ρ(n) > ∆|H0} −−−→
n→∞ α.

Let us consider now the alternative hypothesis of the following special type:

H1n = {Q(1) = Q
(1)
1 , . . . , Q(K+1) = Q

(K+1)
1 }, (20)

Q
(k)
1 = Q

(k)
0 +

1√
n− sγ

(k), γ(k) = (γ(k)
i,j ), i, j ∈ A, k = 1, . . . ,K + 1,

where {γ(k)} are some fixed square matrices of the order N , such that
∑
j∈A

γ
(k)
i,j = 0,∑

i,j∈A
(γ(k)
i,j )2 > 0. Formula (20) means that the alternative hypothesis H1n tends to the null

hypothesis H0 as n→∞; such a family of hypotheses {H1n : n = 1, 2, . . . } is called the family
of contigual hypotheses (see Roussas 1972). For this case we can obtain the asymptotic power
of the test (19). The next theorem is proved by analogy with Theorem 9. Complete proof is
given in Kharin and Maltsew (2012).

Theorem 10. If the Markov chain of conditional order (1) is stationary and the contigual
family of alternatives (20) holds, then as n → ∞ the probability distribution of the random
variable ρ(n) tends to the noncentral χ2-distribution with u degrees of freedom and the non-
centrality parameter λ:

λ =
∑

JL
0 ∈AL+1,

jL+1∈Q(JL
0 )

πL+1(JL0 )
q(JL+1

0 )
γ2(JL+1

0 ),
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where γ(JL+1
0 ) =

K+1∑
k=1

I{< JL1 >= k}γ(k)
j0,jL+1

.

Corollary 3. Under conditions of Theorem 9 the power of the test (19) as n → ∞ tends to
the limit:

w = 1−Gu,λ(G−1
u (1− α)), (21)

where Gu,λ is the distribution function of the noncentral χ2-distribution with u degrees of
freedom and the noncentrality parameter λ and α ∈ {0, 1} is the given significance level.

Let us note that the power doesn’t tend to 1 because the alternative hypothesis H1n tends to
the null hypothesis as n→∞.

6. Computer experiments on hypothesis testing

Simulated data. At first, we evaluate the test (19) performance for contigual alterna-
tives (20) in two series of computer experiments by the following scheme: U = 1000 realiza-
tions of the Markov chain of conditional order were simulated according to (1). Parameters
of the model: N = 2, A = {0, 1}, s = 8, L = 2, M = 4, s0 = 8, s1 = 6, s2 = 8, s3 = 3. The
length of the time series n ∈ {1000, 1500, . . . , 20000}. In the first series of experiments the
transition probabilities were chosen randomly for the null hypothesis H0. In the second
series of experiments transition probabilities were chosen randomly to provide alternative
hypothesis H1. In both series the frequency of the decision “accept the hypothesis H1” was
calculated at the fixed value of n:

νρ =
1
U

U∑
u=1

I{ρu(n) > ∆},

where ρu(n) is the value of ρ(n) calculated by the u-th realization. In the first series νρ is the
estimator of the error I probability, we will denote it α̂. In the second series νρ is the estimator
of the power, we will denote it ŵ. Results for the first series of experiments are presented
in Figure 1; results for the second series of experiments are presented in Figure 2. On both
figures horizontal axis corresponds to the time series length n, vertical axis corresponds to
the value of νρ; in both cases α = 0.05. Solid line in Figure 1 plots the significance level α.
Solid line in Figure 2 plots the theoretical power (21) of the test. As we can see, theoretical
values of α and w are close enough to their experimental values α̂, ŵ respectively which are
indicated by dark circles.

Figure 1: Dependence α̂ on n.

Real data. The real data we used is a genetic sequence from the human DNA. Splitting of
genes into coding segments (exons) and noncoding segments (introns) is an important problem
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Figure 2: Dependence ŵ on n.

in bioinformatics, and fitting a stochastic model for genetic sequence is a fruitful approach to
this problem decsribed in Burge and Karlin (1997).

The sequence of introns from the human gene HSHMG17G taken from “Bioinformatics and
genomics” (http://genome.crg.es/) was analyzed. The length of the sequence n = 6922,
S+ ≤ 6, the size of the state space A is 4 (0 corresponds to nucleotide A, 1 to C, 2 to G, 3 to T).
We used in computer experiments the following three Markov chain models: fully-connected
s-order Markov chain (MC(s)), the Markov chain of order s with r partial connections (MC(s,
r)) and the Markov chain of conditional order with BMF length L (MCCO(s, L)). For each
model the value of BIC was calculated. Results are presented in Table 1. Minimum value of
BIC is marked by bold type.

Table 1: Values of BIC.
model BIC model BIC model BIC
MC(1) 17792.7 MC(4, 3) 18162.9 MCCO(3, 1) 17557.5
MC(2) 17595.7 MC(5, 1) 18108.2 MCCO(4, 1) 17472.6
MC(3) 18293.1 MC(5, 2) 17553.8 MCCO(4, 2) 18205.2
MC(4) 22252.5 MC(5, 3) 18219.8 MCCO(5, 1) 17482.5
MC(5) 39894.1 MC(5, 4) 21896.6 MCCO(5, 2) 18170.6
MC(6) 116798.2 MC(6, 1) 18119.8 MCCO(5, 3) 22616.9

MC(2, 1) 18112.9 MC(6, 2) 17568.9 MCCO(6, 1) 17448.8
MC(3, 1) 18116.7 MC(6, 3) 18150.0 MCCO(6, 2) 18139.9
MC(3, 2) 17535.8 MC(6, 4) 21849.5 MCCO(6, 3) 22520.2
MC(4, 1) 18123.6 MC(6, 5) 26457.0 MCCO(6, 4) 41618.7
MC(4, 2) 17532.9

As we can see from Table 1, the most adequate model is the Markov chain of conditional
order with parameters: s = 6, L = 1. Estimators for conditional orders are: ŝ0 = 4, ŝ1 = 3,
ŝ2 = 3, ŝ3 = 6. Estimates for transition matrices for this MCCO(6, 1) model are:

Q̂(1) =


0.484 0.376 0.083 0.057
0.463 0.405 0.085 0.047
0.251 0.181 0.373 0.195
0.312 0.201 0.294 0.193

 , Q̂(2) =


0.372 0.485 0.040 0.103
0.309 0.509 0.081 0.101
0.220 0.265 0.240 0.275
0.216 0.329 0.108 0.347

 ,
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Q̂(3) =


0.254 0.210 0.270 0.266
0.170 0.370 0.285 0.175
0.205 0.320 0.320 0.155
0.196 0.253 0.306 0.245

 , Q̂(4) =


0.201 0.181 0.331 0.287
0.099 0.326 0.276 0.299
0.125 0.230 0.342 0.303
0.125 0.230 0.342 0.303
0.193 0.206 0.215 0.386

 .

Let us note that the values of BIC close to the minimum are obtained for MCCO(4, 1) and
MCCO(5, 1). These two models describe similar dependence to MCCO(6, 1), but they have
shorter memory depth. Thus MCCO(6, 1) is chosen as the most adequate model, because the
number of parameters for all three models is the same.

7. Conclusion

In this paper we consider a new parsimonious model for discrete-valued time series called
Markov chain of conditional order. Probabilistic and statistical properties of the model are
established. Ergodicity conditions and conditions under which the stationary probability
distribution is uniform are found. Statistical estimators for parameters are constructedwhich
and their consistency is proved. Asymptotic probability distribution of the estimators for the
transition one-step probabilities is found. Statistical test for the values of transition matrices
is constructed and its asymptotic power for contigual alternatives is evaluated. Computer
experiments on simulated time series and on real DNA sequences are conducted.
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Fractional Brownian Motion by Discrete

Observations
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Abstract

We study a problem of an unknown drift parameter estimation in a stochastic differen-
tial equation driven by fractional Brownian motion. We represent the likelihood ratio as
a function of the observable process. The form of this representation is in general rather
complicated. However, in the simplest case it can be simplified and we can discretize it to
establish the a. s. convergence of the discretized version of maximum likelihood estimator
to the true value of parameter. We also investigate a non-standard estimator of the drift
parameter showing further its strong consistency.

Keywords: fractional Brownian motion, parameter estimation, stochastic differential equation,
strong consistency, discretization.

1. Introduction

The models with long-range dependence are very popular now because they correspond to
various processes in economy, finances and tele-traffic. From the mathematical point of view,
long-range dependence can be modeled with the help of fractional Brownian motion with Hurst
parameter H ∈ (1

2 , 1
)
. More promising are so called mixed models involving both the standard

Wiener process and the fractional Brownian motion. Similarly to the standard semimartingale
models, the problem of parameter estimation arises immediately when we want to adapt the
model with long-range dependence to the specific situation. In particular, the problem of the
drift parameter estimation in the diffusion model with fractional Brownian motion is rather
important. The standard maximum likelihood estimator was considered by many authors, see,
e.g., Mishura (2008) and Prakasa Rao (2010). It is constructed by continuous observations on
the whole interval. Asymptotic properties when the interval of observations increases to the
whole half-axis, were established. However, in practical considerations the observations are
never continuous. So, the problem of the discretization of the estimate appears. Some papers
are devoted to the parameter estimation for the models with fBm and discrete observations,
see, e.g., Hu and Nualart (2010), Xiao, Zhang, and Xu (2011a), Xiao, Zhang, and Zhang
(2011b), Bishwal (2011), Tanaka (2013), Hu and Song (2013), Zhang, Xiao, Zhang, and
Niu (2014) but only restricted classes of models, basically linear models were considered.
The situation is such that in the general case the maximum-likelihood estimator has a very
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complicated representation via the observed process and the dicretized version does not allow
reasonable form for calculations. Therefore, we have to propose some non-standard approach
to construct strongly consistent drift parameter estimators for the discrete observations of the
models with long-range dependence. One of such approaches was demonstrated in Mishura,
Ral’chenko, Seleznev, and Shevchenko (2014), where some specific discretized estimators were
proposed. In the present paper we propose two approaches. One of them consists in direct
discretization of maximum-likelihood parameter estimator, however, only for the case when
drift and diffusion coefficients coincide. It is one of the cases when the discretization leads to
the reasonable form of the estimator. Another approach is to discretize the non-standard drift
parameter estimator that was introduced in Kozachenko, Melnikov, and Mishura (2013). This
also leads to the consistent estimator. Strong consistency is established for both estimators
and illustrated with some simulations.

2. Maximum-likelihood estimation

2.1. Model description

Let BH =
{
BH
t , t ≥ 0

}
be a fractional Brownian motion with Hurst index H ∈ (1/2, 1),

defined on the probability space (Ω,F ,P). Denote by (Ft)t≥0 the filtration generated by BH .
Consider the stochastic differential equation driven by fractional Brownian motion BH :

dXt = θa(t,Xt)dt+ b(t,Xt)dBH
t , 0 ≤ t ≤ T, T > 0,

X
∣∣
t=0

= X0 ∈ R.
(1)

Here θ ∈ R is unknown parameter to be estimated.

Suppose that the following assumptions hold:

(I) there exist positive constants C1, C2 such that for all t ∈ [0, T ], x, y ∈ R

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ C1 |x− y| ,
|a(t, x)|+ |b(t, x)| ≤ C2(1 + |x|);

(II) there exist constants C3 > 0 and ρ ∈ ( 1
H − 1, 1

)
such that for all t ∈ [0, T ], x, y ∈ R∣∣b′x(t, x)− b′y(t, y)

∣∣ ≤ C3 |x− y|ρ ;

(III) there exist constants C4 > 0 and µ ∈ (1−H, 1) such that for all t, s ∈ [0, T ], x ∈ R

|b(t, x)− b(s, x)|+ ∣∣b′x(t, x)− b′x(s, x)
∣∣ ≤ C4 |t− s|µ .

According to (Nualart and Rascanu 2001, Theorem 2.1), under the conditions (I)–(III) there
exists a unique solution X of the stochastic equation (1).

In addition, suppose that the following conditions hold:

(IV) b(t, x) 6= 0;

(V) a, b ∈ C([0,∞)× R).

Denote α = H − 1
2 , α̃ = (1 − 2α)−1, CH =

(
Γ(2−2α)

2HΓ(1−α)3Γ(α+1)

) 1
2 , lH(t, s) = CHs

−α(t −
s)−αI{0<s<t}, ψ(t, x) = a(t,x)

b(t,x) , ϕ(t) = ψ(t,Xt), I(t) =
∫ t

0 lH(t, s)ϕ(s)ds. Under the conditions
(I), (III)–(V) ϕ(t), t ∈ [0, T ] is a continuous process with probability 1. Hence, it is Lebesgue
integrable and for each t ∈ [0, T ] there exists an integral

∫ t
0 lH(t, s)ϕ(s)ds.

Consider the new process B̂H
t := BH

t + θ
∫ t

0 ϕ(s)ds. Suppose that the following assumptions
hold.
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(VI) There exists such function δ that belongs to L1[0, t] for all t ∈ [0, T ] a. s. and satisfies
the equation

θ

∫ t

0
lH(t, s)ϕ(s)ds = (α̃)−1/2

∫ t

0
δsds;

(VII) E
∫ t

0 s
2αδ2

sds <∞, t ∈ [0, T ];

(VIII) E exp
{
Lt − 1

2〈L〉t
}

= 1, where Lt =
∫ t

0 s
αδsdB̂s, and B̂ is Wiener process with respect

to probability measure P0(t) corresponding to the zero drift such that∫ t

0
lH(t, s) dB̂H

s = α̃−1/2

∫ t

0
s−α dB̂s.

(The existence of this Wiener process follows from the representation of fractional
Brownian motion via Wiener process on a finite interval introduced in Norros, Valkeila,
and Virtamo (1999).)

Then the likelihood ratio dPθ(t)
dP0(t) for the probability measure Pθ(t) corresponding to our model

and probability measure P0(t) corresponding to the model with zero drift is equal to

dPθ(t)
dP0(t)

= exp
{
Lt − 1

2
〈L〉t

}
.

Note that Lt is a square-integrable martingale. Now we present likelihood ratio as a function
of the observed process Xt.

2.2. The explicit form for the likelihood ratio and a discretized version of
MLE

We can present likelihood ratio as a function of the observed process Xt.

Lt =
∫ t

0
sαδsdB̂s =

∫ t

0
s2αδsdYs, (2)

where

Ys =
∫ s

0
u−αdB̂u = α̃1/2

∫ s

0
lH(s, u)b−1(u,Xu)dXu, (3)

δs = θα̃1/2

(∫ s

0
lH(s, u)ϕ(u)du

)′
= CHθα̃

1/2

(∫ s

0
(s− u)−αu−αϕ(u)du

)′
(4)

or

δs = CHθα̃
1/2

(
ϕ(s)
s2α

+ α

∫ s

0

s−αϕ(s)− u−αϕ(u)
(s− u)α+1

du

)
. (5)

According to (Mishura 2008, formula (6.3.13)), the maximum-likelihood estimator has the
form

θ̂
(1)
t =

α̃−1/2
∫ t

0 s
αI ′(s)dB̂s∫ t

0 s
2α(I ′(s))2ds

.

Since I ′(s) = δsθ
−1α̃−1/2, we obtain

θ̂
(1)
t =

θLt∫ t
0 s

2αδ2
sds

. (6)
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Using (2), (3), (5) and the definition of the kernel lH(t, s) we can write

θ̂
(1)
t =

θ
∫ t

0 s
2αδsdYs∫ t

0 s
2αδ2

sds

=

∫ t
0

(
ϕ(s) + αs2α

∫ s
0
s−αϕ(s)−u−αϕ(u)

(s−u)α+1 du
)
d
(∫ s

0 v
−α(s− v)−αb−1(v,Xv)dXv

)
∫ t

0 s
2α
(
ϕ(s)
s2α

+ α
∫ s

0
s−αϕ(s)−u−αϕ(u)

(s−u)α+1 du
)2
ds

.

Remark 1. According to (Mishura 2008, Theorem 6.3.3), under assumptions (I)–(VIII) and∫ ∞
0

s2α(I ′(s))2ds =∞ a. s.

θ̂
(1)
T

P1−→ θ, T →∞.

Let tnk = k
2n , k = 0, 1, 2, . . . , 22n. We can define a discretized version of the maximum-

likelihood estimator

θ̂(2)
n :=

∑22n−1
k=0

(
ϕ(tnk) + α(tnk)2α

∑k−1
i=1

(tnk )−αϕ(tnk )−(tni )−αϕ(tni )

(tnk−tni )α+1
1

2n

)(
Ỹtnk+1

− Ỹtnk
)

∑22n−1
k=0 (tnk)2α

(
ϕ(tnk )

(tnk )2α
+ α

∑k−1
i=1

(tnk )−αϕ(tnk )−t−αi ϕ(tni )

(tnk−tni )α+1
1

2n

)2
1

2n

(7)

where

Ỹtk =
k−1∑
i=1

(tni )−α(tnk − tni )−αb−1(tni , Xtni
)
(
Xtni+1

−Xtni

)
.

In the general case formula (7) is not suitable for applications because it involves a lot of
weakly singular kernels and it is quite impossible to get its convergence to the true value of
the parameter. But even if we get the convergence, the simulation error will be so great that
annihilate our efforts in discretization. In order to avoid this technical difficulties, we start
with the simplest case.

2.3. Estimation in the case a = b

Consider an equation
dXt = θb(Xt)dt+ b(Xt)dBH

t . (8)

In this case ϕ ≡ 1. So we get from (4) that

δs = CHθα̃
1/2
(
B(1− α, 1− α)s1−2α

)′ = CHθα̃
−1/2B(1− α, 1− α)s−2α.

Then (2) and (3) imply

Lt = CHθα̃
−1/2B(1− α, 1− α)Yt = CHθB(1− α, 1− α)

∫ t

0
lH(t, s)b−1(Xs)dXs.

Therefore the maximum-likelihood estimator (6) can be written as follows:

θ̂
(1)
t =

∫ t
0 lH(t, s)b−1(Xs)dXs

CHB(1− α, 1− α)t1−2α
. (9)

It follows from (8) that

θ̂
(1)
t =

θ
∫ t

0 lH(t, s)ds+
∫ t

0 lH(t, s)dBH
s

CHB(1− α, 1− α)t1−2α
= θ +

∫ t
0 lH(t, s)dBH

s

CHB(1− α, 1− α)t1−2α
.

Since
∫ t

0 lH(t, s)dBH
s is a square integrable martingale with angle bracket t1−2α → ∞ we see

that
R t
0 lH(t,s)dBHs

t1−2α

P1−−−→
n→∞ 0. Hence the estimator θ̂(1)

t is strongly consistent.
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Now we consider an estimator

θ̂(3)
n =

∑22n−1
k=1 (tnk)−α(2n − tnk)−αb−1

(
Xtnk−1

)(
Xtnk
−Xtnk−1

)
B(1− α, 1− α)2n(1−2α)

,

where tnk = k
2n , k = 0, 1, . . . , 22n. This estimator is a discretized version of the estimator (9).

Theorem 1. Suppose that there exist positive constants C1, C2, C3, C5 and ρ ∈ (1/H−1, 1],
such that

(a) |b(x)− b(y)| ≤ C1 |x− y| for all x, y ∈ R,

(b) C5 ≤ |b(x)| ≤ C2(1 + |x|) for all x ∈ R,

(c) |b′(x)− b′(y)| ≤ C3 |x− y|ρ for all x, y ∈ R

Then θ̂
(3)
n

P1−→ θ, n→∞. Moreover, for any β ∈ (1/2, H) and γ > 1/2 there exists a random
variable η = ηβ,γ with all finite moments such that

∣∣∣θ̂(3)
n − θ

∣∣∣ ≤ ηnκ+γ2−τn, where κ = γ/β,
τ = (1−H) ∧ (2β − 1).

