The Generalized Odd Gamma-G Family of Distributions:
Properties and Applications

Abstract

Recently, new continuous distributions have been proposed to apply in statistical analy-
sis. In this paper, the Generalized Odd Gamma-G distribution is introduced. In particular,
G has been considered as the Uniform distribution and some statistical properties such as
quantile function, asymptotics, moments, entropy and order statistics have been calculated.
The fitness capability of this model has been investigated by fitting this model and others
based on real data sets.The parameters of this model are estimated by the maximum like-
lihood estimation method with simulated real data in order to test validity of maximum
likelihood estimators.
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1 Introduction

The classic statistical distributions which have essential limitations and problems in data
modeling, has led statistical researcher to make of the new flexible distributions. The new
distributions are often made through the classic distributions and give the required flexibility
to the classic distributions. The most important distributions among them are Marshall-Olkin
generated (MO-G) by Marshall and Olkin (1997), Kumaraswamy-G (Kw-G) by Cordeiro and
de Castro (2011), McDonald-G (Mc-G) by Alexander et al. (2012), Weibull-G by Bourguignon
et al. (2014), exponentiated half-logistic by Cordeiro et al. (2014a), transformer (T-X) by
Alzaatreh et al. (2013), and Lomax generator by Cordeiro et al. (2014b), Beta Marshal-OLkin
family by AUTHORC, et al. (2015), the type I half-logistic family by Cordeiro et al. (2016) .

Based on T-X idea by Alzaatreh et al. (2013), by the following definition, the Generalized
Odd Gamma-G distribution (GOGa-G) would be made
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where «, 8 > 0 are two additional shape parameters, £ is the parameter for baseline G and
V(o) = [ t* te~!dt denote the incomplete gamma function.

In this case, the probabilty density function (pdf) of the GOGa-G distribution will be as
follows:
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where g(z; &) is the pdf of the G(x;€) distribution. From now on, the random variable X with



pdf is shown with X ~ GOGa-G(a, 3,&). According to and hrt of X is as follows:
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An interpretation of the GoGa-G family can be given as follows:
Let T be a random variable describing a stochastic system by the cdf G(z)? (for B > 0). If
the random variable X represents the odds ratio, theﬁrisk that the system following the lifetime
1_0((;@()36)&
randomness of the odds ratio by the Gamma pdf r(t) = ﬁ to~le=t (for t > 0), the cdf of X
is given by
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T will be not working at time x is given by If we are interested in modeling the

which is exactly the cdf (1) of the new family.
Theorem 1 provides some relations of the GOGa family with other distributions.

Theorem 1. Let X ~GOGa-G(o, 8,€) and Y = G(X—’@ﬂ then Y ~ I'(a, 1)
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The basic motivations for using the GOGa family in practice are the following:

(i) to make the kurtosis more flexible compared to the baseline model; (ii) to produce a skewness
for symmetrical distributions; (iii)to construct heavy-tailed distributions that are not longer-
tailed for modeling real data; (iv)to generate distributions with symmetric, left-skewed, right-
skewed and reversed-J shaped; (v) to define special models with all types of the hrf; (vi) to
provide consistently better fits than other generated models under the same baseline distribu-
tion.

In the following, the paper would be like this: In Section 2, a special distribution is intro-
duced by selecting GG. In Section 3, the features of the GOGa- model will be assessed using
quantile function, asymptotics, functions expansion, quantile power series, moments, entropy
and order statistics. In Section 4, MLE calculation method and in Section 5, estimability of
the model additional parameters will be discussed using simulation. In Section 6, the proposed
model is fitted based on two real data sets and compared to other famous models.

2 Special Models

2.1 The Generalized Odd Gamma-Uniform (GOGa-U)

Different distributions family can be reached by selecting different Gs in equation . Here
as Torabi and Montazeri Hedesh (2012), G has been considered as uniform distribution. In this



case, by letting € = (a, b) equation will changed as follows:
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where a,b € R and a < b. If X be a random variable with density function , then it will be
displayed by GOGa-U(«, 8, a,b). In Figure |1/ some density and hazard functions for GOGa-W
have been drawn.

f(@; o, B,a,b) = (4)

b}
a=10 < a=3
2 — 3=0.035 — p=15
— B=0.045 - — p=11
= 3 =0.06 S7 | = B=08
© — 5=0.09 — B=05
S £=0.12 f=03
|
=]
@) /@)
S o
a
o
= =
=] <
< T T T =L T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
x x
=3 o
& ]
=] =]
a=1
0 — 3=06
2 — B=07 8
— =08 <
o — 3=10.9
X
=1 B=1 i
=
o
f@) 24 f(=)
g
S S
=
0
iy 3
3 =)
S
o =
S S
< T T T < T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
T x

Figure 1: The sample curves of density function of GOG-U(«, 3,0, 10).