Proof. It follows from (8) that

Xtnk
−Xtnk−1

= θ

∫ tnk

tnk−1

b(Xv)dv +
∫ tnk

tnk−1

b(Xv)dBH
v

= θ

∫ tnk

tnk−1

b
(
Xtnk−1

)
dv + θ

∫ tnk

tnk−1

(
b(Xv)− b

(
Xtnk−1

))
dv

+
∫ tnk

tnk−1

(
b(Xv)− b

(
Xtnk−1

))
dBH

v +
∫ tnk

tnk−1

b
(
Xtnk−1

)
dBH

v .

(10)

Then
θ̂(3)
n =

θAn + θBn +Dn + En
B(1− α, 1− α)

, (11)

where

An = 2n(2α−2)
22n−1∑
k=1

(tnk)−α(2n − tnk)−α,

Bn = 2n(2α−1)
22n−1∑
k=1

(tnk)−α(2n − tnk)−αb−1
(
Xtnk−1

)∫ tnk

tnk−1

(
b(Xv)− b

(
Xtnk−1

))
dv,

Dn = 2n(2α−1)
22n−1∑
k=1

(tnk)−α(2n − tnk)−αb−1
(
Xtnk−1

)∫ tnk

tnk−1

(
b(Xv)− b

(
Xtnk−1

))
dBH

v ,

En = 2n(2α−1)
22n−1∑
k=1

(tnk)−α(2n − tnk)−α
(
BH
tnk
−BH

tnk−1

)
.

It is not hard to show that the sequence

An =
22n−1∑
k=1

(
k

22n

)−α(
1− k

22n

)−α 1
22n

converges to
∫ 1

0 x
−α(1− x)−αdx = B(1− α, 1− α), moreover,

|An − B(1− α, 1− α)| ≤ c12−2n(1−α) (12)
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where c1 is a constant. Indeed, h(x) = x−α(1−x)−α is a decreasing function when x ∈ (0, 1
2

]
,

then ∫ 1
2

0
h(x)dx =

22n−1−1∑
k=0

∫ k+1

22n

k
22n

h(x)dx <
∫ 1

22n

0
h(x)dx+

22n−1∑
k=1

h

(
k

22n

)
1

22n
.

On the other hand,∫ 1
2

0
h(x)dx =

22n−1∑
k=1

∫ k
22n

k−1

22n

h(x)dx >
22n−1∑
k=1

h

(
k

22n

)
1

22n
.

So

0 <
∫ 1

2

0
h(x)dx−

22n−1∑
k=1

h

(
k

22n

)
1

22n
<

∫ 1
22n

0
h(x)dx ≤

(
1− 1

22n

)−α 2−2n(1−α)

1− α . (13)

Similarly one can show that

0 <
∫ 1

1
2

h(x)dx−
22n−1∑

k=22n−1+1

h

(
k

22n

)
1

22n
<

(
1− 1

22n

)−α 2−2n(1−α)

1− α . (14)

Combining (13) and (14), we obtain (12).
By (Mishura et al. 2014, Lemma 2), there exist random variables ξ1 and ξ2 with all finite
moments such that for all n ≥ 1 and k = 1, 2, . . . , 22n∣∣∣∣∣

∫ tnk

tnk−1

(
b(Xu)− b(Xtnk−1

)
)
du

∣∣∣∣∣ ≤ ξ1n
κ2−n(β+1)

and ∣∣∣∣∣
∫ tnk

tnk−1

(
b(Xu)− b(Xtnk−1

)
)
dBH

u

∣∣∣∣∣ ≤ ξ2n
γ+κ2−2nβ,

Then

|Bn| ≤ C−1
5 ξ1n

κ2n(2α−β−2)
22n−1∑
k=1

(tnk)−α(2n − tnk)−α = C−1
5 ξ1n

κ2−nβAn ≤ c2ξ1n
κ2−nβ; (15)

|Dn| ≤ C−1
5 ξ2n

γ+κ2n(2α−1−2β)
22n−1∑
k=1

(tnk)−α(2n − tnk)−α ≤ c2ξ2n
γ+κ2−n(2β−1). (16)

Finally we estimate En. Start by writing

E
[
E2
n

]
= 22n(2α−1)E

22n−1∑
k=1

∫ tnk

tnk−1

(tnk)−α (2n − tnk)−α dBH
s

2  .
According to (Mishura 2008, Corollary 1.9.4), for f ∈ L1/H [0, t] there exist a constant CH > 0
such that

E

[(∫ t

0
f(s)dBH

s

)2
]
≤ CH

(∫ t

0
|f(s)|1/H ds

)2H

.

Hence,

E
[
E2
n

] ≤ c322n(2α−1)

22n−1∑
k=1

∫ tnk

tnk−1

(tnk)−α/H (2n − tnk)−α/H ds

2H

= c322n(H−1)

22n−1∑
k=1

(
k

22n

)−α/H (
1− k

22n

)−α/H 1
22n

2H

.
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As above,

22n−1∑
k=1

(
k

22n

)−α/H (
1− k

22n

)−α/H 1
22n
→ B (1− α/H, 1− α/H) , n→∞,

which implies that E
[
E2
n

] ≤ c422n(H−1). SinceEn is Gaussian, we have E [ |En|p ] ≤ c5(p)2pn(H−1)

for any p ≥ 1. Therefore, for any ν > 1

E

[ ∞∑
n=1

|En|p
nν2pn(H−1)

]
=
∞∑
n=1

E [ |En|p ]
nν2pn(H−1)

≤ c5(p)
∞∑
n=1

n−ν <∞.

Consequently,

ξ3 := sup
n≥1

|En|
nν/p2n(H−1)

<∞

almost surely, moreover, by Fernique’s theorem, all moments of ξ3 are finite. Therefore,

|En| ≤ ξ3n
δ2−n(1−H), (17)

where δ > 0 can be taken arbitrarily small.

Combining (11), (12) and (15)–(17) we obtain

∣∣∣θ̂(3)
n − θ

∣∣∣ ≤ θ |An − B(1− α, 1− α)|+ θ |Bn|+ |Dn|+ |En|
B(1− α, 1− α)

≤ θc12−2n(1−α) + θc2ξ1n
κ2−nβ + c2ξ2n

γ+κ2−n(2β−1) + ξ3n
δ2−n(1−H)

B(1− α, 1− α)
.

Note that 2(1− α) = 3− 2H > 1−H ≥ τ and β > 1/2 > 1−H ≥ τ . Then,∣∣∣θ̂(3)
n − θ

∣∣∣ ≤ ηnκ+γ2−τn,

where η ≤ c6(θ)(1 + ξ1 + ξ2 + ξ3).

3. Non-standard estimators

In the paper Kozachenko et al. (2013) the following non-standard estimator for θ in the
equation (1) was considered:

θ̂
(4)
t =

∫ t
0 a(s,Xs)b−2(s,Xs)dXs∫ t
0 a

2(s,Xs)b−2(s,Xs)ds
.

According to (Kozachenko et al. 2013, Theorem 4), if the assumptions (I)–(IV), (VI)–(VII)
hold and there exist such β > 1−H and p > 1 that

TH+β−1(log T )p
∫ T

0

∣∣∣(Dβ
0+ϕ)(s)

∣∣∣ ds∫ T
0 ϕ2

sds
→ 0 a. s. as T →∞,

then the estimator θ̂(4)
T is well-defined and strongly consistent as T →∞.

We define a discretized version of θ̂(4)
T for the equation

Xt = X0 + θ

∫ t

0
a(Xs)ds+

∫ t

0
b(Xs)dBH

s . (18)
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Put

θ̂(5)
n :=

∑22n

k=1 a
(
Xtnk−1

)
b−2

(
Xtnk−1

)(
Xtnk
−Xtnk−1

)
∑22n

k=1 a
2
(
Xtnk−1

)
b−2

(
Xtnk−1

)
1

2n

,

ϕ̂n(t) :=
22n−1∑
k=0

ϕ(tnk)I[tnk ,t
n
k+1)(t).

Theorem 2. Suppose that there exist positive constants C1, C3, C5, C6 ρ ∈ (1/H − 1, 1],
β > 1−H, p > 1 such that

(a) |a(x)− a(y)|+ |b(x)− b(y)| ≤ C1 |x− y| for all x, y ∈ R,

(b) C5 ≤ |a(x)| ≤ C6, C5 ≤ |b(x)| ≤ C6 for all x ∈ R,

(c) |b′(x)− b′(y)| ≤ C3 |x− y|ρ for all x, y ∈ R,

(d)
2n(H+β)np

R 2n

0

˛̨̨“
Dβ0+ bϕn”(s)

˛̨̨
dsP22n

k=1 ϕ
2(tnk−1)

→ 0 a. s. as n→∞.

Then with probability one, θ̂(5)
n → θ, n→∞.

Proof. It follows from (18) that

Xtnk
−Xtnk−1

= θ

∫ tnk

tnk−1

a(Xv)dv +
∫ tnk

tnk−1

b(Xv)dBH
v

= θ

∫ tnk

tnk−1

a
(
Xtnk−1

)
dv + θ

∫ tnk

tnk−1

(
a(Xv)− a

(
Xtnk−1

))
dv

+
∫ tnk

tnk−1

(
b(Xv)− b

(
Xtnk−1

))
dBH

v +
∫ tnk

tnk−1

b
(
Xtnk−1

)
dBH

v .

(19)

Then
θ̂(5)
n = θ +

θBn + En +Dn

An
,

where

An = 2−n
22n∑
k=1

ϕ2(tnk−1),

Bn =
22n∑
k=1

a
(
Xtnk−1

)
b−2

(
Xtnk−1

)∫ tnk

tnk−1

(
a(Xv)− a

(
Xtnk−1

))
dv,

En =
22n∑
k=1

a
(
Xtnk−1

)
b−2

(
Xtnk−1

)∫ tnk

tnk−1

(
b(Xv)− b

(
Xtnk−1

))
dBH

v ,

Dn =
22n∑
k=1

ϕ(tnk−1)
(
BH
tnk
−BH

tnk−1

)
.

Dn can be represented in the form

Dn =
∫ 2n

0
ϕ̂n(s)dBH

s .

Applying (Kozachenko et al. 2013, Theorem 3) we can estimate

sup
0≤t≤2n

∣∣∣(D1−β
2n−B

H
2n−
)

(t)
∣∣∣ ≤ ξ(p)2n(H+β−1)np(log 2)p.
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Therefore

|Dn| ≤ sup
0≤t≤2n

∣∣∣(D1−β
2n−B

H
2n−
)

(s)
∣∣∣ · ∫ 2n

0

∣∣∣(Dβ
0+ϕ̂n

)
(s)
∣∣∣ ds

≤ ξ(p)(log 2)p2n(H+β−1)np
∫ 2n

0

∣∣∣(Dβ
0+ϕ̂n

)
(s)
∣∣∣ ds.

Then ∣∣∣∣Dn

An

∣∣∣∣ ≤ ξ(p)(log 2)p
2n(H+β)np

∫ 2n

0

∣∣∣(Dβ
0+ϕ̂n

)
(s)
∣∣∣ ds∑22n

k=1 ϕ
2(tnk−1)

→ 0 a. s. as n→∞.

Using the condition (b) we can write

∣∣∣∣BnAn
∣∣∣∣ ≤ C−1

6 2−n
22n∑
k=1

∫ tnk

tnk−1

∣∣∣a(Xv)− a
(
Xtnk−1

)∣∣∣ dv,
∣∣∣∣EnAn

∣∣∣∣ ≤ C−1
6 2−n

22n∑
k=1

∫ tnk

tnk−1

∣∣∣b(Xv)− b
(
Xtnk−1

)∣∣∣ dBH
v .

It now follows from (Mishura et al. 2014, Lemma 2) that
∣∣∣BnAn ∣∣∣→ 0,

∣∣∣EnAn ∣∣∣→ 0 as n→∞.

Example 1. Consider the model (8):

dXt = θb(Xt)dt+ b(Xt)dBH
t .

Suppose that there exist positive constants C1, C3, C5, C6 ρ ∈ (1/H − 1, 1], β > 1−H, p > 1
such that

(a) |b(x)− b(y)| ≤ C1 |x− y| for all x, y ∈ R,

(b) C5 ≤ |b(x)| ≤ C6 for all x ∈ R,

(c) |b′(x)− b′(y)| ≤ C3 |x− y|ρ for all x, y ∈ R.

In this case the non-standard estimator θ̂(5)
n has the form

θ̂(6)
n = 2−n

22n∑
k=1

b−1
(
Xtnk−1

)(
Xtnk
−Xtnk−1

)
, (20)

ϕ̂n(t) = 1. Then
(
Dβ

0+ϕ̂n

)
(s) = 1

Γ(1−β) · s−β and

2n(H+β)np
∫ 2n

0

∣∣∣(Dβ
0+ϕ̂n

)
(s)
∣∣∣ ds∑22n

k=1 ϕ
2(tnk−1)

=
np

Γ(2− β) · 2n(1−H)
→ 0, n→∞.

Consequently the conditions of Theorem 2 are satisfied and the estimator (20) is strongly
consistent.

4. Simulations

In this section we illustrate quality of the estimators with the help of simulation experiments.
We consider the equation (18) with X0 = 1, θ = 1. For each set of parameters, we simulate
100 trajectories of the solution. In the case a = b we compute the average relative error
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Table 1: a(x) = b(x) = sinx+ 2.

n
H = 0.6 H = 0.7 H = 0.8 H = 0.9

δ
(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n

3 0.0929 0.0967 0.0935 0.1015 0.0926 0.0956 0.1144 0.0935

4 0.0512 0.0512 0.0510 0.0509 0.0497 0.0471 0.0522 0.0495

5 0.0262 0.0258 0.0264 0.0258 0.0251 0.0244 0.0287 0.0261

6 0.0122 0.0121 0.0120 0.0120 0.0123 0.0127 0.0125 0.0107

Table 2: a(x) = b(x) = cosx+ 2.

n
H = 0.6 H = 0.7 H = 0.8 H = 0.9

δ
(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n

3 0.0898 0.0891 0.1006 0.0964 0.1021 0.0971 0.1088 0.0935

4 0.0567 0.0568 0.0501 0.0474 0.0544 0.0517 0.0611 0.0521

5 0.0228 0.0227 0.0276 0.0277 0.0255 0.0245 0.0280 0.0244

6 0.0139 0.0138 0.0122 0.0123 0.0130 0.0133 0.0140 0.0137

Table 3: a(x) = b(x) = 1
1+x2 .

n
H = 0.6 H = 0.7 H = 0.8 H = 0.9

δ
(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n

3 0.0969 0.0950 0.1027 0.1003 0.1079 0.0963 0.1198 0.0922

4 0.0467 0.0457 0.0473 0.0477 0.0485 0.0444 0.0489 0.0437

5 0.0257 0.0259 0.0289 0.0282 0.0235 0.0245 0.0307 0.0263

6 0.0123 0.0123 0.0129 0.0128 0.0120 0.0116 0.0130 0.0114

Table 4: a(x) = b(x) = 1.

n
H = 0.6 H = 0.7 H = 0.8 H = 0.9

δ
(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n δ

(3)
n δ

(5)
n

3 0.0947 0.0925 0.1037 0.0998 0.1129 0.1106 0.1177 0.1052

4 0.0498 0.0513 0.0510 0.0504 0.0556 0.0522 0.0578 0.0504

5 0.0275 0.0271 0.0248 0.0255 0.0262 0.0260 0.0248 0.0236

6 0.0124 0.0125 0.0116 0.0118 0.0137 0.0138 0.0125 0.0120

δ
(i)
n =

∣∣∣θ̂(i)
n − θ

∣∣∣ /θ for each of estimators θ̂(i)
n , i = 3, 5 (Tables 1–4). In the case a 6= b we

compute the average relative error only for the estimator θ̂(5)
n (Table 5).

In the case of equal coefficients we see that the estimators θ̂(3)
n and θ̂

(5)
n have similar per-

formance. The advantage of θ̂(5)
n is its independence of the parameter H (which might be

unknown). But in the case of known H the estimator θ̂(3)
n is preferable because it is com-
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Table 5: a(x) = sinx+ 2, b(x) = cosx+ 2.

n
H = 0.6 H = 0.7 H = 0.8 H = 0.9

δ
(5)
n δ

(5)
n δ

(5)
n δ

(5)
n

3 0.0756 0.0792 0.0757 0.0751

4 0.0411 0.0361 0.0453 0.0459

5 0.0200 0.0199 0.0159 0.0200

6 0.0099 0.0113 0.0094 0.0100

putable faster.

Also the simulation results show that the rate on convergence probably does not depend on
H. Moreover, it seems that it is around 2−n, so the bound in Theorem 1 is not optimal.
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Power-Law Random Graphs’ Robustness:

Link Saving and Forest Fire Model
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Abstract

We consider random graphs with node degrees drawn independently from a power-
law distribution. By computer simulation we study two aspects of graph robustness:
preserving graph connectivity and node saving in the forest fire model, considering two
types of graph destruction: the removal of nodes with the highest degrees and equiprobable
node extraction.

Keywords: random graphs, power-law distribution, robustness, simulation modeling, forest
fire model.

1. Introduction

The study of random graphs has been gaining interest in the past decades due to the wide
use of these models for the description of massive data networks (see e.g. Aiello, Chung, and
Lu 2000; Newman, Strogatz, and Watts 2001; Durrett 2007; Hofstad 2011). Such models can
be used for representing transport, telephone and electricity networks, social relationships,
telecommunications and, of course, the main global network – Internet. While considering
these networks it has been noted that their topology could be described by random graphs,
with the node degrees being independent and identically distributed (i.i.d.) random variables
following the power-law distribution (Faloutsos, Faloutsos, and Faloutsos 1999; Reittu and
Norros 2004, etc.).

The structure of present-day complex networks contains many elements, wherefore theoretical
research in the field of power-law random graphs includes the study of the limit behaviour
of different characteristics of such graphs’ structure (Aiello et al. 2000; Pavlov 2007; Norros
and Reittu 2008, , etc.). Furthermore, one of the important questions raised in the studies
of these networks is how their structure and, therefore, functioning change if some of the
nodes fall out. That is why one of the important trends in the random graph field has been
the study of random graph robustness to different types of breakdowns (see e.g. Cohen, Erez,
Ben-Avraham, and Havlin 2000; Bollobas and Riordan 2004; Durrett 2007; Norros and Reittu
2008).

Alongside with the theoretical approach simulation modeling has always been one of the tools
for studying random graph objects (Reittu and Norros 2004; Leri 2009, , etc.). In our work
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we consider two aspects of graph robustness: link saving or preserving graph connectivity,
and node survival, which is closely connected to the study of forest fire models.

2. Power-law graph model

We consider power-law random graphs with the number of nodes that equals N . Node
degrees ξ1, ξ2, . . . , ξN are i.i.d. random variables drawn from the following distribution:

P{ξ ≥ k} = k−τ , k = 1, 2, . . . , τ > 1, (1)

For graph construction each node is given a certain degree in accordance with the degree
distribution (1). Node degrees form stubs (or semiedges) that are numbered in an arbitrary
order. The graph is constructed by joining all the stubs pairwise equiprobably to form links.
If the sum of node degrees is odd one stub is added to a random vertex. Obviously these
graphs have loops and multiple edges. Such construction gave these graphs one of their names
– configuration graphs with i.i.d. degrees (Durrett 2007; Hofstad 2011).

3. Link saving

Research in the last decades (see Faloutsos et al. 1999; Reittu and Norros 2004) showed that
configuration power-law random graphs with parameter τ of the node degree distribution
(1) lying in the interval (1, 2) are deemed to be a good implementation of Internet topology
at both rooter and domain levels. That was one of the main reasons for us to study such
an aspect of graph robustness as preserving graph connectivity or link saving. This issue is
important because it is essential to know how the network structure will be influenced by the
destruction of some nodes.
When τ ∈ (1, 2) the distribution (1) has finite expectation and infinite variance. Both theory
(Reittu and Norros 2004; Durrett 2007; Pavlov 2007) and simulation (Reittu and Norros 2004;
Leri 2009) agree on the fact that such graphs contain one so called giant component, which
is a connected set of nodes the expectation of which is proportional to the number of graph
nodes N .
For computer experiments we built a simulation model of power-law random graphs (Leri
2009) based on an algorithm introduced by Tangmunarunkit, Govindan, Jamin, Shenker,
and Willinger (2002) using a pseudo random generator “Mersenne twister” (see Matsumoto
and Nishimura 1998). Previously we showed (Leri 2009) that the structure of these graphs
dramatically changes with the variations of the value of the node degree distribution parameter
τ even within this small interval (1, 2), but is much less dependent on the graph size N . With
the value of parameter τ close to 1, the graph will be more connected and more than 95% of
all graph nodes will form the giant component. On the other hand, the closer the value of
parameter τ is to 2, the fewer nodes there will be in the giant component, i.e. only a half of all
graph nodes. This does not however imply a significant growth of the other components. For
example, the fraction of nodes in the second component will be rather small in comparison
with the giant one. Even at its most, it will not exceed a little more than 1% of all graph
nodes. In fact, other components will grow not in size, but in number. In particular, the
structure of these power-law random graphs is one of the reasons why is it interesting to see
how this structure changes when some graph nodes are removed.
In our work we consider two types of breakdowns: “random breakdown” when graph nodes
are removed equiprobably, and “target attack”, which means a removal of nodes with the
highest degrees. For simulations we took graphs of ten sizes N from 500 to 5000 and 9 values
of parameter τ from the interval (1, 2) with a step of 0.1 (for each pair (N, τ) 100 graphs were
generated to form statistical data). The graph destruction process looks as follows. When a
chosen node is destroyed, all the links going out of this node are also removed. And then all
isolated nodes are taken away.
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Let η1, η2, . . . , ηs be random variables that are equal to the sizes of graph components in
decreasing order (η1 – the size of the giant component, η2 – the size of the second component,
etc.), where s is the total number of components. A graph is deemed destroyed when following
event A occur: {η1 ≤ 2η2}. Hence, when the size of the second biggest component becomes
greater or equal to half the size of the giant component, the graph is considered destroyed.

Simulation results allowed us to derive regression dependencies of node percentages in the
giant and the second biggest components (η1 and η2, respectively) and the total number of
components s on the graph size N , the parameter of the node degree distribution τ and the
percentage of removed nodes r.

In the case of “random breakdown” the following relations were found:

η1 = 129− 36 τ − 1.1 r,

η2 = 2− 0.25 lnN + 0.42 τ − 0.017 ln r,
s

N
= −0.18 + 0.2 τ − 0.004 r ln τ.

The determination coefficients (R2) of these regression models are equal to 0.98, 0.7 and 0.98,
respectively. The percentage of removed graph nodes has to be confined within the following
bounds: 100/N ≤ r ≤ 117 − 32.7τ . Here in after the lower bound implies the removal of
one node, and the upper bound means that the extraction of a higher percent of nodes will
lead to complete graph breakdown. The results show that the percentage of nodes in the
giant component does not depend on the graph size N and the percent of nodes in the second
component will not exceed 2% of the graph size.

The following regression dependencies were derived for “target attack” on the nodes with the
highest degrees:

η1 = 130− 46 τ − 9 r,

η2 = 4.36− 0.44 lnN + τ + 0.4 ln r,

ln s = −3.3 + lnN + 2.3 ln τ + 0.1 r,

with determination coefficients 0.95, 0.6 and 0.98, respectively, and the percentage of removed
nodes confined within the following bounds: 100/N ≤ r ≤ 14−5.15τ . Here again, the percent
of nodes in the giant component does not depend on the graph size N , and the percentage of
nodes in the second component will not exceed 4% of the graph size.

Below are the results of the estimation of the regression dependence of the probability P{A}
of graph destruction on the percentage of removed nodes r and parameter τ with R2 = 0.84
and R2 = 0.76, respectively.

For “random breakdown”:

P{A} =


0, r < 37/

√
τ ,

−0.2 + 1.5 · 10−4τr2, 37/
√
τ ≤ r

< 89/
√
τ ,

1, r ≥ 89/
√
τ ,

For the “target attack”:

P{A} =


0, ln r < 1.85− τ,
−0.38 + 0.06reτ , 1.85− τ ≤ ln r

≤ 3.13− τ,
1, ln r > 3.13− τ,

This means that in the “random breakdown” case (see Figure 1), for example, an estimated
probability of graph destruction equals 0 when τ = 1.1 for all r < 35.3%, and when τ = 1.9
for r < 26.9%. And P{A} = 1 for r > 84.8% when τ = 1.1, and when τ = 1.9 for r > 64.5%.
On the other hand in the case of “target attack” (see Figure 2) P{A} = 0 when τ = 1.1 for
all r < 2.12%, and when τ = 1.9 for r < 0.95%. And P{A} = 1 for r > 7.6% when τ = 1.1,
and when τ = 1.9 for r > 3.4%.

The results show that power-law random graphs with parameter τ ∈ (1, 2) are much more
vulnerable to “target attacks” than to “random breakdowns”. In order to destroy such a graph
by deleting high-degree nodes it is enough to remove 3− 7% of them. If however graph nodes
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Figure 1: Probability of graph destruction
for “random breakdown”.

Figure 2: Probability of graph destruction
for “target attack”.

are broken randomly, it may be not ruined even if more than 60% of its vertices had been
removed. Furthermore, robustness of these random graphs strongly depends on the value of
parameter τ . In both breakdown cases the graph proved to be more resistant if the value of
τ was closer to 1 and more vulnerable as it moved closer to 2.

4. Node survival – forest fire model

The second aspect of power-law graphs’ robustness we are considering here is node survival.
This issue branched off the studies of forest fire models (see e.g. Drossel and Schwabl 1992;
Bertoin 2012). Let us consider graph nodes as trees on a certain area of a real forest. Two
nodes are connected if a fire can move on related trees from one tree to another (for proper
implication it looks more like a crown fire). So, we pose the question of finding how many
trees should initially be set on a certain area to ensure their maximum survival in case of a
fire. This approach could be used not only for modeling forest fire dynamics. It also has other
applications (Bertoin 2011), including modeling banking system defaults in order to minimize
their negative effects (see e.g. Annakov 2008; Arinaminparty, Kapadia, and May 2012).

In this part of our work we consider the same configuration power-law random graphs with
node degree distribution (1), but with parameter τ > 1 with no the upper bound. Since
we assume that the area of a forest is limited, we have to also restrain the number of trees
growing there. So, to specify the graph topology, let graph vertices be placed in the nodes
of a square lattice sized 100 × 100. Links connect nodes in the “closest neighbour” manner,
so in a fully packed graph every inner tree (node) has 8 adjacent neighbours. This does not
mean that in the following study we consider power-law random graphs with node degrees
no higher than 8. The fact is that on the one hand high node degrees and, all the more, an
average node degree have low probabilities, and on the other hand the graph may contain
multiple edges that raise the probability of fire transfer from one neighbour to the other. That
is why we introduce the lattice only to determine the relation between the initial number of
nodes in the area and the parameter τ of the node degree distribution (1). If an average node
degree i is less than 8, some graph links are missing. Figure 3 shows a couple of examples of
lattice-graph topology for two average inner node degrees.
Taking into consideration that graph node degrees are defined by distribution (1), and having
determined the dependency between an average node degree i and parameter τ on the interval
i ∈ (1, 8] as i = ζ(τ) (where ζ is a Riemann zeta function) (see Table 1), we found that graph
size N ≤ 10000 is related to parameter τ by the following regression function (see Figure 4)
with R2 = 0.97:

N = 9256 τ−1.05. (2)
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Figure 3: Lattice graph topology for i = 7 and i = 4, respectively.

Table 1: Calculated values of τ and N for different i.

i 1.01 1.21 1.33 1.42 1.5 1.6 2 2.66 3 4 5 6 7 8
τ 6.75 2.96 2.53 2.32 2.19 2.05 1.73 1.49 1.42 1.29 1.23 1.18 1.16 1.13
N 3350 3600 3750 3900 4000 4200 5000 4780 4489 5578 6700 8350 8911 10000
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Figure 4: Regression relationship between N and τ .

For simulations we used a subset of configuration graphs the number of nodes in which
is specified by relation (2). We assume that the graph destruction process (or fire) starts
from some chosen node. As the first node is set on fire, it passes on along incident links
to the connected nodes with a given probability 0 < p ≤ 1. Let’s call it the probability of
link destruction. This means that each link becomes inflammable with a probability p, and
therefore a connected node is also set on fire. Otherwise a link becomes fire resistant and the
node connected through this link remains intact. This does not mean however that the fire
cannot reach this node via a parallel link (if any) with the same probability p.

The fire spreads over the graph until there appear inflammable links, and all burnt nodes
and links are removed from the graph when it stops. The aim is to find the optimal values
of parameter τ that secure maximum survival of nodes, and to find how they depend on the
probability of link destruction.

We consider two cases of fire startup: “random fire start” when the first node to be removed is
chosen equiprobably, and “targeted fire start” with fire starting from a node with the highest
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degree. Let g be the number of nodes remaining in a graph after a fire. Figure 5 and Figure
6 show the results obtained for p = 1 in both breakdown cases, respectively.

ææ

g=-1476.3Τ
2+7247.8Τ-5313.4

R2
= 0.86
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2 + 7025Τ - 6431

R
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Figure 5: Relation between the number of
remaining nodes g and parameter τ (“ran-
dom fire start”, p = 1).

Figure 6: Relation between the number of
remaining nodes g and parameter τ (“tar-
geted fire start”, p = 1).

This means, for example, that in the “random” case the number of remaining nodes becomes
maximal for the power-law graphs with parameter τ = 2.45. The initial graph size N then
equals 3605 and an average number of nodes remaining after the fire is g ≈ 3580.

For both cases of breakdown start were found regression dependencies of the number of nodes
remaining in a graph g on τ and the probability of fire spread p. Below we give these models
for the cases of “random” start and “target” start, respectively:

g = 6008.8− 1915.3 p− 217.4 τ2, (R2 = 0.91);

g = 2938− 894.2 ln p− 74.5 τ2, (R2 = 0.95).

Obviously, the number of remaining nodes decreases as p increases. Relations were found
that describe the dependencies of g on τ for different values of p and dependencies of g on
p for different τ . This allowed to find the relation between τmax = τmax(p) of parameter τ
for which g reaches its maximum gmax on p and, thus, find the values of gmax = gmax(p).
For example, for p = 1 and p = 0.6 under “random” start τmax(1) = 2.46, τmax(0.6) = 1.1,
gmax(1) = 3585, gmax(0.6) = 4468, and under “target” start τmax(1) = 2.74, τmax(0.6) = 2.23,
gmax(1) = 3216, gmax(0.6) = 3995.

Thus, in order to secure a maximum of unburnt trees in some specified territory in the case
of a fire (either “random” or “targeted”) the topology of their layout has to correspond to
the topology of power-law random graph with parameter τ of node degree distribution (1)
between values 2.4 and 2.7. Such graph will represent a multicomponent structure with no
giant connected component with an average node degree 1.2 through 1.4. As for the difference
between graphs robustness in the two breakdown cases, the graph will be more robust and
more nodes will survive in a fire in the case of a “random” start than in the case of a “target”
start.
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1. Introduction

Robust methods ensure high stability of statistical inference under uncontrolled deviations
from the assumed distribution model. Much less attention is devoted in the literature to robust
estimation of data spectra as compared to robust estimation of location, scale, regression
and covariance (Huber, 1981; Hampel, Ronchetti, Rousseeuw, and Stahel, 1986; Maronna,
Martin, and Yohai, 2006). However, it is necessary to study these problems due to their
both theoretical and practical importance (estimation of time series power spectra in various
applications, such as communication, geophysics, medicine, etc.), and also because of the
instability of classical methods of power spectra estimation in the presence of outliers in the
data (Kleiner, Martin, and Thomson, 1979).
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There are several classical approaches to estimation of the power spectra of time series, e.g.,
via the nonparametric periodogram and the Blackman-Tukey formula methods, as well as via
the parametric Yule-Walker and filter-based methods (Blackman and Tukey, 1958; Bloomfield,
1976; Brockwell and Davis, 1991). Thereafter, we may consider their various robust versions:
to the best of our knowledge, a first systematic study of them is made in the dissertation of
Bernhard Spangl (Spangl, 2008).

In what follows, we partially use the aforementioned study as a baseline, mostly follow the
classification of robust methods of power spectra estimation given in (Spangl, 2008), spec-
ify them and propose some new approaches with their comparative performance evaluation.
Basically, to obtain good robust estimates of power spectra, we use highly efficient robust
estimates of scale and correlation (Shevlyakov and Smirnov, 2011).

Our main goals are both to outline the existing approaches to robust estimation of power
spectra and to indicate open problems, so our paper is partially a review and partially a
program for a future research.

The remainder of the paper is as follows. In Section 2, classical methods of power spectra
estimation are briefly enlisted. In Section 3, robust modifications of classical approaches are
formulated. In Section 4, a few preliminary results on the comparative study of the perfor-
mance evaluation of various robust methods are represented. In Section 5, some conclusions
and open problems for future research are drawn.

2. Classical estimation of power spectra

2.1. Nonparametric estimation of power spectra

The nonparametric approach to estimation of power spectra is based on smoothed peri-
odograms (Blackman and Tukey, 1958; Bloomfield, 1976).

Let xt, t = 1, . . . , n be a second-order stationary time-series with zero mean. Assume that
the time intervals between two consecutive observations are equally spaced with duration ∆t.
Then the periodogram is defined as follows:

ŜP (f) = ∆t/n
∣∣∣ n∑
t=1

xt exp{−i2πft∆t}
∣∣∣2 (1)

over the interval [−f(n), f(n)], where f(n) is the Nyquist frequency: f(n) = 1/(2∆t).

The Blackman-Tukey formula gives the representation of formula (1) via the sample autoco-
variances ĉxx of the time series xt (Blackman and Tukey, 1958):

ŜP (f) = ŜBT (f) = ∆t
n−1∑

h=−(n−1)

ĉxx(h) exp{−i2πfh∆t} . (2)

It can be seen that the periodogram ŜP (f) (1) at the frequency f = fk = k/(n∆t), where k is
an integer such that k ≤ bn/2c, is equal to the squared absolute value of the discrete Fourier
transform X(fk) of the sequence x1, . . . , xn given by the following formula

X(fk) = ∆t
n∑
t=1

xt exp{−i2πfkt∆t} . (3)

To reduce the bias and variance of the periodogram ŜP (f), the conventional techniques based
on tapering and averaging of periodograms is used (Bloomfield, 1976).
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2.2. Parametric estimation of power spectra

The widely used form of a parametric power spectra estimation procedure exploits an au-
toregressive model of order p for the underlying power spectrum S(f). A stationary AR(p)
process xt with zero mean is described by the following equation

xt =
p∑
j=1

φjxt−j + εt , (4)

where εt are i.i.d. Gaussian white noises with zero mean and variance σ2
ε . The power

spectrum estimate ŜAR(f) has the form (Bloomfield, 1976)

ŜAR(f) =
∆tσ̂2

ε∣∣∣1−∑p
j=1 φ̂j exp{−i2πfj∆t}

∣∣∣2 , |f | ≤ f(n), (5)

where φ̂1, . . . , φ̂p and σ̂2
ε are the maximum likelihood estimates of the model parameters.

3. Robust estimation of power spectra

3.1. Preliminaries

A natural way to provide robustness of the classical estimates of power spectra is based on
using highly robust and efficient estimates of location, scale and correlation in the classical
estimates. Here we enlist several highly robust and efficient estimates of scale and correlation.
Robust Scale: The median absolute deviation MADn(x) = med |x−medx| is a highly robust
estimate of scale with the maximal value of the breakdown point 0.5, but its efficiency is
only 0.37 at the normal distribution (Hampel, Ronchetti, Rousseeuw, and Stahel, 1986).
In (Rousseeuw and Croux, 1993), a highly efficient robust estimate of scale Qn has been
proposed: it is close to the lower quartile of the absolute pairwise differences |xi − xj |, and
it has the maximal breakdown point 0.5 as for MADn but much higher efficiency 0.82. The
drawback of this estimate is its low computation speed; the computation of Qn requires an
order of greater time than of MADn.
In (Smirnov and Shevlyakov, 2010), an M -estimate of scale denoted by FQn whose influence
function is approximately equal to the influence function of the estimate Qn is proposed

FQn(x) = 1.483MADn(x)
(

1− (Z0 − n/
√

2)/Z2

)
, (6)

Zk =
n∑
i=1

uki e
−u2

i /2 , ui = (xi −medx)/(1.483MADn), k = 0, 2; i = 1, . . . , n.

The efficiency and breakdown point of FQn are equal to 0.81 and to 0.5, respectively.
Robust Correlation: A remarkable robust minimax bias and variance MAD correlation coef-
ficient with the breakdown point 0.5 and efficiency 0.37 is given by

rMAD(x, y) = (MAD2(u)−MAD2(v))
/

(MAD2(u) +MAD2(v)), (7)

where u and v are the robust principal variables (Shevlyakov and Smirnov, 2011)

u =
x−medx√

2MADx
+

y −med y√
2MADy

, v =
x−medx√

2MADx
− y −med y√

2MADy
.

Much higher efficiency 0.81 with the same breakdown point 0.5 can be provided by using the
FQ correlation coefficient (Shevlyakov and Smirnov, 2011)

rFQ(x, y) = (FQ2(u)− FQ2(v))
/

(FQ2(u) + FQ2(v)) . (8)
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3.2. Robust Lp-norm analogs of the discrete Fourier transform

Since computation of the discrete Fourier transform (DFT) (3) is the first step in periodogram
estimation of power spectra, consider the following robust Lp-norm analogs of the DFT.

As the classical DFT (3) X(f) can be obtained via the L2-norm approximation to the data
yt(f) = xt exp{−i2πf t∆t}, t = 1, . . . , n:

X(f) ∝ arg min
Z

n∑
t=1

∣∣∣yt(f)− Z
∣∣∣2 ,

the Lp-norm analog of X(f) (up to the scale factor) is defined as follows :

XLp(f) ∝ arg min
Z

{
n∑
t=1

∣∣∣yt(f)− Z
∣∣∣p}1/p

, 1 ≤ p <∞. (9)

The case of 1 ≤ p < 2, and especially the L1-norm or the median Fourier transform, are of
our particular interest (Pashkevich and Shevlyakov, 1995; Spangl and Dutter, 2005; Spangl,
2008):

XL1(f) ∝ arg min
Z

{
n∑
t=1

∣∣∣yt(f)− Z
∣∣∣} . (10)

The other possibilities such as the component-wise, spatial medians, and trimmed mean
analogs of the DFT are also considered in (Pashkevich and Shevlyakov, 1995; Spangl, 2008).

3.3. Robust nonparametric estimation

Now we apply the aforementioned robust analogs of the DFT as well as highly robust and
efficient estimates of scale and correlation to the classical nonparametric estimation of power
spectra.

Robust Nonparametric Estimation via Periodograms: Here we apply the robust Lp-norm
analogs of the DFT to the classical periodogram ŜP (f) (1):

ŜLp(f) ∝
∣∣∣XLp(f)

∣∣∣2 . (11)

In what follows, the L1- or the median periodogram is of our particular interest.

Robust Nonparametric Estimation via the Blackman-Tukey Formula: In order to construct
robust modifications of the Blackman-Tukey formula, we have to consider robust estimates of
autocovariances ĉxx(h) instead of the conventional ones used in (2). These robust estimates
are based on the highly robust MAD and FQ estimates of scale and correlation (6) - (8):

ĉMAD(h) = rMAD(xt, xt−h)MAD(xt)MAD(xt−h) = rMAD(h)MAD2(x) , (12)

ĉFQ(h) = rFQ(xt, xt−h)FQ(xt)FQ(xt−h) = rFQ(h)FQ2(x) .