One can see in the curves of Figure [I]| that the different states of density function including
symmetric density function (approximately), mild and high skewed (right and left) and bimodal
(in the right bottom curve, one mode is in point zero) have been produced. In Figure 2l one can
see some curves of the hazard function of the GOGa-U distribution for some paramentreters.
According to Figure [2] you see that the U shape hazard functions are producible by GOGa-U.
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Figure 2: The sample curves of hazard function of GOGa-U(a, 8,0, 10).

2.2 The Generalized Odd Gamma-Weibull (GOGa-W)
In GOGa-G, suppose G is as follows Weibull distribution function:
ok
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In this case, by letting € = (A, k) equation will be changed as follows
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where «, 8, \,k > 0. If X be a random variable with density function , then it will be
displayed by GOGa-W(a, §, A, k). In Figure |3 some pdfs for GOGa-W have been drawn.
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Figure 3: The sample curves of density and hazard function of GOGa-W(a, §,1,1.5).

3 Main Features
3.1 Quantile Function
By considering quantile function (qf) X is obtained as follows: If V' ~ I'(«, 1) then the
1
solution of nonlinear equation xz, = Q¢ [(HLV ﬂ] has cdf .

3.2 Asymptotics

Proposition 1. Let a = inf {z|f(z) > 0}, then the asymptotic of equation (1)), (4) and (3)
when x — a are given by
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Proposition 2. The asymptotic of equation , (@ and (@ when T — 400 are given by
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3.3 Expansion for Pdf and Cdf

Using generalized binomial and taylor expansion one can obtain
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and hg(x) = Bg(x) G(x)?', denote the pdf of exp-G distribution with power parameter .
By integrating from equation @ with respect to z, we have
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where Hg(x) = G(z)°.
By considering G(z) = 1 — [1 — G(x)] and binomial expansion we have:
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and finally regarding to for cdf we also have
flz) = Z br+1 hie1(2)
k=0

3.4 Moments
The rth ordinary moment of X is given by

+o00
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Hereafter, Y11 denotes the Exp-G distribution with power parameter (k + 1). Setting r = 1
in , We have the mean of X. The last integration can be computed numerically for most
parent distributions. The skewness and kurtosis measures can be calculated from the ordinary
moments using well-known relationships. The nth central moment of X, say M,,, follows as

My =BG = Y 0" () ) s
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The cumulants (k,,) of X follow recursively from
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Rn = H/n - Z <7” . 1>HT:U’/n—r

r=0
where k1 = iy, ko = ply — 1% ks = p's — 3o’y 4+ 1/1°, etc. The skewness and kurtosis

measures also can be calculates from the ordinary moment using well-known relationships. The
moment generating function (mgf) of X, say Mx(t) = E (e'¥), is given by

Xy o 17y
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3.5 Incomplete Moments

The main application of the first incomplete moment refers to Bonferroniand Lorenz curves.
These curves are very useful in economics, reliability, demography, insurance and medicine. The
answers to many important questions in economics require more than just knowing the mean
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Figure 4: Skewness and Kurtosis for GOGa-U.

of the distribution, its shape as well. This is obvious both in the study of econometrics and in
areas as well. The sth incomplete moments, say s (t), is given by

t
N L
—00
Using equation(8), we obtain

t
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The first incomplete of the GOGa-G family, ¢; (t), can be obtained by setting s = 1 in .
Another application of the first incomplete moment is related to meanresidual life and mean

waiting tie given by my (t) = [1 — ¢1 (t)] /R(t) — t and M (t) =t — [p1 (t) /F(t)], respectively.