To provide the required Teplitz property (symmetry, semipositive definiteness, equal elements
on sub-diagonals) of the autocovariance matrix Ĉxx built of the element-wise robust autoco-
variances (12), a new effective transform is used (Letac, 2011). Thus, the Teplitz transformed
estimates are substituted into formula (2), and the corresponding robust estimates of power
spectra are denoted as ŜMAD(f) and ŜFQ(f), respectively.

3.4. Robust parametric estimation of power spectra via the Yule-Walker
equations

A classical approach to estimation of autoregressive parameters φ1, . . . , φp in (4) is based on
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the solution of the linear system of the Yule-Walker equations (Bloomfield, 1976):
ĉ(1) = ĉ(0)φ̂1 + ĉ(1)φ̂2 + · · ·+ ĉ(p− 1)φ̂p
ĉ(2) = ĉ(1)φ̂1 + ĉ(2)φ̂2 + · · ·+ ĉ(p− 2)φ̂p
. . . . . . . . . . .

ĉ(p) = ĉ(p− 1)φ̂1 + ĉ(p− 2)φ̂2 + · · ·+ ĉ(0)φ̂p .

(13)

The estimate of the innovation noise variance is defined by the following equation

ĉ(0) = ĉ(1)φ̂1 + ĉ(2)φ̂2 + · · ·+ ĉ(p)φ̂p + σ̂2
ε . (14)

Substituting robust estimates of autocovariances (12) into (13) and (14), we get the robust
analogs of the Yule-Walker equations. Solving these equations, we arrive at the robust esti-
mate of power spectra in the form (5).

3.5. Robust parametric estimation via filtering

A wide collection of robust methods of power spectra estimation is given by various robust
filters (Kalman, Masreliez, ACM-type, robust least squares, filter-cleaners, etc.) providing
preliminary cleaning the data with the subsequent power spectra estimation. An extended
comparative experimental study of robust filters is made in (Spangl and Dutter, 2005; Spangl,
2008); below we compare some of those results with ours.

4. Performance evaluation

4.1. Robustness of the median Fourier transform power spectra

The median Fourier transform power spectra estimate ŜL1(f) ∝
∣∣∣XL1(f)

∣∣∣2 inherits the max-
imum value of the sample median breakdown point ε∗ = 1/2.

Theorem The breakdown point of ŜL1(f) is equal to 1/2. Here, the breakdown point ε∗ is
understood as the maximal ratio of the number of unbounded observations in the data sample
under which the estimate still remains bounded (Hampel, Ronchetti, Rousseeuw, and Stahel,
1986).
Fig. 1 illustrates this phenomenon: the observed realisation is the mixture of sin(πt/4) and
sin(πt/8) on the 40% and on the 60% of the interval of observation, respectively. In this
case, the classical periodogram indicates the presence of both peaks whereas the median
periodogram indicates only one spectrum peak, which corresponds to the dominating signal
sin(πt/8).

4.2. Additive outlier contamination model

In Monte Carlo experiment, an autoregressive model is used because of, first, it is a direct
stochastic counterpart of an ordinary differential equation, second, an autoregressive model is
the maximum entropy parametric approximation to an arbitrary strictly stationary random
process (Cover and Thomas, 1991).
In this paper, we use the autoregressive models AR(2): xt = xt−1 − 0.9xt−2 + εt and AR(4):
xt = xt−1 − 0.9xt−2 + 0.5xt−3 − 0.1xt−4 + εt together with Gaussian additive outliers (AO)
with pdf N(x; 0, 10). The comparative study is performed on different sample sizes n and
numbers of trials M (see, Figs. 2-4).

4.3. Disorder contamination model

In this paper, we propose a contamination model dubbed as a disorder contamination describ-
ing the violations of the thin structure of a random process, when an AR-process is shortly
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Figure 1: Median Fourier transform breakdown point ε∗ = 0.5 property

Figure 2: Power spectra estimation in AR(2) model with 10% AO contamination by robust
filter-cleaners: n=100, M=400

changed for another and then it returns to the previous state.

Below, the following disorder model is used: xt = −0.6xt−1−0.6xt−2 +εt as the main process
observed at t = 0, 1, . . . , 400 and at t = 512, . . . , 1024; xt = xt−1−0.9xt−2 + εt as the disorder
process at t = 401, . . . , 511. The results of signal processing are exhibited in Figs. 5-6: the
classical periodogram indicates two spectrum peaks of the main and contamination processes,
whereas the median periodogram indicates only one peak of the main process.
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Figure 3: Robust Yule-Walker power spectra estimation in AR(2) model with 10% AO con-
tamination: n=128, M=2000

Figure 4: Robust Yule-Walker power spectra estimation in AR(4) model with 10% AO con-
tamination: n=128, M=2000

Figure 5: Smoothed classical power spectra estimation in disorder model with 10% contami-
nation

5. Concluding remarks

1) From Figs. 2-3 it follows that the classical periodogram is catastrophically bad under
contamination, and that the robust FQ Yule-Walker estimate considerably outperforms robust
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Figure 6: Smoothed robust power spectra estimation in disorder model with 10% contamina-
tion

filter methods.

2) From Fig. 4 it follows that the bias of estimation by the FQ Yule-Walker method increases
with growing dimension and contamination. It can be also shown that under heavy contami-
nation, the median periodogram and the robust Blackman-Tukey method outperform the FQ
Yule-Walker method in estimating the peak location, although they have a considerable bias
in amplitude.

3) The median periodogram exhibits high robustness both with respect to amplitude outliers
and to disorder contamination.

4) The obtained results indicate many open problems: analysis of the asymptotic properties
of the proposed estimates, reducing their bias and variance on finite samples, and study of
the properties of the direct and inverse Lp-norm analogs of the Fourier transform.
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Providing Data With High Utility And No

Disclosure Risk For The Public and Researchers:

An Evaluation By Advanced Statistical Disclosure

Risk Methods

Matthias Templ
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Abstract

The demand of data from surveys, registers or other data sets containing sensible
information on people or enterprises have been increased significantly over the last years.
However, before providing data to the public or to researchers, confidentiality has to be
respected for any data set containing sensible individual information. Confidentiality can
be achieved by applying statistical disclosure control (SDC) methods to the data. The
research on SDC methods becomes more and more important in the last years because of
an increase of the awareness on data privacy and because of the fact that more and more
data are provided to the public or to researchers. However, for legal reasons this is only
visible when the released data has (very) low disclosure risk.

In this contribution existing disclosure risk methods are review and summarized. These
methods are finally applied on a popular real-world data set - the Structural Earnings
Survey (SES) of Austria. It is shown that the application of few selected anonymisation
methods leads to well-protected anonymised data with high data utility and low informa-
tion loss.

Keywords: statistical disclosure control, data utility, disclosure risk, R.

1. Introduction

A microdata file is defined as a data set on individual level. For each observation a set
of variables is typically available. Concerning SDC, these variables can be split into three
categories.

• Direct Identifiers: Variables that definitely identify a statistical unit. For example,
the social insurance number, name of companies or people or addresses are considered
as direct identifiers.

• Key variables: A set of variables that - when considered together - may be used to
identify an individual unit. For example with the combination of gender, age, region
and occupation some individuals may be identified. Other examples for (confidential)
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key variables could be income, health information, nationality or political preferences.
For the description of the methods, it is advantageous to distinguish between categorical
and continuous scaled key variables.

• Non-confidential variables: All variables that are not classified in any of the former
two groups.

The goal of anonymizing a microdata set is to prevent that confidential information can be
linked to a specific respondent. The ultimative aim is to release a safe microdata set that
has both, low risk of linking confidential information to individual respondents and high data
utility.

2. Measuring disclosure risk

Measuring risk in an microdata set is of course of great concern when having to decide on
whether a microdata set is safe to be released. To be able to assess the disclosure risk it is
required to make realistic assumptions on the information data users might have at hand to
match against the microdata set. These assumptions are called ’disclosure risk scenarios’.
Based on a specific disclosure risk scenario one must define a set of identifying variables (key
variables) that can be used as input for the risk evaluation procedure.

Typically risk evaluation is based on the concept of “rareness/uniquenessss” in the sample
and/or in the population. The interest is on units/individuals/observations that possess rare
combinations of key variables. Those can be assumed to be identified easier and thus have
higher risk. It is possible to cross tabulate all identifying variables and have a look at its cast.
Patterns1 with only very few individuals are in this sense considered risky if they have also
low sampling weights, i.e. if the expected individuals with the same pattern is expected to be
low in the population.

2.1. Frequencies counts

Consider a random sample of size n drawn from a finite population of size N . Let πj , j =
1, . . . , N be the (first order) inclusion probabilities, i.e. the probability that the element uj
of a population of the size N is chosen in a sample of the size n.

All possible combinations of categories in the key variables X1, . . . , Xm can be calculated by
cross tabulation of these categorical variables. Let fi, i = 1, . . . , n be the frequency counts
obtained by cross tabulation and let Fi be the frequency counts of the population which
belong to the same category. If fi = 1 applies the corresponding observation is unique in the
sample. If Fi = 1 applies then the observation is unique in the population. Note that Fi is
usually unknown since usually information on samples is collected and only few information
about the population is known from registers and/or external sources.

2.2. The k-anonymity concept

Based on a set of key variables a desired characteristic of a protected microdata set might
be to achieve k-anonymity (Samarati and Sweeney 1998; Sweeney 2002). This means that
each possible combination of the values of the key variables features at least k units in the
microdata, meaning that all fi ≥ 3 , i = 1, ..., n . A typical value is k = 3.

k-anonymity is typically provided by recoding categorical key variables and by additionally
suppressing specific values in the key variables of individual units.

1a pattern is defined as a specific combination of values of all key variables
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An extension of k-anonymity is l-diversity (Machanavajjhala, Kifer, Gehrke, and Venkita-
subramaniam 2007). Consider for one group of observations with the same pattern in the
key variables and let the group fulfill k-anonymity. A possible data intruder can therefore
not identify an individual in this group. However, if all observations have the same entries
in a sensitive variable (such as cancer in the variable medical diagnosis) then the attack is
successful anyway.

2.3. Considering sample frequencies on subsets: SUDA2

SUDA (Special Uniques Detection Algorithm) estimates a disclosure risk for each individual.
SUDA2 (see, e.g., Manning, Haglin, and Keane 2008) is a recursive algorithm for finding
Minimal Sample Uniques. The algorithm generates all possible variable subsets of defined
categorical key variables and scans them for unique patterns in the subsets of variables. The
risk of an observation is then dependend on two aspects.

(a) The lower the amount of variables needed to receive uniquenesss, the higher the risk
(and the higher the suda score) of the corresponding observation.

(b) The larger the number of minimal sample uniqueness contained within an observation,
the higher the risk of the observation.

(a) is calculated for each observation i by li =
∏m−1
k=MSUmini

(m− k) , i = 1, ..., n, for m the
depth (the maximum size of variable subsets of the key variables), MSUmini the number of
minimal uniques of observation i and n the number of observations of the data set. Since
each observation is treated independently, the li that belongs to one pattern are summed up
to result in a common suda score for each of the observation belonging to this pattern (this
summation is the contribution of (b)).

To result in the final SUDA score, the suda score are normalized due division by p!, with
p being the number of key variables. The so called DIS suda score is then calculated from
the suda and the so called DIS scores (we refer to Elliot 2000, for details). SUDA2 does not
consider sampling weights and biased estimates may therefore result.

2.4. Considering population frequencies - the individual risk

To define if an individual unit is at risk, typically a threshold approach is used. If the
individual risk of re-identification for an individual is above a certain threshold value, the
unit is said to be at risk. To calculate the individual risks it is necessary to estimate the
frequency of a given key in the population. In the previous section, Section 2.1, the population
frequencies have already been estimated. However, one can show that these estimates almost
always overestimate small population frequency counts (details can be found in Templ and
Meindl 2010) and should not be used to estimate the disclosure risk.

A better approach is to use so-called super-population models in which population frequency
counts are modeled given a certain distribution. The whole estimation procedure of sample
counts given the population counts can be modeled, for example, by using a Negative Binomial
distribution (see, e.g., Rinott and Shlomo 2006). It is out of scope of the paper to explain the
final measurement of individual risk in this contribution but it can be found in Franconi and
Polettini (2004) and Templ and Meindl (2010).

2.5. Measuring the global risk

Although the individual risk have to be respected since a data intruder should not be able to
identify individuals, often also a measure of the global risk is estimated to express the risk of
the whole data set with one number.
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Measuring the global risk based on the individual risks

The first approach is to determine a threshold for the individual risk and to calculate the
percentage of individuals that have larger individual risk than this threshold.

Measuring the risk using log-linear models

The sample frequencies, considered for each of M patterns m, fm ,m = 1, ...,M can be
modeled by a Poisson distribution, and the global risk may be defined as (see Skinner and
Holmes 1998)

τ1 =
M∑
m=1

exp
(
−µm(1− πm)

πm

)
, with µm = πmλm . (1)

For simplicity, the inclusion probabilities are assumed to be equal, πm = π ,m = 1, ...,M .
τ1 can be estimated by log-linear models including the main effects and possible interactions.
The model is

log(πmλm) = log(µm) = xmβ .

To estimate the µm’s, the regression coefficients β have to be estimated, for example, by using
the iterative proportional fitting.Global risk measure 1 is then given by r̂1 =

∑n
i=1 I(fi =

1)e−(1−π)µ̂ (corresponding to the risk P (Fi = 1|fi = 1)) and the second one by r̂2 =∑n
i=1 I(fi = 1)e1−(1−π)µ̂/((1− π)µ̂) (corresponding to the risk E(1/Fi|fi = 1).

2.6. Measuring risk for continuous key variables

Applying the concept of uniquenesss and k-anonymity on quantitative variables results that
every observation in the data set is unique. Hence, this approach will fail for continuous key
variables.

If detailed information about a value of a continuous scaled variable is available, one may be
able to identify (by linking information) and eventually gain further information about an
individual. For continuous key variables it is assumed that an intruder has information about
a statistical unit

Distance-based record linkage

By using distance based record linkage methods the aim is to find the nearest neighbors
between observations from two data sets. Domingo-Ferrer and Torra (2001) has shown that
these methods outperform probabilistic methods. Generally, it is evaluated if the original
value falls within an interval centered on the masked value. Such an interval might be based
on the standard deviation of the variable (see also Mateo-Sanz, Sebe, and Domingo-Ferrer
2004).

Almost all data sets from Official Statistics consists of statistical units whose values in at least
one variable are quite different from the main part of the observations. This leads to the fact
that these variables are very asymmetric distributed. Such outliers might be enterprises with
a very large value for turnover, for example, or persons with extremely high income or even
multivariate outliers. Other disclosure risk methods that are not used in this contribution
take the “outlyingness” of an observation into account (for details, see, Templ and Meindl
2008).

3. Application to the statistics on earnings survey

The Structural Earnings Survey (SES) is conducted in almost all European countries and it
includes variables on earnings of employees and other variables on employees and employment
level (e.g. region, size of the enterprise, economic activities of the enterprise, gender and age
of the employees, . . . ).
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Generally such linked employer-employee data are used to identify the determinants/differ-
entials of earnings but also some indicators are directly derived from the hourly earnings like
the gender pay gap or the Gini coefficient (Gini 1912). The most classical example is the
income inequality between genders as discussed in Groshen (1991), for example.

A correct identification of factors influencing the earnings could lead to relevant evidence-
based policy decisions. The research studies are usually focused on examining the determi-
nants of disparities in earnings.

The Austrian SES 2006 survey data consists of 199.909 observations obtained from a two-
stage design - in the first stage of the design, the enterprises are chosen with certain inclusion
probabilities depending on the enterprise size and location, in the second stage employee’s in
the selected enterprises are chosen with different inclusion probabilities (for more information
have a look at Geissberger 2009).

3.1. Disclosure risk and information loss for SES

The following variables are chosen as key variables:

Categorical key variables: size of enterprise (5 ordered categories), age (66 ordered cat-
egories), location (3 categories), economic activity (53 categories)

Continuous key variables: hourly earnings, earnings

Table 1 shows the resulting disclosure risk and information loss of the SES data.

risk, IL orig +rec1 +rec2 +rec3 +supp mdav add corr sh
R:2-a 2.49 0.47 0.24 0 0 0 0 0 0
R:3-a 5.65 1.12 0.56 0.01 0 0 0 0 0
R:ind 2.48 0.67 0.52 0.05 0.05 0.05 0.05 0.05 0.05
R:suda 0.87 0.15 0.1 0 0 0 0 0 0
R:glob 0.83 0.14 0.08 0 0 0 0 0 0
R:glob 1.35 0.23 0.13 0 0 0 0 0 0
R:num 100 100 100 100 100 99.73 7.86 61.86 12.26
IL1 - - - - - 0 11.29 0.11 1.02
IL:eig - - - - - 0 5.68 0.06 1.77
IL:lm 0 0.24 0.24 0.03 0.03 0.04 240.29 0.2 8.53

Table 1: Disclosure risk and information loss on SES

The the columns in Table 1 corresponds to the following data

orig: original data (key variables)

rec1: (recoding) the variable economic activity is recoded to 14 reasonable categories.

rec2: (recoding) additionally, the variable size of employment is recoded into three reasonable
categories (10-49, 50-249, 250-. . . ).

rec3: (recoding) additionally, age is discretised into six reasonable categories.

supp: (suppression) additionally, local suppression is applied so that no observation violates
3-anonymity.

mdav: microaggregation (method mdav, see e.g. Domingo-Ferrer and Mateo-Sanz (2002))
with aggregation level 3.

add: additive noise (noise parameter equals 10, see Templ, Kowarik, and Meindl (2013))
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corr: correlated noise (defaults of Templ et al. (2013))

sh: shuffling (Muralidhar and Sarathy 2006)

The rows of Table 1 corresponds to disclosure risk and information loss measures - R:2-a
(R:3-a): percent of observations violating 2(3)-anonymity, R:ind: percent of observations
with individual risk below 0.01, R:suda: percent of observations having suda dis score lower
than 0.1, R:glob1, R:glob2: global risks from log-linear models, R:num: distance-based
disclosure risk, IL1: information loss IL1, IL:eig: information loss based on differences in the
eigenvalues and IL:lm: model-based estimation information loss. The mentioned measures
of information loss are briefly explained in the following.

IL1: IL1 = 1
p

p∑
i=1

|xij−x′
ij |√

2Sj
, scaled distances between original and perturbed values for all p

continuous key variables.

IL:eig: The relative absolute differences between the eigenvalues of the covariance standard-
ized continuous key variables of the original and the perturbed variables.

IL:lm: |(¯̂yow − ¯̂ypw)/¯̂yow|, with ¯̂yw the (Horwitz-Thompson) weighted mean of exponentials
of the fitted values from the model log(earningsHour) ∼ age + Location + Sex +
education + Occupation + economicActivity + Length + Size) (using weighted least
squares estimation considering the sampling weights) obtained from the original (index
o) and the perturbed data (index p).

Table 1 let us to the following interpretation. The original unmodified SES data contains
about 5.35 % of observations that violate 3-anonymity and about 2.48 % of risky observations
(using the individual risk approach). For the original data, the global model-based risk is
0.83 (and 1.35) which is quite similar to the percentage of observations having high dis suda
score (0.87). Of course, the risk on continuous key variables is 100 % and the information
loss on that variables is zero. When recoding economic activity into less categories, the risk
reduces by almost the factor of 5. When additionally recoding the variable age the risk reduces
dramatically. After applying local suppression additionally, the risk for all risk methods zero,
expect the individual risk.

The risk on continuous variables is evaluated for any method independently. It is very low for
adding additive noise to the data but in the same time the information loss is inacceptable
large. The information loss is very small for adding correlated noise, but the risk is still high.
For microaggregation, the information loss is (almost) zero, but the risk is high. However,
always three observations are aggregated and therefore anonymisation might be fine but the
disclosure risk method is not suitable for microaggregation. The performance of shuffling is
good, but the model based estimates differ more than 8 % after shuffling the data.