3.6 Entropy

Entropy is an index for measuring variation or uncertainty of a random variable. The
measure of entropy, Rényi (1961), is defined as follows

1
I—7

In(7) = ——log /0 " P(a)da

for v > 0 and « # 1. The Shannon entropy measure is also defined by E {—log[f(z)]} that is
a special state of the Rényi entropy when v 1 1.
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In Figure [ one can see some curves of the entropy function of the GOGa-U distribution for

some parameters.
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Figure 5: Curves of the GOGa-U Entropy function for some parameter values.



3.7 Order Statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Suppose X7, ..., X, is a random sample from any GOGa-G distribution. Let X;., denote the
ith order statistic. The pdf of Xj;., can be expressed as

fonli) = e 0) P4 a) (1 @)™ = e Y0 (") ) Py
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We use the result 0.314 of Gradshteyn and Ryzhik (2000) for a power series raised to a
positive integer n (for n > 1)
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where the coefficients ¢, ; (for i = 1,2,...) are determined from the recurrence equation (with

Cn,0 = a) '
7
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By using equations (9), (12), (13), We can demonstrate that the density function of the ith
order statistic of any GOGa-G distribution can be expressed as follows:

fzn(x) = Z My k hr-&—k-&-l(x)a (14)
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where h,1r4+1(z) denotes the exp-G density function with parameter r + k + 1,
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b, is given by equation (9) and the quantities fj+i—1,k can be determined given that f;1; 10 =

b%H_I and recursively for k > 1

k
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We can obtain the ordinary and incomplete moments, generating function and mean devi-
ations of the GOGa-G order statistics from equation and some properties of the exp-G
model.

4 The Maximum Likelihood Estimator

The MLE is one of the most common point estimators. This estimator is very applicable
in confidence intervals and hypothesis testing. By MLE, various statistics is built for assessing

the goodness-of-fit in a model, such as: the maximum log-likelihood (4,4 ), Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), Anderson-Darling (A*) and Cramér—von

10
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Mises (W*), described by Chen and Balakrishnan (1995). The lower values of these statistics
indicate that the model have better fitting. We use these statistics in section 5.

To calculating the MLE, let x1,x,...,z, are observations from pdf . In this case, by
letting 8 = («, 3, &) we have

4,(0) =nln(B +Zln (z;8)) + (af — 1) Zln (z4;&

- Gw
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By numerically solving the following equations, the maximum likelihood estimators can be
obtained.
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where ¢;(®) = 765’((.;?5) and G;©) = LG(;E“E)

5 Simulation Study

In this section, the Maximum likelihood estimators for additional parameters a and g in pdf
for three different states, has been assessed by simulating: («, 8) = (0.6,1.6), (o, 8) = (2,2)
and (o, ) = (13,0.1). In each three case, the uniform distribution parameters in are
(a,b) = (0,10). The density functions for one of the three states, has been indicated in Figure[6]
One can see three different states of GOGa-U density functions, means skewed to the left, right
and the symmetric .

To verify the validity of the maximum likelihood estimator, Mean Square Error of the Es-
timate (MSE), Coverage Probability (CP) and Coverage Lenght (CL) have been used. For
example, as described in Section for (o, 8) = (0.6,1.6), N = 10000 times have been simu-
lated samples of n = 30,40, ..., 500 of GOGa-U(0.6,1.6,0,10). To estimate the numerical value
of the maximum likelihood, the optim function (in the stat package) and L-BFGS-B method

11



in R software has been used. If 8 = (o, 8), for any simulation by n volume and i = 1,2, ..., N,
the maximum likelihood estimates are obtained as 6; = (@;,3;). The standard deviation of
estimations, which is obtained through the information matrix is shown by g, = (sa;, Sﬁi)' In
this case, the MLE, Bias, MSE, CP and CL are calculated by the following formula

N

1 ~

MLEg(n) = > 6,
=1

i=1
1 -
CPg(n) = += > 1(8; — 1.96s5,,0; + 1.9655)
i=1
N
3.92
i=1

In Figures El represent the Biases, MSEs, CPs and CLs plots for (a,3) = (0.6,1.6) . As
expected, the biases and MSE of estimated parameters converges to zero while n growing.
The CPs plots should converge to 0.95 and CLs plots should be descending they are correct
in Figures [7] Plots of parameters vector (a,) = (2,2) and (a, 3) = (13,0.1) have the same
position that one can see in Appendix [A]
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Figure 7: Biases, MSEs, CPs and CLs of &, 3 versus n when (o, B) = (0.6, 1.6).
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6 Applications