Probably the most interesting information loss measure - the measure which accounts for
fitting a linear model on the data (IL:lm) reports that the information loss very low expect
for the adding additive noise method and shuffling.

4. Conclusion

In this contribution, popular disclosure risk methods have been summarized. We stressed to
measure the disclosure risk after the application of any SDC method to the data. Because of
the limit of pages we only briefly focused on measuring the data utility and information loss,
but it should be clear that the aim is both, to provide a data set with low disclosure risk and
high data utility.

In the practical example, a very popular data set was used and the disclosure risk and data
utility/information loss is evaluated. Hereby, the whole range of disclosure risk methods has
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been applied to the data, which is done the first time to our knowledge. The results show
that by application of few selected anonymisation methods, the disclosure risk dramatically
decreases and in the same time, the information loss is considerable small.

All estimations/calculations have been made with the R-package sdcMicro Templ et al. (2013).
The SES data were provided by Statistics Austria.
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Abstract

The present work discusses robust multivariate methods specifically designed for high
dimensions. Their implementation in R is presented and their application is illustrated
on examples. The first group are algorithms for outlier detection, already introduced
elsewhere and implemented in other packages. The value added of the new package is
that all methods follow the same design pattern and thus can use the same graphical
and diagnostic tools. The next topic covered is sparse principal components including an
object oriented interface to the standard method proposed by Zou, Hastie, and Tibshirani
(2006) and the robust one proposed by Croux, Filzmoser, and Fritz (2013). Robust partial
least squares (see Hubert and Vanden Branden 2003) as well as partial least squares for
discriminant analysis conclude the scope of the new package.

Keywords: high dimensions, robustness, classification, PLS, PCA, outliers.

1. Introduction

High-dimensional data are typical in many contemporary applications in scientific areas like
genetics, spectral analysis, data mining, image processing, etc. and introduce new challenges
to the traditional analytical methods. First of all, the computational effort for the anyway
computationally intensive robust algorithms increases with increasing number of observations
n and number of variables p towards the limits of feasibility. Some of the robust multivariate
methods available in R (see Todorov and Filzmoser 2009) are known to deteriorate rapidly
when the dimensionality of data increases and others are not applicable at all when p is larger
than n.

The present work discusses robust multivariate methods specifically designed for high dimen-
sions. Their implementation in R is presented and their application is illustrated on examples.
A key feature of this extension of the framework is the object model which follows the one al-
ready introduced by rrcov and based on statistical design patterns. The first group of classes
are algorithms for outlier detection, already introduced elsewhere and implemented in other
packages. The value added of the new package is that all methods follow the same pattern
and thus can use the same graphical and diagnostic tools. The next topic covered is sparse
principal component analysis including an object oriented interface to the standard method
proposed by Zou et al. (2006) and the robust one proposed by Croux et al. (2013). These
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are presented and illustrated in Section 2. Robust partial least squares (Hubert and Vanden
Branden 2003; Sernels, Croux, Filzmoser, and van Espen 2005) as well as partial least squares
for discriminant analysis are presented in Section 3 and Section 4. Section 5 concludes.

2. Robust sparse principal component analysis

Principal component analysis (PCA) is a prominent technique for dimension reduction, and
the principle is to find a smaller number q of linear combinations of the originally observed p
variables while retaining most of the variability of the data. Dimension reduction by PCA is
mainly used for: (i) visualization of multivariate data by scatter plots (in a lower dimensional
space); (ii) transformation of highly correlated variables into a smaller set of uncorrelated
variables which can be used by other methods (e.g. multiple or multivariate regression, linear
or quadratic discriminant analysis); (iii) combination of several variables characterizing a
given process into a single or a few characteristic variables or indicators. In some cases–in
particular if the original variables have physical meaning–it is important to be able to interpret
these new variables. The interpretation of the principal components needs to be based on the
loadings matrix, which links the original variables with the principal components.

The standard approach to PCA identifies new directions which are linear combinations of the
original variables in such a way, that the data projected on these directions have maximal
variance. The different directions need to be orthogonal to each other, and the variance mea-
sure used for classical PCA is the empirical sample variance. Practically, the PCA directions
can be found by computing the eigenvectors of the sample covariance or correlation matrix.
The disadvantage of this approach is that outlying observations may even artificially increase
the variance measure, thus leading to essentially uninformative directions. In other words,
outliers may attract PCA directions, and the pattern of the data majority will not be covered
by the few extracted classical components.

In contrast, the goal of robust PCA is to retain as much of the information of the data ma-
jority (and not of single outliers) as possible with fewer directions–the robust PCs. Different
approaches to robust PCA are discussed in many review papers, see for example Todorov and
Filzmoser (2009) and Filzmoser and Todorov (2013), and examples are given how these robust
analyses can be carried out in R. Details about the methods and algorithms can be found in
the corresponding references. However, PCA usually tends to provide PCs which are linear
combinations of all the original variables, even if some of the loadings are small in absolute
size. This is a disadvantage for high-dimensional data analysis, since PC directions will then
in general be affected by all the variables, even if they are noise variables. It would be more
useful to have a method which completely suppresses the influence of potential noise variables
by assigning loadings of exactly zero to them. This is the goal of sparse PCA, and there are
several proposals available nowadays. A straightforward informal method is to set to zeros
those PC loadings which have absolute values below a given threshold (simple thresholding).
Jolliffe, Trendafilov, and Uddin (2003) proposed SCoTLASS which applies a lasso penalty
on the loadings in a PCA optimization problem, and recently Zou et al. (2006) reformulated
PCA as a regression problem and used the elastic net to obtain a sparse version - SPCA.

The above mentioned proposals for sparse PCA are not robust with respect to outlying obser-
vations. They suffer from the same problem as classical (non-sparse) PCA, namely that the
new directions will be attracted by outliers. To cope with the possible presence of outliers in
the data, recently Croux et al. (2013) proposed a method which is sparse and robust at the
same time. It utilizes the projection pursuit approach where the PCs are extracted from the
data by searching the directions that maximize a robust measure of variance of data projected
on it. An efficient computational algorithm was proposed by Croux, Filzmoser, and Oliveira
(2007).
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Example Sparse classical and robust PCA is illustrated here by the (low-dimensional) cars
data set (Consumer Reports 1990, pp. 235–288); (Chambers and Hastie 1992, pp. 46–
47), which is available in the package rrcovHD as the data frame cars. For n = 111 cars,
p = 11 characteristics were measured, including the length, width, and height of the car.
After looking at pairwise scatterplots of the variables, and computing pairwise Spearman
rank correlations ρ(Xi, Xj) we see that there are high correlations among the variables, for
example, ρ(X1, X2) = .83 and ρ(X3, X9) = .87. Thus, PCA will be useful for reducing the
dimensionality of the data set (see also Hubert, Rousseeuw, and Vanden Branden (2005)).
The first four classical PCs explain more than 96% of the total variance and the first four
robust PCs explain more than 95%, therefore we decide to retain four components in both
cases. Next we need to choose the degree of sparseness which is controlled by a regularization
parameter (λ). With sparse PCA we take a trade-off between sparseness of the loadings
matrix and maximization of the explained variability. The appropriate tuning parameter can
be chosen by computing sparse PCA for many different values of λ and plotting the percentage
of explained variance against λ. We choose λ = 0.78 for classical PCA and λ = 2.27 for robust
PCA, thus attaining 83 and 82 percent of explained variance, respectively, which is only an
acceptable reduction compared to the non-sparse PCA. Retaining k = 4 principal components
as above and using the selected parameters λ, we can construct the so called diagnostic plots
which are especially useful for identifying outlying observations. The diagnostic plot shows the
orthogonal distances versus the score distance, and indicates with a horizontal and vertical line
the cut-off values that allow to distinguish regular observations (those with small score and
small orthogonal distance) from the different types of outliers: bad leverage points with large
score and large orthogonal distance, good leverage points with large score and small orthogonal
distance and orthogonal outliers with small score and large orthogonal distance (for detailed
description see Hubert et al. (2005)). In Figure 1 the classical and robust diagnostic plot
as well as their sparse counterparts are presented. The diagnostic plot for classical PCA
reveals only several orthogonal outliers and identifies two observations as bad leverage points.
Three more observations are identified as bad leverage points by sparse classical PCA which
is already an improvement, but only the robust methods identify a large cluster of outliers.
These outliers are masked by the non-robust score and orthogonal distances and cannot be
identified by the classical methods. It is important to note that the sparsity feature added to
the robust PCA did not influence its ability to detect properly the outliers.

3. Robust linear regression in high dimensions

The toolbox of linear regression methods and their robust counterparts becomes limited when
the number of explanatory variables p exceeds the number of observations n. The matrix of
explanatory variables X is then said to be “flat”. In that case, partial least squares (PLS)
regression is known to work very well, in particular if the explanatory variables are highly
correlated. In this section we will focus on PLS regression and robust versions thereof, since
these are widely used tools in various areas.

PLS regression Wold (1975) can be used for the case of a univariate response (PLS1) as well
as for a matrix of response variables (PLS2), here denoted by the n × q matrix Y . In the
latter case, the regression problem is

Y = XB +E, (1)

with the regression coefficient matrix B and the errors E. The basic idea is to decompose X
and Y as follows,

X = TP> +EX (2)

Y = UQ> +EY , (3)
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Figure 1: Distance-distance plots for standard and sparse PCA and their robust versions for
the cars data.

with the scores matrices T andU , and the loadings matrices P andQ, each havingK columns,
and the error matrices EX and EY . The number of components K for the factorization is
limited with K ≤ min{n, p, q}. The inner relationship connecting the scores is given by

U = TD +H, (4)

with the diagonal matrix D and a residual matrix H.

The key idea in PLS regression is to find a direction w in the x-space and a direction c in
the y-space such that

cov(Xw,Y c) −→ max with ‖t‖ = ‖Xw‖ = 1 and ‖u‖ = ‖Y c‖ = 1, (5)

where “cov” is an estimator for the covariance. The resulting t and u then form a column in
the matrix T and U , respectively.

The above procedure is carried out in a sequential manner. This means that the score vectors
are computed one after the other, until K vectors are extracted, hereby imposing appropriate
constraints (e.g. uncorrelatedness). There are different proposals to solve problem (5), like
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the NIPALS algorithm, the kernel algorithm, or the SIMPLS algorithm. For details we refer
to Varmuza and Filzmoser (2009).

Hubert and Vanden Branden (2003) suggested a robust version of the SIMPLS algorithm.
Since this algorithm is based on estimates of the covariance matrix of the x-variables, and
of the joint covariance matrix between the x- and the y-variables, a first step is to robustify
these estimates by employing robust PCA. In a second step, a multivariate robust regression
method is used.

In case of PLS1, Sernels et al. (2005) proposed a robust version that is called partial robust M
(PRM) regression. The main idea is to perform robust regression using an M-estimator of the
response y on latent variables which are summarizing the explanatory variables. These latent
variables, representing only partial information of the x-variables, are found in the same spirit
as shown in criterion (5),

cov(y,Xa) −→ max, (6)

with appropriate constraints on the loadings vector a, and a robust estimator for “cov” using
a certain weighting scheme for outlying observations. The loadings and scores are extracted
sequentially, again with appropriate side constraints (see also Filzmoser and Todorov 2011).

Example To illustrate robust PLS regression we use a real data example, known from
other studies on robust methods. The data set originates from 180 glass vessels Janssens,
Deraedt, Freddy, and Veeckman (1998) and was analyzed also in Sernels et al. (2005); Hubert,
Rousseeuw, and van Aelst (2008); Filzmoser, Maronna, and Werner (2008). In total, 1920
characteristics are available for each vessel, coming from an analysis by an electron-probe X-
ray micro-analysis. The data set includes four different materials comprising the vessels, and
we focus on the material forming the larger group of 145 observations. It is known from other
studies on this data set that these 145 observations should form two groups, because during
the measurement process the detector efficiency has been changed. In the original analysis,
univariate PLS calibration was performed for all of the main constituents of the glass but
here we will consider only the prediction of the sodium oxide concentration and will carry out
classical (SIMPLS) and robust (RSIMPLS) PLS with K = 8 components. Since the response
variable is univariate, regression diagnostic plots for both classical and robust PLS can be
created, as shown in Figure 2. The vertical axis represents the standardized residuals ri/σ̂
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Figure 2: Regression diagnostic plots for the glass data set with (left) SIMPLS and (right)
RSIMPLS.

with ri = yi − β̂xi while on the horizontal axis the Mahalanobis distances of the data points
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in the score space (therefore called score distances) are displayed. Outliers in the t-space
are identified as data points with score distances exceeding the cutoff value of

√
χ2
K,0.975.

Data points which have an absolute standardized residual exceeding
√
χ2

1,0.975 are flagged as
regression outliers. The SIMPLS regression diagnostic plot identifies only three observations
as regression outliers and several more as outlying according to the score distances while the
robust plot identifies most of the outliers know from other studies. A detailed definition of
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Figure 3: Results of 10-fold cross-validation for robust PLS for the glass data set. A model
with 5 components is optimal.

this plot as well as its version for multivariate response variable, can be found in Hubert and
Vanden Branden (2003).

For choosing an optimal number of PLS components, 10-fold cross-validation (CV) is used
for a maximum of e.g. 20 components and the result is presented graphically in Figure 3.
As a performance measure the standard error of prediction (SEP) value is used, and its 20%
trimmed version.

SEP =

√√√√ 1
n− 1

n∑
i=1

K∑
j=1

(yij − ŷij − bias)2 with bias =
1
n

n∑
i=1

q∑
j=1

(yij − ŷij). (7)

Here, {ŷij} = Ŷ = XB̂ are the predicted values of the response variable, using the estimated
regression parameters B̂ (see Varmuza and Filzmoser 2009). Note that the performance mea-
sure in (7) is not robust against outliers, because each observation gets the same contribution
in the formulas. The influence of outliers to the performance measure can be reduced by
trimming for example the 20% of the largest contributions. The dashed line presents the
mean of SEP values from CV and the solid part presents the mean and standard deviation of
20% trimmed SEP values from CV. The vertical and horizontal lines correspond to the opti-
mal number of components (after standard-error-rule) and the corresponding 20% trimmed
SEP mean, respectively. The optimal number of components is selected as the lowest number
whose prediction error mean is below the minimal prediction error mean plus one standard



Austrian Journal of Statistics 261

error, see Varmuza and Filzmoser (2009). Here, 5 components are selected, leading to a
prediction error of 0.95.
A more detailed model selection can be done with repeated double cross-validation (rdCV)
(see Filzmoser, Liebmann, and Varmuza (2009); Liebmann, Filzmoser, and Varmuza (2010)
for details). However, the procedure is rather time consuming. Within an “inner loop”, k-
fold CV is used to determine an optimal number of components, which then is applied to a
“test set” resulting from an “outer loop”. The procedure is repeated a number of times. The
frequencies of the optimal numbers of components are shown in Figure 4. There is a clear
peak at 5 components, meaning that a model with 5 components has been optimal in most of
the experiments within rdCV. Note that here we obtain the same result as for single CV. In
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Figure 4: Results of rdCV of RSIMPLS. The optimal number of components is indicated by
the vertical dashed line.

a next plot, Figure 5, the prediction performance measure, the 20% trimmed SEP, is shown.
The gray lines correspond to the results of the 20 repetitions of the double CV scheme, while
the black line represents the single CV result. Obviously, single CV is much more optimistic
than rdCV. The estimated prediction error for 5 components is 0.85. Using the optimal
number of 5 components, predictions and residuals can be computed. However, for rdCV
there are predictions and residuals available for each replication (we used 20 replications).
The diagnostic plot shown in 6 presents the predicted versus measured response values. The
left panel is the prediction from a single CV, while in the right panel the resulting predictions
from rdCV are shown. The latter plot gives a clearer picture of the prediction uncertainty. A
similar plot can be generated for predicted values versus residuals (not shown here).

4. Robust classification in high dimensions

The prediction of group membership and/or describing group separation on the basis of a data
set with known group labels (training data set) is a common task in many applications and
linear discriminant analysis (LDA) has often been shown to perform best in such classification
problems. However, very often the data are characterized by far more variables than objects
and/or the variables are highly correlated which renders LDA (and the other similar standard
methods) unusable due to their numerical limitations. Let us assume that Y is univariate
and categorical, i.e. ∀i, 1 ≤ i ≤ n : yi ∈ {1, . . . , G} where G is the number of groups.
For high dimensional data sets, classical linear discriminant analysis cannot be performed
due to the singularity of the estimated covariance matrix Σ̂, as it requires the inverse of
Σ̂. To overcome the high dimensionality problem in classification context one can reduce
the dimensionality by either selecting a subset of “interesting” variables (variable selection)
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Figure 5: Results of rdCV for RSIMPLS. The gray lines result from repeated double CV, the
black line from single CV.

or construct K new components, K � p which represent the original data with minimal
loss of information (feature extraction, dimension reduction). Many methods for dimension
reduction were considered in the literature but the two most popular are principal component
analysis (PCA) and partial least squares (PLS). It is intuitively clear that a supervised method
(which uses the group information while constructing the new components) like PLS should
be preferred to unsupervised methods like PCA.

SIMCA: Instead of applying the dimension reduction method (e.g. PCA) to the full set
of observations, one could fit a model to each of the groups (possibly with different number
of components) and use these models to classify new observations. This method, called
Soft Independent Modeling of Class Analogies (SIMCA), was introduced by Wold (1976) and
nowadays is widely used as a discriminant technique in chemometrics, where typically p is
large relative to n. Since in SIMCA PCA is performed on each group, it provides additional
information on the different groups, including the relevance of the different variables for groups
separation, i.e. their discrimination power. In the original SIMCA method new observations
are classified based on their deviation from the different PCA models. These deviations
are the Euclidean distances of the observations to the PCA subspace, and thus they are
called orthogonal distances. Vanden Branden and Hubert (2005) propose a slightly modified
classification rule which better exploits the benefit of applying PCA to each group. This
rule includes additionally the score distances, i.e. the Mahalanobis distances measured in the
PCA (score) subspace. Furthermore, as a guard against outliers in the data, they propose to
replace the classical PCA by a robust alternative. Both the classical and the robust version
of the SIMCA method are available in the R package rrcovHD.

Robust PLS-DA: PLS was not originally designed to be used in the context of statistical
discrimination but nevertheless was routinely applied with evident success by practitioners for
this purpose. Taking into account the grouping variable(s) when decomposing the data one
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Figure 6: Predicted versus measured response values for RSIMPLS. The left panel shows the
results from single CV, the right panel visualizes the results from repeated double CV.

would intuitively expect an improved performance for group separation. Since the response
variable in case of a classification problem is a categorical variable, none of the robust PLS
methods proposed above can be used. Therefore, in order to obtain a robust PLS-DA we
proposed to apply any of the outlier detection methods described in Filzmoser and Todorov
(2013), which are implemented in package rrcovHD, and then use classical PLS on the already
cleaned data set. Hubert and Van Driessen (2004) used a data set containing the spectra of
three different cultivars of the same fruit. The three cultivars (groups) are named D, M and
HA, and their sample sizes are 490, 106 and 500 observations, respectively. The spectra are
measured at 256 wavelengths. The fruit data is thus a high-dimensional data set which was
used to illustrate a new approach for robust linear discriminant analysis, and it was studied
again by Vanden Branden and Hubert (2005). From these studies it is known that the first
two cultivars D and M are relatively homogenous and do not contain atypical observations,
but the third group HA contains a subgroup of 180 observations which were obtained with a
different illumination system. In Figure 7 are shown the prediction histograms for class D for
the fruit data using classical and robust PLS-DA.

5. Summary and conclusions

An object oriented framework for robust multivariate analysis developed in the S4 class system
of the programming environment R already exists implemented in the package rrcov and is
described in Todorov and Filzmoser (2009). The main goal of this framework is to support the
usage, experimentation, development and testing of robust multivariate methods as well as
simplifying comparisons with related methods. In this article we investigated several robust
multivariate methods specifically designed for high dimensions. The focus was on PCA and
its sparse version, PLS, PLS for discrimination, and SIMCA. All considered methods and
data sets are available in the R package rrcovHD. A key feature of this extension of the
framework is that the object model follows the one already introduced by rrcov which is
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Figure 7: Prediction histograms for class D for the fruit data using classical and robust
PLS-DA.

based on statistical design patterns. This makes it easy for the user to apply the methods,
since they are following the same structure. A further advantage is that summaries, results,
as well as diagnostic plots follow the same structure.

Finally, the strict design pattern used in the package rrcovHD is an advantage for extending
the package with other methods developed for high-dimensional data–and for sure their robust
versions will follow.
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Abstract

A robust approach to the estimation of time series models is proposed. Taking from
a new estimation method called the Generalized Method of Wavelet Moments (GMWM)
which is an indirect method based on the Wavelet Variance (WV), we replace the classical
estimator of the WV with a recently proposed robust M-estimator to obtain a robust
version of the GMWM. The simulation results show that the proposed approach can be
considered as a valid robust approach to the estimation of time series and state-space
models.

Keywords: maximum overlap discrete transform, M-estimator, generalized method of wavelet
moments, composite stochastic processes, autoregressive processes.

1. Introduction

The robust estimation of time series parameters is still a widely open topic in statistics
for various reasons. First of all, the robustness theory for dependent data is still not fully
developed given that the classical robustness measures are not directly applicable in the
time series context. In fact, for example, there is no unique definition of an influence function
(Hampel 1974) for time series since there is no unique definition of outliers or, more specifically,
there are different types of outliers which require to adapt such a measure (see Maronna,
Martin, and Yohai 2006, for a detailed overview). Secondly, many of the existing methods for
robust estimation of time series’ parameters are limited in terms of the range of models that
can be estimated and, above all, in terms of computation complexity as the models get larger
or more complicated. Moreover, robust estimation of latent time series models (models made
of the sum of several unobserved processes) has been largely ignored.

For robust estimation and inference for time series, a detailed list of references can be found
in Maronna et al. (2006), Chapter 8. Most of the literature in this domain has dealt with
standard time series models such as autoregressive and/or moving average processes, starting
with the seminal work of Masreliez and Martin (1977), Denby and Martin (1979), Bustos and
Yohai (1986) and Künsch (1984). Estimating robustly the parameters of latent models has
not gone beyond the AR(1) plus white noise (Masreliez and Martin 1977), probably because
of the difficulty in implementation of the different algorithms.
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This paper intends to explore the possibilities opened up by combining two recently proposed
approaches: the first concerning the robust estimation of the Wavelet Variance (WV) proposed
by Mondal and Percival (2012) and the second proposed by Guerrier, Stebler, Skaloud, and
Victoria-Feser (2013b) presenting a new method for the estimation of complex time series
parameters based on the WV, called the generalized method of wavelet moments (GMWM).
Since GMWM estimators are based on the matching between empirical and model based WV
estimators, the use of a robust estimator for the WV will in principle ensure robustness of
the model’s parameters estimator, as done, for example, with the robust generalized method
of moments (see Hansen 1982; Ronchetti and Trojani 2001).

The paper is organized as follows. In Section 2 we present a robust WV estimator proposed by
Mondal and Percival (2012) that we modify to improve its robustness properties. In Section
3 we briefly present the GMWM and propose a robust version of this method, and in Section
4 we present a simulation study that involves several models, including latent time series
models.

2. Robust Estimation of the Wavelet Variance

The WV is a quantity which is widely used throughout many scientific and engineering dis-
ciplines as a means to decompose, describe and summarize time series. For example, it has
been used for over 30 years as a standard routine measure of frequency stability in lasers
(see Fukuda, Tachikawa, and Kinoshita (2003)) or atomic clocks (see Allan (1987)). More
recently, the WV has also been used with optical sensors (see Kebabian, Herndon, and Freed-
man (2005)), various types of gas monitoring spectrometers (see Bowling, Sargent, Tanner,
and Ehleringer (2003); Werle, Mücke, and Slemr (1993)), sonic anemometer-thermometers
(see Loescher, Ocheltree, Tanner, Swiatek, Dano, Wong, Zimmerman, Campbell, Stock, Ja-
cobsen et al. (2005)), inertial sensors (see Guerrier (2009); El-Sheimy, Hou, and Niu (2008)),
radio-astronomical instrumentation (see Schieder and Kramer (2001)). The WV was also used
for example in Percival and Guttorp (1994) to analyse geophysics time series. This approach
was also used for physiological signal analysis for example in Fadel, Orer, Barman, Vong-
patanasin, Victor, and Gebber (2004) or in Gebber, Orer, and Barman (2006). In Whitcher
(2004), discrete wavelet packet transforms are used to estimate one of the parameters of a
seasonal long memory process for the analysis of atmospheric and economic time series.

The WV can be interpreted as the variance of a process after it has been subject to an
approximate bandpass filter (Percival and Guttorp 1994). Let {Xt}, t ∈ Z, be a stationary
process, or a non-stationary process with stationary backward differences of order d. By
applying a specific wavelet filter {h̃j,l}, j = 1, . . . , J to this process we obtain the Maximum
Overlap Discrete Wavelet Transform (MODWT) coefficients {Wj,t} (see e.g. Percival and
Walden 2000) as follows

Wj,t =
Lj−1∑
l=0

h̃j,lXt−l, t ∈ Z (1)

where j is the scale at which the filter is applied and Lj = (2j−1)(L1−1) + 1 is the length of
that filter with L1 being the length of {h̃1,l}. Given the wavelet coefficients, the WV at scale
j is defined as the variance of the wavelet coefficients at this scale

νj = var (Wj,t) (2)

Under the stationarity conditions defined above, it can be observed that the WV νj is not
a function of t (i.e. is time-invariant). This entails a series of properties, among which the
following

∞∑
j=1

νj = σ2
X (3)
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where σ2
X is the variance of {Xt}. Hence, the WV is a decomposition of the process variance

and, as highlighted earlier, is consequently useful under many aspects if one is concerned by
how the variance of a process is distributed across the different scales.

The MODWT estimator of the WV was defined in Percival (1995) and is given by

ν̂j =
1

M(Tj)

∑
t∈Tj

W 2
j,t (4)

with Tj being the set of time indices for which the wavelet coefficients are free of end effects,
and M(Tj) = T − Lj + 1 being their number. This estimator of the WV is the most efficient
asymptotically and it’s properties were studied and proved in Serroukh, Walden, and Percival
(2000).

An alternative estimator for the WV is based on the Discrete Wavelet Transform (DWT)
coefficients (see Greenhall 1991; Percival and Guttorp 1994), for which the wavelet filter is
applied to the process in (1) in a different manner. More specifically, the DWT filters a
sequence {Xt} on non-overlapping windows yielding the DWT wavelet coefficients

W j,t = 2−j/2
Lj−1∑
l=0

hj,lXt−l (5)

where t is taken at intervals of lag Lj .

However, in a recent article Mondal and Percival (2012) underline how even “a moderate
amount of contamination often has a very adverse effect on conventional estimates of the
wavelet variance”. For this purpose they propose an M-estimator for the WV based on the
transformation of the WV (a scale parameter) to a location parameter as follows

Qj,t = log
(
W 2
j,t

)
(6)

They then propose to use the following M-estimator

µ̂j = argmin
µj∈R


∣∣∣∣∣∣
∑
t∈Tj

ψ(Qj,t − µj)
∣∣∣∣∣∣
 (7)

which is then inversely transformed and corrected for bias in order to obtain a consistent
estimator for νj . Here ψ(·) is a function of bounded variation which guarantees the robustness
of the estimator. Mondal and Percival (2012) suggest four types of ψ-functions and make use
of the median-type function for their simulations, that is to say ψ(z) =sign(z). This ψ-
function is therefore the one which will be used in the Monte Carlo simulations presented
further on in this paper.

Moreover, preliminary simulations have shown that in many cases the WV based on the
DWT coefficients appear to be more appropriate for robustness purposes than the MODWT
coefficients. Hence the Monte Carlo study will be done using the WV based on the DWT
coefficients W j,t by using the relationship between these and the MODWT coefficients as
underlined in Percival (1995).

3. Robust Generalized Method of Wavelet Moments

Guerrier et al. (2013b) propose a method for the estimation of complex time series models,
namely the GMWM. The method extends from the GMM setting and uses the implicit link
which exists between the WV and the underlying assumed model Pθ. The link is the following

νj =
∫ 1/2

−1/2
SWj (f)df =

∫ 1/2

−1/2
|Hj(f)|2SPθ

(f)df (8)
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where SWj (f) is the Power Spectral Density (PSD) function for the wavelet coefficients Wj

or W j,t, Hj(f) =
∑L1−1

l=0 h̃j,le
−i2πfl denotes the transfer function of the wavelet filters h̃j,l (or

hj,l), with | · | being the modulus, and SPθ
is the PSD implied by Pθ. Hence there is a link

between the WV and Pθ.

Let us define ν = [ν1, . . . , νJ ] as the vector of WV and ν(θ) as the WV vector implied by the
process Pθ. Taking advantage of the above link, Guerrier et al. (2013b) propose the following
estimator

θ̂ = argmin
θ∈Θ

(ν̂ − ν(θ))T Ω (ν̂ − ν(θ)) (9)

where Ω is an appropriate positive definite weighting matrix. The authors provide the proofs
of consistency of the estimator for a number of time series models as well as of its asymptotic
normality.

The idea behind this paper is to combine the estimation method presented in Section 2 with
the GMWM. Hence, instead of using the classical estimator of the WV defined in (4), we
propose to use the transformed and corrected version of the estimator in (7) using the DWT.
We then use this estimator for ν̂ in (9) to obtain a robust estimation method.

This proposed approach has its theoretical bases in the papers by Ronchetti and Trojani
(2001) and Genton and Ronchetti (2003). Using a robust estimator of ν implies a robust
estimator for θ with a bounded influence function since a bounded estimator for ν bounds
the function (ν̂ − ν(θ)).

The next section presents a Monte Carlo study to investigate the performance of this new
approach on different stochastic processes.

4. Monte Carlo Study

In this section we present a Monte Carlo study of the estimator proposed in Section 3. We
will investigate the performance of the estimator on three processes, namely a white noise
process (WN), a first-order autoregressive process (AR1) and a composite stochastic process
like the simulation presented in Guerrier et al. (2013b).

In addition to the wavelet moments used in the latter article, Guerrier, Stebler, Skaloud,
and Victoria-Feser (2013a) suggest using additional moments of the processes to improve the
performance of the GMWM estimator. Hence, the simulations will use the second moment
in the case of the WN and AR1 processes and the first and second moments of the first-
order difference of the composite process since the latter is stationary and has a non-zero
expectation.

We will compare three estimators: the Maximum Likelihood Estimator (MLE), the classi-
cal GMWM estimator (GMWM) and the robust estimator proposed in the present paper
(RGMWM). For the classic GMWM, the first and second moments will be estimated respec-
tively via the classical estimators of mean and variance whereas the third estimator will use
respectively the median and the M-estimator proposed in (7). For the classical and robust WV
estimator, the DWT wavelet transform is used. In all studies, processes of length L = 1000
were simulated and the contaminations were additive (i.e. Gaussian noise with a specific
variance σ2

ε was added to an ε-percentage of the observations of the underlying process).

4.1. White Noise

A white noise process can be written as Xt
iid∼ N(0, σ2).

Hence, the only parameter to be estimated is σ2. The performance of the proposed estimators
when there is no contamination is illustrated in Figure 1 where all estimators appear to be
unbiased. The RGMWM however has a larger variance which is to be expected since efficiency
is the price to pay for robustness.
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Figure 1: Finite sample performance of the MLE, GMWM and RGMWM estimators on an
uncontaminated white noise process of length L = 1, 000, with σ = 1. MLE represents
the maximum likelihood estimator, GMWM represents the classic GMWM estimator with
additional second moment of the process, RGMWM represents the robust GMWM based on
the M-estimator proposed by Mondal and Percival (2012) with DWT wavelet transforms.

Table 1: Finite sample bias, variance and MSE of the MLE, GMWM and RGMWM estimators
on an uncontaminated white noise process of length L = 1, 000, with σ = 1. MLE represents
the maximum likelihood estimator, GMWM represents the classic GMWM estimator with
additional second moment of the process, RGMWM represents the robust GMWM based on
the M-estimator proposed by Mondal and Percival (2012) with DWT wavelet transforms.

MLE GMWM RGMWM

Bias 2.033 · 10−3 1.768 · 10−3 6.990 · 10−3

Variance 2.021 · 10−3 2.141 · 10−3 4.520 · 10−3

MSE 2.025 · 10−3 2.144 · 10−3 4.568 · 10−3

Table 1 confirms these interpretations showing that in an uncontaminated setting, the best
choice would be the MLE. However, by contaminating 5% of the sample with additive noise
with σ2

ε = 100 we can see how the MLE and the classical GMWM become highly biased
and variable. Looking at Figure 2 and at the Mean Squared Errors (MSE) in Table 2, the
advantage of using the RGMWM is evident.

4.2. First-Order Autoregressive

A first-order autoregressive process can be represented as follows

Xt = φXt−1 + εt

where φ is the autoregressive parameter and εt
iid∼ N(0, σ2).

Figure 3 shows how the proposed RGMWM estimator appears to confirm its robustness
properties under a 1%-contaminated process with additive noise with σ2

ε = 9. Its improved
performance compared to the classical estimators is highlighted by the results in Table 3.
The latter table appears to indicate that this robust approach is particularly convenient for
estimating the σ2 of the innovation process compared to the autoregressive parameter φ.

4.3. Latent Time Series Model

The GMWM methodology was mainly developed to estimate models made up by latent
processes. An example of such a process was given in Guerrier et al. (2013b) as a sum
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Figure 2: Finite sample performance of the MLE, GMWM and RGMWM estimators on a
5%-contaminated white noise process of length L = 1, 000, with σ = 1 and contamination
generated by adding Gaussian noise with σ2

ε = 100. MLE represents the maximum likelihood
estimator, GMWM represents the classic GMWM estimator with additional second moment
of the process, RGMWM represents the robust GMWM based on the M-estimator proposed
by Mondal and Percival (2012) with DWT wavelet transforms.

Table 2: Finite sample bias, variance and MSE of the MLE, GMWM and RGMWM estimators
on a 5%-contaminated white noise process of length L = 1, 000, with σ = 1 and contamination
generated by adding Gaussian noise with σ2

ε = 100. MLE represents the maximum likelihood
estimator, GMWM represents the classic GMWM estimator with additional second moment
of the process, RGMWM represents the robust GMWM based on the M-estimator proposed
by Mondal and Percival (2012) with DWT wavelet transforms.

MLE GMWM RGMWM

Bias 4.988 · 10−1 5.018 · 10−1 1.690 · 10−1

Variance 1.450 · 10−2 1.478 · 10−2 6.448 · 10−3

MSE 2.633 · 10−1 2.666 · 10−1 3.500 · 10−2
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Figure 3: Finite sample performance of the MLE, GMWM and RGMWM estimators on a
1%-contaminated first-order autoregressive process of length L = 1, 000 with σ = 1, φ =
0.9 and contamination generated by adding Gaussian noise with σ2

ε = 9. MLE represents
the maximum likelihood estimator, GMWM represents the classic GMWM estimator with
additional second moment of the process, RGMWM represents the robust GMWM based on
the M-estimator proposed by Mondal and Percival (2012) with DWT wavelet transforms.

Table 3: Finite sample bias, variance and MSE of the MLE, GMWM and RGMWM estimators
on a 1%-contaminated first-order autoregressive process of length L = 1, 000 with σ = 1,
φ = 0.9 and contamination generated by adding Gaussian noise with σ2

ε = 9. MLE represents
the maximum likelihood estimator, GMWM represents the classic GMWM estimator with
additional second moment of the process, RGMWM represents the robust GMWM based on
the M-estimator proposed by Mondal and Percival (2012) with DWT wavelet transforms.

MLE GMWM RGMWM

φ Bias −1.629 · 10−2 −1.759 · 10−2 −4.946 · 10−3

Variance 2.764 · 10−4 3.067 · 10−4 3.667 · 10−4

MSE 5.419 · 10−4 6.163 · 10−4 3.912 · 10−4

σ2 Bias 1.563 · 10−1 1.313 · 10−1 3.846 · 10−2

Variance 6.661 · 10−3 6.904 · 10−3 8.082 · 10−3

MSE 3.108 · 10−2 2.414 · 10−2 9.561 · 10−3

of an autoregressive process, a drift process {ω} and a white noise process as follows

Yt = φYt−1 + ω + ut, ut
iid∼ N(0, σ2

AR)

Xt = Yt + εt, εt
iid∼ N(0, σ2

WN )

For these kind of processes, the GMWM (along with the robust version presented in this pa-
per) presents important advantages over alternative approaches (see Guerrier et al. (2013b)).
When contaminating this process (with φ = 0.95, ω = 0.04, σ2

AR = 16, σ2
WN = 4) with 5%-

additive outliers with σ2
ε = 9, the results seem to indicate that the classic GMWM does not

appear to be greatly affected by this contamination for the first three parameters. However, it
shows all the impact of the outliers for the estimation of the white noise innovation parameter
σ2
WN where the RGMWM shows only a very slight bias.

The results presented in Table 4 show how the GMWM seems to perform better than the
proposed RGMWM except for the parameter σ2

WN where the GMWM is completely biased.
Therefore, although slightly biased for most of the parameters, the RGMWM limits this bias
for all parameters whereas the classical GMWM loses this property for one parameter. The
improved performance of the RGMWM on the innovation parameters could be explained by
the fact that the latter process is especially identifiable at the first scales of the WV which
are also the most informative (i.e. they have a larger number of wavelet coefficients).
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Figure 4: Finite sample performance of the MLE, GMWM and RGMWM estimators on a
5%-contaminated composite process (10) of length L = 1, 000, with φ = 0.95, ω = 0.04,
σ2
AR = 16, σ2

WN = 4 and contamination generated by adding Gaussian noise with σ2 = 9.
GMWM represents the classic GMWM estimator with additional first and second moment
of the first-differenced process, RGMWM represents the robust GMWM based on the M-
estimator proposed by Mondal and Percival (2012) with DWT wavelet transforms.

5. Conclusions and Perspectives

Given the theoretical bases and the results of the Monte Carlo studies, the proposed estimator
appears to be an extremely valid candidate for the robust estimation of time series models.
Knowing the theoretical WV ν(θ) of a process, it is possible to estimate the parameters θ of
this process in a robust manner.

The theoretical WV of many processes can be derived from the results in Zhang (2008)
or, as an alternative, Guerrier et al. (2013b) suggest to use indirect inference to overcome
the complexity of calculations for certain models. Hence, the proposed estimator is easily
implemented and computationally inexpensive while at the same time providing a robust
estimation method for many processes for whom robust estimation methods are scarce.

There are many possible developments for this method, including the study of its asymptotic
properties. Given the variety of wavelet decompositions, different wavelets and filtering meth-
ods could be explored to understand if some of them could contribute more effectively to the
robust estimation approach presented in this paper. Moreover, as highlighted earlier, Guerrier
et al. (2013a) suggested additional adjustments to the GMWM methodology to improve its
performance and its robust equivalents could be considered to improve the performance also
of the approach proposed in this paper.
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Table 4: Finite sample bias, variance and MSE of the GMWM and RGMWM estimators on
a 5%-contaminated composite process (10) of length L = 1, 000, with φ = 0.95, ω = 0.04,
σ2
AR = 16, σ2

WN = 4 and contamination generated by adding Gaussian noise with σ2 = 9.
GMWM represents the classic GMWM estimator with additional first and second moment
of the first-order difference of the process, RGMWM represents the robust GMWM based on
the M-estimator proposed by Mondal and Percival (2012) with DWT wavelet transforms.