In this section, fitting of GOGa-U and some famous models to the two real data sets has
been assessed. The Akaike information criterion (AIC), Bayesian information criterion (BIC),
Anderson-Darling ( A* ) and Cramér-von Mises ( W* ) , KolmogorovSmirnov (K.S) and the
P-Value of K.S test , have been chosen to comparison of the models. The distributions: Beta
Exponential (BE) (Nadarajah and Kotz (2006)), Beta Generalized Exponential (BGE) (Barreto-
Souzaa et al. (2010)), Beta Genearlized Half-Normal, (BGHN) (Pescima et al. (2010)), Beta
Pareto (BP) (Akinsete et al. (2008)), Exponentiated Pareto (EP) (Kus (2007)), Genearlized
Half-Normal (GHN) (Cooray and Ananda (2008) ), Gamma-Uniform (GU) (Torabi and Montaz-
eri Hedesh (2012)), Kumaraswamy Gumbel (KwGu) (Cordeiro et al. (2012)) and Weibull-G{E'}
(Alzaatreh et al. (2015)) have been selected for comparison. The parameters of models have
been estimated by the MLE method.

We also analyzed the hazard rates of these two data sets. In order to identify the shapes
of data, we consider the graphical method based on total time on test (TTT) transformed,
introduced by Barlow and Campo (1975). The empirical illustration of TTT-transform is given
by Aarset (1987). The TTT plot is obtained by plotting F(r/n) = [le[ Ti::H;_T]) o]

i=1 tim
r/n(r=1,2,...,n) Tjy,, for i =1,2,...,n, are the order statistics of the sample.

The first data set presents upside-down bathtub shaped hazard function while the second
data sets present decreasing shaped hazard function. From figure 9, the TTT-plot for the data
set AG negative shows that hazard function 7(x) is first concave and then convex, giving an
indication of bathtub- upside-down shape, while in figures 10, TTT-plot for the data set Sun of
Skin Folds shows that the hazard rate function is concave . Hence, the GOGa-U family could
be in principle an appropriate model for fitting these data sets.

versus

6.1 The Myelogenous Leukemia Data for AG Positive

This sub-section is related to study of AG data which presented by Feigl and Zelen (1965)
that include 16 observations. Observed survival times (weeks) for AG positive were identified
by the presence of Auer rods and significant granulative of the leukemic cells in the bone

marrow at diagnosis. For the AG negative patients these factors were absent. The data set is:
56, 65, 17, 17, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43.

the Tables [I] and [2] display a summary of the fitted information criteria and MLEs for this
data with different models , respectively. Models have been sorted from the lowest to the highest
value of AIC. As you see, the GOGa-U is selected as the best model with all the criteria. Note
that P-Value for GOGa-U is also more than all other distributions. The histogram of the AG
nagative data and the plots of fitted pdf are displayed in Figure

6.2 The Sun of Skin Folds Data

The second data set which contains 202 observation can be seen in Weisberg (2005) that
have been used in Alzaatreh (2015) (article not yet published). These data are the sum of skin
folds in 202 athletes collected at the Australian Institute of Sports and are as follows:

28.0, 98, 89.0, 68.9, 69.9, 109.0, 52.3, 52.8, 46.7, 82.7, 42.3, 109.1, 96.8, 98.3, 103.6, 110.2, 98.1,
57.0,43.1, 71.1, 29.7, 96.3, 102.8, 80.3, 122.1, 71.3, 200.8, 80.6, 65.3, 78.0, 65.9, 38.9, 56.5, 104.6,
74.9, 90.4, 54.6, 131.9, 68.3, 52.0, 40.8, 34.3, 44.8, 105.7, 126.4, 83.0, 106.9, 88.2, 33.8, 47.6,
42.7, 41.5, 34.6, 30.9, 100.7, 80.3, 91.0, 156.6, 95.4, 43.5, 61.9, 35.2, 50.9, 31.8, 44.0, 56.8, 75.2,
76.2, 101.1, 47.5, 46.2, 38.2, 49.2, 49.6, 34.5, 37.5, 75.9, 87.2, 52.6, 126.4, 55.6, 73.9, 43.5, 61.8,
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Table 1: Information criteria for the AG negative data.