GMWM RGMWM

φ Bias −3.709 · 10−3 −1.670 · 10−2

Variance 9.269 · 10−4 1.744 · 10−3

MSE 9.407 · 10−4 2.023 · 10−3

σ2
AR Bias 5.035 · 10−1 2.088

Variance 1.030 · 101 1.436 · 101

MSE 1.055 · 101 1.872 · 101

ω Bias 4.896 · 10−4 3.344 · 10−2

Variance 1.801 · 10−4 6.897 · 10−3

MSE 1.803 · 10−4 8.015 · 10−3

σ2
WN Bias 1.535 · 101 −4.975 · 10−1

Variance 4.332 · 101 6.333
MSE 2.788 · 102 6.580
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Abstract

Statistical tolerance intervals are another tool for making statistical inference on an
unknown population. The tolerance interval is an interval estimator based on the results
of a calibration experiment, which can be asserted with stated confidence level 1 − α,
for example 0.95, to contain at least a specified proportion 1 − γ, for example 0.99, of
the items in the population under consideration. Typically, the limits of the tolerance
intervals functionally depend on the tolerance factors. In contrast to other statistical
intervals commonly used for statistical inference, the tolerance intervals are used relatively
rarely. One reason is that the theoretical concept and computational complexity of the
tolerance intervals is significantly more difficult than that of the standard confidence and
prediction intervals.

In this paper we present a brief overview of the theoretical background and approaches
for computing the tolerance factors based on samples from one or several univariate nor-
mal (Gaussian) populations, as well as the tolerance factors for the non-simultaneous
and simultaneous two-sided tolerance intervals for univariate linear regression. Such tol-
erance intervals are well motivated by their applicability in the multiple-use calibration
problem and in construction of the calibration confidence intervals. For illustration, we
present examples of computing selected tolerance factors by the implemented algorithm
in MATLAB.

Keywords: normal population, linear regression, tolerance factor, simultaneous tolerance in-
tervals, multiple-use calibration, MATLAB algorithm.

1. Introduction

Statistical tolerance intervals are interval estimators used for making statistical inference on
population(s), which can be fully described by a probability distribution from a given family
of distributions (as e.g., the family of normal distributions). For more details on different
types of statistical intervals consult, e.g., the following books: Hahn and Meeker (1991),
Krishnamoorthy and Mathew (2009), and Liu (2011).

Although the concept of statistical tolerance intervals has been well recognized for a long time,
surprisingly, it seems that their applications remain still limited. The reliable algorithms for
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computing the exact tolerance factors are missing in the commonly used statistical packages
(even for inferences on normal populations), however, more or less accurate approximations are
available. Implementations of such algorithms (mainly based on approximate and/or Monte
Carlo methods) are currently under fast development, as, e.g., in the package tolerance for
R, see Young (2010).

Thus, possible applications should rely either on implemented approximate methods or on
published collections of tables for tolerance factors (if available), see e.g. the book Odeh and
Owen (1980), which gives many of the most required factors in the context of the normal
distribution, however, with limited precision. Due to the recognized importance of statistical
tolerance intervals in technical applications, ISO (the International Organization for Stan-
dardization) has currently prepared a revised version of the ISO standard 16269-6 (Statistical
interpretation of data — Part 6: Determination of statistical tolerance intervals), which also
provides detailed tables of tolerance factors for selected tolerance intervals.

The theory of statistical tolerance intervals, as well as the computational methods and algo-
rithms, have been developed significantly during the last three decades. This, together with
the fast growing computational power of the personal computers, allows development of fast,
efficient and reliable implementations of the algorithms for highly precise computing of the
exact tolerance factors and limits required for the statistical tolerance intervals. For a com-
prehensive overview of the recent advances and developments in this area see Krishnamoorthy
and Mathew (2009).

In this paper we shall briefly overview the theoretical background and describe some computa-
tional approaches for computing the exact tolerance factors for two-sided statistical tolerance
intervals based on sample(s) from normal (Gaussian) population(s). Moreover, we shall also
present a method for computing the exact simultaneous two-sided tolerance intervals for nor-
mal linear regression by using the method for computing the simultaneous tolerance factors
for several independent univariate normal populations.

Based on that, we have developed a MATLAB algorithm for efficient and highly precise
computation of the exact tolerance factors for the non-simultaneous as well as simultaneous
two-sided tolerance intervals for several independent univariate normal populations. This can
be used also for computing the exact tolerance factors for the non-simultaneous two-sided
tolerance intervals, and also (in combination with other optimization procedures, based on
Monte Carlo simulations) for computing the exact simultaneous two-sided tolerance intervals
for univariate normal linear regression.

The methods and algorithms can be further used in the multiple-use calibration problem for
constructing the appropriate simultaneous interval estimators (calibration confidence inter-
vals) for values of the variable of primary interest, say x, based on possibly unlimited sequence
of future observations of the response variable, say y, and on the results of the given cali-
bration experiment, which was modeled/fitted by a linear regression model. Such calibration
intervals can be obtained by inverting the simultaneous tolerance intervals constructed for the
regression (calibration) function. For more details see, e.g., Scheffé (1973), Mee, Eberhardt,
and Reeve (1991), Mee and Eberhardt (1996), Mathew and Zha (1997), and Chvosteková
(2013b).

2. Two-sided tolerance intervals for univariate normal distribution

First, let us consider a simple calibration experiment, say E , which is represented by a random
sample of size n from a population whose distribution is characterized by a univariate normal
distribution N(µ, σ2), i.e. Y1, . . . , Yn, where Yi are independent random variables normally
distributed, Yi ∼ N(µ, σ2), where µ and σ2 are unknown parameters (mean and variance) of
the population distribution.

Notice that the available information on distribution of the unknown population, based on
the result of experiment E , is fully characterized by the random sample, or equivalently by
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the sufficient statistics: the sample mean, Ȳ = 1
n

∑n
i=1 Yi, and the sample variance, S2 =

1
n−1

∑n
i=1(Yi − Ȳ )2. Under given assumptions, it is well known that the sufficient statistics

are independent random variables and their distribution is given by Ȳ ∼ N(µ, δ2σ2), where
δ2 = 1

n , and S2 ∼ σ2 1
νχ

2
ν , where ν = n − 1 denotes the degrees of freedom (DFs) and χ2

ν

represents a chi-square distribution with ν DFs.

2.1. Two-sided tolerance intervals for one univariate normal distribution

Given the result of the calibration experiment E , we wish to construct a two-sided tolerance
interval (i.e., a random interval (LE , UE), with its limits depending on the result of the ex-
periment E), which can be asserted with confidence level 1− α (for example 0.95) to contain
at least a specified proportion 1− γ (for example 0.99) of the items in the population under
consideration.

That is, we wish to construct the two-sided (1−γ, 1−α)-tolerance interval which will cover a
pre-specified proportion of possibly infinite sequence of independent future realizations of the
response variable Y = µ+ σε (with ε ∼ N(0, 1) assumed to be independent of the calibration
experiment E) such that

P{E}
(
P{Y }

(
LE ≤ Y ≤ UE | E

)
≥ 1− γ

)
= 1− α. (1)

Notice that the confidence level 1−α is related to the random nature of the outcome (result)
of the calibration experiment E . That is, the required two-sided tolerance interval will cover
more than (1− γ)× 100% proportion of the items of the unknown (normal) population, and
this will be true in (1− α)× 100% cases of the hypothetical calibration experiments.

In general, there are potentially many possible approaches to finding a solution to the problem
as specified by (1). There is no unique solution until the form of the tolerance limits of the
two-sided tolerance interval (LE , UE) is reasonably restricted. Commonly, the tolerance limits
are considered in the form

LE = Ȳ − κ
√
S2, UE = Ȳ + κ

√
S2, (2)

where κ denotes the tolerance factor (a subject of the required solution) which depend on the
stated coverage and confidence probabilities (1 − γ and 1 − α, respectively), and further on
the parameters characterizing the design of the experiment, δ2 and ν. So, if necessary, we
can emphasize the dependence of the tolerance factor κ on other parameters by writing either
κ(1− γ, 1− α, δ2, ν), or κ(δ2, ν), etc.

Consequently, the following conditional probability statement (conditional for given result of
E) should be fulfilled for (1− α)× 100% of the possible results of the calibration experiment
(i.e., Ȳ and S2)

1− γ ≤ P{Y }
(
LE ≤ Y ≤ UE | E

)
= P{ε}

(
Ȳ − κ

√
S2 ≤ µ+ σε ≤ Ȳ + κ

√
S2 | Ȳ , S2

)
= P{ε}

(
(Ȳ − µ)/σ − κ

√
S2/σ2 ≤ ε ≤ (Ȳ − µ)/σ + κ

√
S2/σ2 | Ȳ , S2

)
= Φ

(
δZ + κ

√
Q/ν

)
− Φ

(
δZ − κ

√
Q/ν

)
= Φ

(
δ|Z|+ κ

√
Q/ν

)
− Φ

(
δ|Z| − κ

√
Q/ν

)
≡ C(κ |Z,Q), (3)

where Z = (Ȳ −µ)/δσ, Q = νS2/σ2, and Φ(·) is the cumulative distribution function (CDF) of
the standard normal distribution. So, C(κ |Z,Q) represents the proportion of the population
covered by the tolerance interval for the given tolerance factor κ and for the given result of
the calibration experiment E . C(κ |Z,Q) is commonly known as a content function.
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The content function C(κ |Z,Q) cannot be evaluated directly for given κ and the observed
result of the experiment E (Ȳ , and S2), as it depends on the unknown parameters µ and σ2.
However, if we are interested in the stochastic properties of the tolerance intervals based on
a large number of results of the hypothetical calibration experiments (i.e., the variability of
the results of independent calibration experiments is to be considered), then Z and Q are
independent pivotal random variables with known probability distributions independent of
the unknown parameters µ and σ2, i.e. Z ∼ N(0, 1) and Q ∼ χ2

ν .

So, the content function C(κ;Z,Q), now considered as a random variable (a function of
random variables Z and Q), can be used directly for checking the stochastic properties (the
true confidence level) of the tolerance intervals, for any candidate value of the tolerance factor
κ.

In particular, the tolerance factor κ is exact for the (1− γ, 1−α)-tolerance interval (LE , UE),
defined by (2), if

E{Z,Q}
(
I (C(κ;Z,Q) ≥ 1− γ)

)
= 1− α, (4)

where I(·) is an indicator function, with I(true) = 1 and I(false) = 0, and E{Z,Q}(·) denotes
the expectation operator with respect to the distribution of the random variables Z and Q.

Consequently, by applying a suitable iterative optimization procedure, C(κ;Z,Q) can be
used for computing the exact value of the tolerance factor κ, such that it fulfills the required
property given by (1), or (4), respectively. This may be realized either by using (repeated)
Monte Carlo simulations, or two-dimensional numerical integrations.

The below presented formula for computing the exact tolerance factor κ of the two-sided
(1 − γ, 1 − α)-tolerance intervals for a univariate normal distribution requires (repeated)
evaluation of one-dimensional integral, only. As we shall discuss in more details in the next
Sections, the approach can be generalized also for computing the tolerance factor for other
models based on normal distribution (as, e.g., the non-simultaneous, point-wise tolerance
intervals, as well as the simultaneous tolerance intervals for normal linear regression models),
however, with possibly needed evaluation of multivariate integrals.

Derivation is based on the results presented in Krishnamoorthy and Mathew (2009) (for more
details see the equations (1.2.3), (1.2.4), also (2.5.7) and (2.5.8)).

Notice that for a fixed δ and Z the function Φ(δ|Z|+r)−Φ(δ|Z|−r) is an increasing function
of r. Let us denote by r1−γ the solution to the equation

Φ(δ|Z|+ r1−γ)− Φ(δ|Z| − r1−γ) = 1− γ. (5)

Then, C(κ |Z,Q) ≥ 1− γ if and only if κ
√
Q/ν > r1−γ (or equivalently Q ≥ νr2

1−γ
κ2 ).

Based on (5), the problem can be rewritten equivalently as

P{ε}
(

(ε− δ|Z|)2 ≤ r2
1−γ | |Z|

)
= 1− γ (6)

where ε ∼ N(0, 1). For fixed Z, the random variable (ε− δ|Z|)2 ∼ χ2
1(δ2Z2), i.e. it has a non-

central chi-square distribution with one degree of freedom and the noncentrality parameter
δ2Z2. Consequently, r1−γ =

√
χ2

1;1−γ (δ2Z2), where χ2
1;1−γ

(
δ2Z2

)
denotes the (1−γ)-quantile

of the distribution χ2
1(δ2Z2).

Thus, the tolerance factor κ defined by (1) and (2) is given implicitly as a solution to the
equation

1− α = E{|Z|}
(
P{Q}

(
Q ≥ ν

κ2
χ2

1;1−γ
(
δ2Z2

)))
= E{|Z|}

(
1− Fχ2

ν

( ν
κ2
χ2

1;1−γ
(
δ2Z2

)))
= 2

∫ ∞
0

(
1− Fχ2

ν

( ν
κ2
χ2

1;1−γ
(
δ2z2

)))
φ(z) dz
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= 2
∫ ∞

0
Γ
(ν

2
,
ν

2κ2
χ2

1;1−γ
(
δ2z2

))
φ(z) dz, (7)

where E{|Z|}(f(|Z|)) denotes the expectation of the function f(|Z|), with respect to the dis-
tribution of |Z|, where Z ∼ N(0, 1), Fχ2

ν
(·) denotes the CDF of a chi-square distribution

with ν degrees of freedom, Γ(·, ·) is the incomplete regularized upper gamma function, and
φ(z) denotes the PDF (probability density function) of a standard normal distribution. From
computational point of view, the value χ2

1;1−γ(δ2z2) = r2
1−γ can be computed more efficiently

by directly solving the equation (5), i.e. Φ(δz + r1−γ)− Φ(δz − r1−γ) = 1− γ, than by using
a dedicated algorithm for computing quantiles of the non-central chi-square distribution.

2.2. Two-sided tolerance intervals for several independent univariate normal
distributions with common variance

Here we consider a calibration experiment E = {E1, . . . , Em} which is based on m+1 sufficient
statistics, Ȳ1, . . . , Ȳm and S2, where Ȳi = 1

ni

∑ni
j=1 Yij (the sample means), S2 = 1

ν

∑m
i=1(ni −

1)S2
i (the pooled sample variance) with S2

i = 1
ni−1

∑ni
j=1(Yij − Ȳi)2, and ν =

∑m
i=1(ni − 1),

where ni is the sample size of the ith population.

We wish to construct a set of simultaneous two-sided tolerance intervals (LE,i, UE,i), with
limits LE,i = Ȳi − κi

√
S2 and UE,i = Ȳi + κi

√
S2, such that

P{E}
( m⋂
i=1

{
P{Yi}

(
LE,i ≤ Yi ≤ UE,i | E

)
≥ 1− γ

})
= 1− α, (8)

where Yi ∼ N(µi, σ2) are mutually independent random variables, independent from the
calibration experiment E = {E1, . . . , Em}.
For a given (candidate) set of the tolerance factors, say κ1, . . . , κm, the content function for
the simultaneous tolerance intervals (LE,i, UE,i) is given by

C(κ1, . . . , κm |Z1, . . . , Zm, Q) =
min
i

(
Φ
(
δi|Zi|+ κi

√
Q/ν

)
− Φ

(
δi|Zi| − κi

√
Q/ν

))
, (9)

where δ2
i = 1

ni
, Zi = (Ȳi−µi)/δiσ ∼ N(0, 1) and Q = νS2/σ2 ∼ χ2

ν are mutually independent
pivot random variables.

The set of tolerance factors κ1, . . . , κm is exact for the simultaneous (1 − γ, 1 − α)-tolerance
intervals (LE,i, UE,i) if

E{Z1,...,Zm,Q}
(
I (C(κ1, . . . , κm;Z1, . . . , Zm, Q) ≥ 1− γ)

)
= 1− α. (10)

This may be checked either by a Monte Carlo simulation, or by (m+1)-dimensional numerical
integration.

Notice, however, that the solution to the equation (10) is not unique, until further restrictions
are imposed on the set of possible tolerance factors κ1, . . . , κm. Frequently, it is required to
have a common tolerance factor κ for all simultaneous tolerance intervals, i.e. κ1 = · · · =
κm = κ.

Under such restriction, the formula (7) can be generalized for computing the exact com-
mon tolerance factor κ of the simultaneous tolerance intervals, with limits LE,i = Ȳi − κ

√
S2

and UE,i = Ȳi + κ
√
S2, such that (8) holds true. However, a relatively simple generaliza-

tion is possible only under further restrictive assumption that the calibration experiment
E = {E1, . . . , Em} is based on m independent samples with common sample size n for each
population N(µi, σ2), i.e. with ν = m(n− 1). In particular, under this restriction we get the
content function

C(κ |Z1, . . . , Zm, Q) = Φ
(
δmax

i
|Zi|+ κ

√
Q/ν

)
− Φ

(
δmax

i
|Zi| − κ

√
Q/ν

)
, (11)
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as Φ(a+ r)− Φ(a− r) is a decreasing function of |a|.
Then, using the analogy of (7), the generalized formula is derived by considering the distri-
bution of the random variable Zmmax = max(|Z1|, . . . , |Zm|) (where Zi ∼ N(0, 1), i = 1, . . . ,m,
are independent random variables) instead of |Z| (where Z ∼ N(0, 1)). In summary, the exact
(simultaneous) tolerance factor κ can be computed as a solution to the equation

1− α = 2m
∫ ∞

0
Γ
(ν

2
,
ν

2κ2
χ2

1;1−γ
(
δ2z2

))
(2Φ(z)− 1)m−1 φ(z) dz, (12)

where δ2 = 1
n , ν = m(n− 1), and χ2

1;1−γ(δ2z2) denotes the (1− γ)-quantile of the non-central
chi-square distribution with 1 degree of freedom and the non-centrality parameter

√
δ2z2.

For m = 1, the tolerance factor given by the solution to the equation (12) is equivalent to
the factor given by the solution to the equation (7) with ν = m(n− 1). Application of such a
tolerance factor leads to the non-simultaneous tolerance intervals with limits LE,i = Ȳi−κ

√
S2

and UE,i = Ȳi + κ
√
S2 for the considered m populations, each fulfilling the property as

defined by (1), but formally different from the individual tolerance intervals defined by (2),

i.e. LEi = Ȳi − κ
√
S2
i , UEi = Ȳi + κ

√
S2
i .

2.3. One-sided tolerance intervals

For completeness (however, without more details), we note that the tolerance factor for the
one-sided (1 − γ, 1 − α)-tolerance interval (LE ,∞) (resp. (−∞, UE)) can be computed as a
quantile of the non-central t-distribution. In particular, the exact tolerance factor for the
(non-simultaneous) upper tolerance limit UE = Ȳ + κ

√
S2, based on a simple calibration

experiment E , is given by
κ = δtν,∆;1−α, (13)

where ν = n− 1, ∆ = z1−γ
δ with δ2 = 1

n and z1−γ being the (1− γ)-quantile of the standard
normal distribution, and tν,∆;1−α denotes the (1−α)-quantile of the non-central t-distribution
with ν degrees of freedom and the noncentrality parameter ∆. For more details see Krish-
namoorthy and Mathew (2009), equations (1.2.2) and (2.2.3).

We notice an interesting (technical) relationship of the right hand side expression of the
equation (7) to the CDF of the noncentral t-distribution with ν degrees of freedom and the
noncentrality parameter ∆, say Ftν,∆(·). In particular,

Ftν,∆(x) = Φ(−∆) +
∫ ∞
−∆

Γ
(ν

2
,
ν

2x2
(z + ∆)2

)
φ(z) dz. (14)

This relationship allows to use similar computational strategies for computing the required
tolerance factor κ, as for computing the CDF of the noncentral t-distribution. For more
details see Witkovský (2013a).

Based on (14), and using the analogy of (12), the exact common tolerance factor κ for si-
multaneous one-sided upper tolerance limits UEi = Ȳi + κ

√
S2 (for m independent, equally

sampled normal populations with possibly different means µi, common variance σ2, and with
common sample size n) can be computed as a solution to the equation

1− α = Φ
(
−z1−γ

δ

)m
+m

∫ ∞
− z1−γ

δ

Γ
(
ν

2
,
νδ2

2κ2

(
z +

z1−γ
δ

)2
)

(Φ(z))m−1 φ(z) dz, (15)

where ν = m(n − 1), δ2 = 1
n , and z1−γ is the (1 − γ)-quantile of the standard normal

distribution. For more details and alternative derivation see Krishnamoorthy and Mathew
(2009), equation (2.5.3).

3. Two-sided tolerance intervals for univ. normal linear regression
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Here we shall assume that the calibration experiment E is modeled by the linear regression
model Y = Xβ + ε, where Y is an n-dimensional random vector of responses measured for
n values xi, i = 1, . . . , n, of the explanatory variable x ∈ X ⊆ Rr. However, here we shall
assume that the explanatory variable is one-dimensional, i.e. that x ∈ (xmin, xmax) ⊆ R, what
is a typical situation for the frequently used p-order polynomial regression models.

The matrix X represents the (n× q)-dimensional calibration experiment design matrix with
rows f(xi)′, for i = 1, . . . , n, i.e. q-dimensional functions of r-dimensional vectors xi. For
example, in simple p-order polynomial linear regression model we get q = p+ 1 and f(xi) =
(1, xi, x2

i , . . . , x
p
i )
′ for xi ∈ X = (xmin, xmax). For simplicity, here we shall assume that X is a

full-ranked matrix.

Further, β is the q-dimensional vector of regression coefficients and ε is an n-dimensional
vector of measurement errors with its assumed distribution ε ∼ N(0, σ2In). Based on the
calibration experiment E , we get the sufficient statistics

β̂ = (X ′X)−1X ′Y, S2 =
1
ν

(Y −Xβ̂)′(Y −Xβ̂), (16)

and mutually independent pivot variables

ZX =
β̂ − β
σ2

∼ N (0, (X ′X)−1
)
, Q =

νS2

σ2
∼ χ2

ν , (17)

where ν = n− q.

3.1. Non-simultaneous tolerance intervals

The non-simultaneous tolerance intervals for the possible future realizations of the response
variable Y (x) = f(x)′β + σε (where f(x) is a known q-dimensional model function of x ∈ X
and ε ∼ N(0, 1) is independent of the calibration experiment E), say (LE,x, UE,x), are such
that

P{E}
(
P{Y (x)}

(
LE,x ≤ Y (x) ≤ UE,x | E

)
≥ 1− γ

)
= 1− α. (18)

Similarly as in the univariate distribution case, the limits of the two-sided tolerance intervals
for linear regression, (LE,x, UE,x) for x ∈ X , are typically restricted to the form

LE,x = f(x)′β̂ − κx
√
S2, UE,x = f(x)′β̂ + κx

√
S2, (19)

where by κx we denote the required tolerance factor at x ∈ X .

Then, for the given candidate of the tolerance factor, say κx, the content function for the
non-simultaneous tolerance interval (LE,x, UE,x) is

C(κx |ZX , Q) = Φ
(
|f(x)′ZX |+ κx

√
Q/ν

)
− Φ

(
|f(x)′ZX | − κx

√
Q/ν

)
= Φ

(
δx|Z|+ κx

√
Q/ν

)
− Φ

(
δx|Z| − κx

√
Q/ν

)
≡ C(κx |Z,Q), (20)

where Z = 1
δx
f(x)′ZX ∼ N(0, 1), Q ∼ χ2

ν , and δ2
x = f(x)′(X ′X)−1f(x) denotes the variance

of the estimator f(x)′β̂ at x ∈ X .

By comparing (3) and (20), it is clear that the exact tolerance factor κx for the two-sided
non-simultaneous tolerance interval (LE,x, UE,x), evaluated at x ∈ X , can be computed by
solving the equation (7), with ν = n− q and δ2 = δ2

x = f(x)′(X ′X)−1f(x).

Notice that the value of the exact tolerance factor κx does not depend directly on the vector
x ∈ X and the model design matrix X. In fact, it depends on the model design only through
ν = n − q and δ2

x. That is, κx is equal for all x ∈ X , such that δ2
x = f(x)′(X ′X)−1f(x) is

equal. This allows creation of tables and/or efficient interpolation-based approximations for
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computing the exact non-simultaneous tolerance factors κx for the univariate normal linear
regression models.

3.2. Simultaneous tolerance intervals

The simultaneous two-sided tolerance intervals for a possibly infinite sequence of the future
realizations of the response variable Y (x) = f(x)′β + σε, say (LE(x), UE(x)) for any x ∈ X ,
are such that

1− α = P{E}
(
P{Y (x)}

(
LE(x) ≤ Y (x) ≤ UE(x) | E

)
≥ 1− γ, for all x ∈ X

)
= P{E}

(
min
x∈X

P{Y (x)}
(
LE(x) ≤ Y (x) ≤ UE(x) | E

)
≥ 1− γ

)
. (21)

Similarly as before, we consider the limits of the tolerance intervals to be restricted to the
form

LE(x) = f(x)′β̂ − κ(x)
√
S2, UE(x) = f(x)′β̂ + κ(x)

√
S2, (22)

where by κ(x) we denote the tolerance factor function defined for all x ∈ X .
Then, for a given candidate of the tolerance factor function, say κ(x), the content function
for the simultaneous tolerance intervals (LE(x), UE(x)) is given by

C(κ(x) |ZX , Q) =
min
x∈X

(
Φ
(
|f(x)′ZX |+ κ(x)

√
Q/ν

)
− Φ

(
|f(x)′ZX | − κ(x)

√
Q/ν

))
, (23)

where ZX = β̂−β
σ2 ∼ N

(
0, (X ′X)−1

)
and Q ∼ χ2

ν with ν = n − q. Notice that the content
function (23) depends on the design matrix X, in particular through the matrix (X ′X)−1.
The tolerance factor function κ(x) is exact for the simultaneous (1−γ, 1−α)-tolerance intervals
(LE(x), UE(x)), for all x ∈ X , if

E{ZX ,Q}
(
I (C(κ(x);ZX , Q) ≥ 1− γ)

)
= 1− α. (24)

This may be checked either by a Monte Carlo simulation, or by (q+1)-dimensional numerical
integration. In general, evaluation of (23) and/or (24) is a computationally demanding task,
as it requires minimum search over x ∈ X for each evaluation at ZX , Q.
The solution to the equation (24) is not unique, until further restrictions are imposed on the
form of the tolerance factor function κ(x). In accordance with Witkovský (2013b), here we
suggest considering the family of the candidate tolerance factor functions κ(x), parametrized
by the scalar parameter m̃ ≥ 1, of the form

κ(x) = κ
(
δ2(x), ν, m̃

)
, (25)

where the function κ
(
δ2(x), ν, m̃

)
is given implicitly, for each x ∈ X , as a solution to the

equation (12), by setting δ2 = δ2(x) = f(x)′(X ′X)−1f(x), ν = n− q, and with m = m̃.
Here, the parameter m̃ (the simultaneousity parameter to be determined) represents the
complexity of the regression function f(x)′β over the considered range x ∈ X . The optimum
value of m̃ depends on the model and the design of the calibration experiment E : the model
function (e.g., the polynomial of order p), the considered set X , the design matrix X, and
the degrees of freedom ν. For example, in simple linear regression (polynomial of the order
p = 1) the value m̃ = 2 is a good starting point for the numerical (iterative) search procedure
(i.e., the complexity of the simple linear regression function for all x ∈ X is assumed to be
similar to the complexity of two independent normal populations).
Another possibility, suggested in Mee et al. (1991), is to consider the family of functions
κ(x) = κ(δ(x)), linear functions of δ(x) =

√
f(x)′(X ′X)−1f(x), parametrized by the scalar

parameter λ > 0 (a parameter to be determined). In particular,

κ(x) = κ(δ(x)) = κ(δ(x), q, λ) = λ
(
z1− γ

2
+ δ(x)

√
q + 2

)
, (26)
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where z1− γ
2

is the (1− γ
2 )-quantile of the standard normal distribution. Based on that, Mee

et al. (1991) derived their optimum tolerance function κ(δ(x)) (however, not exact) as a
solution to the equation

E{W,Q}
(
I
(
Ĉ(κ(δ(x));W,Q) ≥ 1− γ

))
= 1− α, (27)

by using the approximate content function

Ĉ(κ(δ(x)) |W,Q) =
min
δ(x)

(
Φ
(
δ(x)
√
W + κ(δ(x))

√
Q/ν

)
− Φ

(
δ(x)
√
W − κ(δ(x))

√
Q/ν

))
, (28)

where the range of δ(x) is considered for x ∈ X , and W ∼ χ2
q is independent of Q ∼ χ2

ν .
Notice that the content function (28) does not depend directly on the design matrix X.

3.3. Multiple-use calibration problem

A motivation for computing tolerance intervals for the univariate normal linear regression is
the multiple-use calibration problem and the associated problem of computing the calibration
confidence intervals.

In many experimental sciences, acquisition of the measurement results frequently requires
measurement procedures involving instrument calibration which can be modeled as a linear
(polynomial) regression problem. Then, the required measurement result, say x∗, is obtained
through measuring the observable response variable, say Y∗ = Y (x∗) = f(x∗)′β + σε, and
by inverting the fitted regression (calibration) function. A problem of constructing and com-
puting the appropriate confidence intervals for the unobservable values of the explanatory
variable x∗, based on a given fitted calibration function (a result of the calibration experi-
ment), for a possibly unlimited sequence of future observations of the response variable Y∗, is
known as the multiple-use calibration problem.

As proposed in Scheffé (1973), such calibration intervals for x∗ values can be obtained from
the simultaneous tolerance intervals for the considered linear regression (calibration function),
with warranted minimum (1 − γ)-coverage (for all such intervals simultaneously), and with
confidence at least (1−α) (i.e. for (1−α)×100% of possible calibration experiments). For an
overview of the problem and the used methods see, e.g., Mee et al. (1991), Mee and Eberhardt
(1996), Mathew and Zha (1997), Krishnamoorthy and Mathew (2009), Chvosteková (2013a),
Chvosteková (2013b), and Witkovský (2013b).

In particular, for given observation Y∗ = Y (x∗), we shall construct the calibration confidence
interval for the unobservable value of the explanatory variable, say x∗ ∈ X , by inverting the
simultaneous tolerance intervals. So, the calibration confidence interval for x∗ is given by the
random set

S (Y∗; E) = {x ∈ X : Y∗ ∈ (LE(x), UE(x))}. (29)

The set (29) is not necessarily an interval. However, for most practical situations where the
calibration function is (significantly) strictly monotonic for x ∈ X , the confidence set (29)
typically results in an interval. Based on (21) and (29), we can directly characterize the
stochastic properties of the calibration confidence intervals:

P{E}
(
P{Y (x∗)}

(
x∗ ∈ S (Y (x∗) | E)

)
≥ 1− γ

)
= 1− α. (30)

We notice, however, that from the practical point of view, such calibration confidence in-
tervals are considered to be too conservative, and consequently, as suggested in Mee and
Eberhardt (1996), usage of the non-simultaneous two-sided tolerance intervals (LE,x, UE,x) is
recommended in (29), instead of using the exact simultaneous two-sided tolerance intervals
(LE(x), UE(x)).
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4. MATLAB algorithm

Based on (12), we have developed the MATLAB algorithm ToleranceFactorGK, that com-
putes the tolerance factors κ for the two-sided tolerance intervals by using an adaptive Gauss-
Kronod quadrature. Usage of the complementary incomplete Gamma function (for computing
the CDF of chi-square distribution) and the complementary error function (for computing the
CDF of standard normal distribution) allows precise evaluation of the tolerance factors even
for extremely small values of the probabilities γ and/or α (i.e. for extremely high coverage
and confidence). The complementary error function is also used to find the solution (root)
r, of the equation [1 − (Φ(x + r) − Φ(x − r))] − γ = 0, by using the Halley’s method (root-
finding algorithm based on two function derivatives). The current version of the algorithm
is available at the web page http://www.mathworks.com/matlabcentral/fileexchange/
24135-tolerancefactor.

For illustration and possible comparisons with other algorithms, here we present several values
of the tolerance factor κ (presented with up to 15 decimal places) computed by the algorithm
ToleranceFactorGK for the two-sided (1− γ, 1− α)-tolerance interval for univariate normal
population(s), based on a calibration experiment characterized by the parameters n, δ2, ν,
and m.

Example 1. Let us consider the following parameters: γ = 0.01, α = 0.05, n = 10, m = 1,
ν = n − 1, and δ2 = 1

n . The tolerance factor, defined as a solution to the equation (12), is
calculated in MATLAB by using the algorithm ToleranceFactorGK:

gamma = 0.01; alpha = 0.05;
n = 10; m = 1; nu = n-1; delta2 = 1/n;
kappa = ToleranceFactorGK(n,1-gamma,1-alpha,m,nu,delta2)

kappa = 4.436908728948544

Example 2. As was explained in Section 2, by solving the equation (12), it is possible
to compute the common tolerance factor also for the simultaneous tolerance intervals of m
populations, assuming that the common sample size for all m populations is n. Let us consider
the following parameters: γ = 0.01, α = 0.05, n = 10, m = 4, ν = m(n− 1), and δ2 = 1

n . The
common tolerance factor for the simultaneous two-sided tolerance intervals is calculated by

gamma = 0.01; alpha = 0.05;
n = 10; m = 4; nu = m*(n-1); delta2 = 1/n;
options.Simultaneous = true;
kappa = ToleranceFactorGK(n,1-gamma,1-alpha,m,nu,delta2,options)

kappa = 3.574857233534562

Example 3. The information from m independent sources can be effectively used also if we
are interested in calculating a non-simultaneous tolerance interval for one particular popula-
tion. However, we wish to use the pooled sample variance estimator (i.e. with more degrees
of freedom than could be achieved from one sample). So, let us consider the following pa-
rameters: γ = 0.01, α = 0.05, n = 10, m = 4, ν = m(n − 1) = 36 δ2 = 1

n . Now, the
(non-simultaneous) tolerance factor is κ = 3.385579684948129. Notice that the tolerance
factor can be calculated also if we directly set m = 1 and ν = 36 (if m = 1 the calculated
tolerance factor is non-simultaneous).

gamma = 0.01; alpha = 0.05;
n = 10; m = 4; nu = m*(n-1); delta2 = 1/n;
options.Simultaneous = false;
kappa = ToleranceFactorGK(n,1-gamma,1-alpha,m,nu,delta2,options)

kappa = 3.385579684948129

Example 4. In order to illustrate the ability to compute the tolerance factors even for ex-
tremely large values of the coverage and confidence probabilities, let us consider the following
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Figure 1: Tolerance factors for the two-sided (0.95, 0.95)-tolerance intervals evaluated at 15
equidistant points δ(x) ∈ (δmin, δmax).

parameters: γ = 10−5, α = 10−18, n = 250, m = 1, ν = n− 1, δ2 = 1
n . The calculated value

of the tolerance factor is given by

gamma = 1e-5; alpha = 1e-18;
n = 250; m = 1; nu = n-1; delta2 = 1/n;
options.TailProbability = true;
kappa = ToleranceFactorGK(n,gamma,alpha,m,nu,delta2,options)

kappa = 6.967664575030617

Example 5. The algorithm can be used directly for computing the exact tolerance factors of
the non-simultaneous two-sided tolerance intervals for normal linear regression models, and
also, by using further optimization (used for finding the optimum value of m̃) for computing
the exact tolerance factors of the simultaneous two-sided tolerance intervals.

For illustration, let us consider a calibration experiment for simple linear regression: Y =
Xβ+ε, where X is an (n×2) design matrix with n = 20. The first column of X, representing
the intercept, is a column of ones, the second column has two distinct elements: −1 for the
first 10 rows and 1 for the last 10 rows. So, (X ′X)−1 is a diagonal matrix with both diagonal

elements equal to 1
n = 0.05, and consequently, δ(x) =

√
(1, x)(X ′X)−1(1, x)′ =

√
1
n(1 + x2).

We wish to compute the tolerance factors for the two-sided tolerance intervals with x ∈ X =

(−2, 2), i.e. for δ(x) ∈ (δmin, δmax) =
(√

1
n ,
√

1
n(1 + 22)

)
= (0.2236, 0.5).

Figure 1 plots the values of the exact non-simultaneous, the exact simultaneous and the
approximate tolerance factors, calculated for 15 equidistant values of δ(x) ∈ (δmin, δmax). The
exact non-simultaneous tolerance factors were calculated by (12), with n = 20, ν = n−q = 18,
and m = 1. The exact simultaneous tolerance factors were calculated according to (24)
and (25) with m̃ = 4.3, found by Monte Carlo based optimization, and ν = n − q = 18.
The approximate tolerance factors were calculated by (26), with the optimum value of the
parameter λ = 1.2057 taken from Table 2 in Mee et al. (1991), for n = 20 and τ = 2. Here is
the MATLAB code used for computing the tolerance factors:
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%% Exact non-simultaneous tolerance factors:
gamma = 0.05; alpha = 0.05;
n = 20; q = 2; nu = (n-q); m = 1;
delta_min = sqrt(1/n); delta_max = sqrt((1+2^2)/n); N = 15;
delta = linspace(delta_min,delta_max,N)';
kappa_NonSim = zeros(N,1);
for i = 1:N

kappa_NonSim(i) = ...
ToleranceFactorGK(n,1-gamma,1-alpha,m,nu,delta(i)^2);

end

%% Exact simultaneous tolerance factors:
gamma = 0.05; alpha = 0.05;
n = 20; q = 2; nu = (n-q); m = 4.3;
options.Simultaneous = true;
kappa_Sim = zeros(N,1);
for i = 1:N

kappa_Sim(i) = ...
ToleranceFactorGK(n,1-gamma,1-alpha,m,nu,delta(i)^2,options);

end

%% Approximate Mee-Eberhardt-Reeve tolerance factors:
lambda_MER = 1.2334;
z_quantile = norminv(1-gamma/2);
kappa_MER = zeros(N,1);
for i = 1:N

kappa_MER(i) = ...
lambda_MER * (norminv(1-gamma/2) + sqrt(2+q)*delta(i));

end

5. Discussion

The motivation for computing the exact simultaneous tolerance intervals for univariate normal
distributions and univariate normal linear regression models is rather strong. However, the
required methods and algorithms for computing the tolerance factors are more complicated,
than those for computing the non-simultaneous tolerance intervals. The efficient algorithms
are still missing in the commonly used statistical packages.

The main goal of the paper was to advocate the usage of the exact and/or approximate
tolerance intervals. We have presented a brief overview of the theoretical background and
approaches for computing the tolerance factors based on samples from one or several univariate
normal populations, and also presented the methods for computing the tolerance factors for
the non-simultaneous and simultaneous two-sided tolerance intervals for univariate normal
linear regression. For a more comprehensive overview of the models and methods for tolerance
intervals and tolerance regions we suggest to consult the book Krishnamoorthy and Mathew
(2009).
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News and Announcements

Regular meetings of the Vienna R Meetup Group find place approx. every two months.
The meetup group is supported by Revolutions Analytics and data-analysis OG. More
information on past and future presentations at the meetup, the orgianisation of the meetup
group, members and discussions can be found at http://www.meetup.com/ViennaR/ .

The annual useR!2014 conference takes place at UCLA campus in Los Angeles from
June 30 – July 3, 2014. The registration fee is fair and tutorials are for free.

Funny stories and insights by Andreas Quatember to reflect on (wrongly presented) sta-
tistics in the (mostly Austrian) news can be found at http://www.jku.at/ifas/content/e101235.
Worth reading.

Matthias Templ

file:www.revolutionanalytics.com
http://www.data-analysis.at
http://www.meetup.com/ViennaR/
http://user2014.stat.ucla.edu/
http://www.jku.at/ifas/content/e101235
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