Model AIC BIC w* | A* | K.S | P-Value
GOGa-U 121.29 | 124.38 | 0.07 | 0.46 | 0.18 | 0.687
G-U 122.68 | 125.77 | 0.06 | 0.39 | 0.18 | 0.678
EP 129.09 | 130.64 | 0.1 | 0.65 | 0.21 | 0.475
BE 129.66 | 131.98 | 0.1 | 0.72 | 0.3 0.105
GHN 130.21 | 131.76 | 0.11 | 0.65 | 0.22 | 0.422
BP 131.41 | 1345 | 0.11 | 0.66 | 0.22 | 0.404
Weibull-G{E} | 131.55 | 134.64 | 0.11 | 0.68 | 0.22 | 0.441
BGHN 131.83 | 134.93 | 0.11 | 0.67 | 0.23 | 0.356
BGE 132.55 | 135.64 | 0.1 | 0.67 | 0.23 | 0.343
KwGu 134.22 | 137.31 | 0.1 | 0.65 | 0.3 0.123

Table 2: MLEs for the the AG negative data.

Model Parameters
GOGa-U (@, B,a,b) = (0.01,51.13,1.99, 66.67)
(sa, 55 5a> b) (0 01,62.04,0.01,2.63)
G-U (@, 5,a,b) = (0.40,0.81,1.99,98.91)
(sa, s ﬁ,sa, b) (0.15,1.20,0.01,53.41)
EP (A, B) = 1.01,0.04)
(55 SB) = (1.88,0.02)
BE (@,b,\) = (8.24,0.04,1.54)
(sg, s 55,8 ) (40.43,0.08, 2.85)
GHN (a,0) = (0 74,22.79)
(s,s) (0.15,6.04)
BP (@, ,0,k) = (98.66,3.01,0.01,0.53)
(sa, s 55 5 @) (593.87,17.51,0.02, 1.80)
Weibull-G{E} | (¢,7,a, ) = 0.48,3.09,5.02,1.40)
(Se, s 7,sm /j) (0.09,1.47,0.50,0.01)
BGHN (a,b,a,0) = (0.03,76.12,508.34, 270.67)
(sg, s 5ps Sas 9) (0.04,4235.56, 1349.84,471.83)
BGE (@, b, \, a) (14.23,6.84,0.00,0.13)
(sg, s b, sg) = (33.74,4.52,0.00, 0.27)
KwGu (a,b, 1,0 ) (0.01,0.11,10.51,1.93)
(sg, s b,s#,sg) (0.01,0.03,0.01,0.02)

88.9, 31.0, 37.6, 52.8, 97.9, 111.1, 114.0, 62.9, 36.8, 56.8, 46.5, 48.3, 32.6, 31.7, 47.8, 75.1, 110.7,
70.0, 52.5, 67, 41.6, 34.8, 61.8, 31.5, 36.6, 76.0, 65.1, 74.7, 77.0, 62.6, 41.1, 58.9, 60.2, 43.0, 32.6,
48, 61.2, 171.1, 113.5, 148.9, 49.9, 59.4, 44.5, 48.1, 61.1, 31.0, 41.9, 75.6, 76.8, 99.8, 80.1, 57.9,
48.4, 41.8, 44.5, 43.8, 33.7, 30.9, 43.3, 117.8, 80.3, 156.6, 109.6, 50.0, 33.7, 54.0, 54.2, 30.3, 52.8,
49.5, 90.2, 109.5, 115.9, 98.5, 54.6, 50.9, 44.7, 41.8, 38.0, 43.2, 70.0, 97.2, 123.6, 181.7, 136.3,
42.3, 40.5, 64.9, 34.1, 55.7, 113.5, 75.7, 99.9, 91.2, 71.6, 103.6, 46.1, 51.2, 43.8, 30.5, 37.5, 96.9,
57.7,125.9, 49.0, 143.5, 102.8, 46.3, 54.4, 58.3, 34.0, 112.5, 49.3, 67.2, 56.5, 47.6, 60.4, 34.9
the Tables 3| and [4] display a summary of the fitted information criteria and MLEs for this
data with different models , respectively. Models have been sorted from the lowest to the highest
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value of AIC. As you see, the GOGa-U is selected as the best model with all the criteria. Here
P-Value for GOGa-U is also more than all other distributions. The histogram of the sun of skin
folds data and the plots of fitted pdf are displayed in Figure

Table 3: Information criteria for the Sun of Skin Folds data.

Model AIC BIC w* | A* | K.S | P-Value
GOGa-U 1897.11 | 1910.34 | 0.09 | 0.55 | 0.05 | 0.731
G-U 1897.15 | 1910.38 | 0.08 | 0.47 | 0.05 | 0.668
KwGu 1906.25 | 1919.48 | 0.11 | 5.05 | 0.06 | 0.393
BP 1915.68 | 1928.91 | 0.18 | 1.57 | 0.07 | 0.228
Weibull-G{E} | 1916.04 | 1929.27 | 0.2 | 2.4 | 0.07 | 0.34
BGE 1920.58 | 1933.81 | 0.26 | 0.76 | 0.08 | 0.179
BGHN 1925.11 | 1938.34 | 0.32 | 1.21 | 0.08 | 0.135
BE 1930.2 1940.13 | 0.4 1.25 | 0.09 | 0.063
GHN 1978.34 | 1984.96 | 0.86 | 2.36 | 0.13 | 0.002
EP 2119.1 2125.71 | 0.41 | 1.89 | 0.35 | O
Table 4: MLEs for the Sun of Skin Folds data.
Model Parameters
GOGa-U a, B,a,b) = (8.95,0.04,27.99,650.04)
88> 55> 5as b) (1.96,0.01,0.02,169.55)
G-U a, B,a,b) = (1.27,0.07,27.88,579.87)
Sg, ¢ ﬂ,sa, b) (0.17,0.05,0.25, 334.16)
KwGu a,b,i,0) =(0.01,0.21,68.93,7.15)
Sas 85, Sis 8 5) = (0.01,0.06,2.22,1.78)
BP a, 3,0, k) = (102.94,4.20,3.31,1.14)
Sas 53, gy A) (183.57,4.22,3.43,0.63)
Weibull-G{E} | (¢,7,a, ) = (0.01,0.21,68.93,7.15)
Sg, & 7,50” ) (0.01,0.06,2.22,1.78)

(@
(s
(
(
(
(
(
(
(
(
@b, na) =
(
(a
(
(
(
(@
(
(
(

BGE (1.23,0.73,0.05,8.77)
s, 5,53, 9a) = (1.98,0.25,0.01,16.52)
BGHN a,b,a,0) = (0.27,34.18,43.46, 13.78)
Sa: 53, 5a, 53) = (0.10,37.32, 31.62, 0.50)
BE a,b,\) = (5.34,5.86,0.01)
53, 53, 55) = (0.53,1.62,0.00)
GHN ,6) = (1.65,86.05)
sa, 55) = (0.09,2.89)
EP X, B) = (0.01,0.01)
s5,53) = (1.65,86.05)

7 Conclusions

In many applied areas there is a clear need for extended forms of the well-known distribu-
tions. Generally, the new distributions are more flexible to model real data that present a high
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Figure 10: Histogram and estimated pdfs for the Sun of Skin Folds data.
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Figure 11: TTT Plot for the Sun of Skin Folds data.

17



degree of skewness and kurtosis. We propose Generalized Odd Gamma-G (GOGa-G) family of
distributions. Many well-known models emerge as special cases of the GOGa-G family by using
special parameter values. Some mathematical properties of the new class including explicit
expansions for the ordinary and incomplete moments, quantile and generating functions, mean
deviations, entropies and order statistics are provided. We survey the theoretical outcomes with
numerical computation by using R software. The parameters of this model are estimated by the
maximum likelihood estimation method. We prove empirically by means of an application to
a real data set that special cases of the proposed family can give better fits than other models
generated from well-known families.

Appendix A
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Figure 12: Biases, MSEs, CPs and CLs of &, § versus n when (o, B) = (2,2).
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Figure 13: Biases, MSEs, CPs and CLs of &, § versus n when (o, B) = (13,0.1).
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