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Abstract

Recently, new continuous distributions have been proposed to apply in statistical anal-
ysis in a way that each one solves a particular part of the classical distribution problems.
In this paper, the Generalized Odd Gamma-G distribution is introduced . In particu-
lar, G has been considered as the Uniform distribution and some statistical properties
such as quantile function, asymptotics, moments, entropy and order statistics have been
calculated. We survey the theoretical outcomes with numerical computation by using R
software.The fitness capability of this model has been investigated by fitting this model
and others based on real data sets. The maximum likelihood estimators are assessed with
simulated real data from proposed model. We present the simulation in order to test
validity of maximum likelihood estimators .

Keywords: generalized odd gamma-G, maximum likelihood, moment, entropy.

1. Introduction

The classic statistical distributions which have essential limitations and problems in data
modeling, has led statistical researcher to make of the new flexible distributions. The new
distributions are often made through the classic distributions and give the required flexibility
to the classic distributions. The most important distributions among them are Marshall-Olkin
generated (MO-G) by Marshall and Olkin (1997), Kumaraswamy-G (Kw-G) by Cordeiro
and de Castro (2011), McDonald-G (Mc-G) by Alexander, Cordeiro, Ortega, and Sarabia
(2012), Weibull-G by Bourguignon, Silva, and Cordeiro (2014), exponentiated half-logistic
by Cordeiro, Alizadeh, and Ortega (2014a), transformer (T-X) by Alzaatreh, Lee, and Famoye
(2013), Logistic-X by Tahir, Cordeiro, Alzaatreh, Mansoor, and Zubair (2016) and Lomax
generator by Cordeiro, Ortega, Popović, and Pescim (2014b), Kumaraswamy Marshal-Olkin
family by Alizadeh, Tahir, Cordeiro, Mansoor, Zubair, and Hamedani (2015b), Beta Marshal-
OLkin family by Alizadeh, Cordeiro, De Brito, and Demétrio (2015a), type I half-logistic
family by Cordeiro, Alizadeh, and Diniz Marinho (2016).

Based on T-X idea by Alzaatreh et al. (2013), by the following definition, the Generalized
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Odd Gamma-G distribution (GOGa-G) would be made

F (x;α, β, ξ) =

∫ G(x;ξ)β

1−G(x;ξ)β

0

tα−1e−t

Γ(α)
dt =

γ
(
α, G(x;ξ)β

1−G(x;ξ)β

)
Γ(α)

. (1)

where α, β > 0 are two additional shape parameters, ξ is the parameter for baseline G and
γ(α, x) =

∫ x
0 t

α−1e−tdt denote the incomplete gamma function.

In this case, the probabilty density function (pdf) of the GOGa-G distribution will be as
follows:

f(x;α, β, ξ) =
βg(x; ξ)G(x; ξ)αβ−1

Γ(α)
[
1−G(x; ξ)β

]α+1 e
−G(x;ξ)β

1−G(x;ξ)β . (2)

where g(x; ξ) is the pdf of the G(x; ξ) distribution. From now on, the random variable X
with pdf (2) is shown with X ∼ GOGa-G(α, β, ξ). According to (1) and (2) hrt of X is as
follows:

τ(x;α, β, ξ) =
βg(x; ξ)G(x; ξ)αβ−1e

−G(x;ξ)β

1−G(x;ξ)β[
1−G(x; ξ)β

]α+1 [
Γ(α)− γ

(
α, G(x;ξ)β

1−G(x;ξ)β

)] . (3)

An interpretation of the GOGa-G family (1) can be given as follows:
Let T be a random variable describing a stochastic system by the cdf G(x)β (for β > 0).
If the random variable X represents the odds ratio, the risk that the system following the

lifetime T will be not working at time x is given by G(x)β

1−G(x)β
. If we are interested in modeling

the randomness of the odds ratio by the Gamma pdf r(t) = 1
Γ(α) t

α−1 e−t (for t > 0), the cdf
of X is given by

Pr(X ≤ x) = R

(
G(x)β

1−G(x)β

)
.

which is exactly the cdf (1) of the new family.

Theorem 1 provides some relations of the GOGa family with other distributions.

Theorem 1. Let X ∼GOGa-G(α, β, ξ) and Y =
G(X; ξ)β

1−G(X; ξ)β
, then Y ∼ Γ(α, 1).

Proof: It is clear.

The basic motivations for using the GOGa family in practice are the following:
(i) to make the kurtosis more flexible compared to the baseline model; (ii) to produce a
skewness for symmetrical distributions; (iii)to construct heavy-tailed distributions that are
not longer-tailed for modeling real data; (iv)to generate distributions with symmetric, left-
skewed, right-skewed and reversed-J shaped; (v) to define special models with all types of
the hrf; (vi) to provide consistently better fits than other generated models under the same
baseline distribution.

In the following, the paper would be like this: In Section 2, a special distribution is introduced
by selecting G. In Section 3, the features of the GOGa- model will be assessed using quantile
function, asymptotics, functions expansion, quantile power series, moments, entropy and order
statistics. In Section 4, MLE calculation method and in Section 5, estimability of the model
additional parameters will be discussed using simulation. In Section 6, the proposed model is
fitted based on two real data sets and compared to other famous models.
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Figure 1: The sample curves of density function of GOG-U(α, β, 0, 10).

2. Special models

2.1. The generalized odd gamma-uniform (GOGa-U)

Different distributions family can be reached by selecting different Gs in equation (2). Torabi
and Hedesh (2012), G has been considered as uniform distribution. In this case, by letting
ξ = (a, b) equation (2) will changed as follows:

f(x;α, β, a, b) =
β(b− a)β(x− a)αβ−1e

−(x−a)β

(b−a)β−(x−a)β

Γ (α)
[
(b− a)β − (x− a)β

]α+1 , a ≤ x ≤ b . (4)

where α, β > 0, a, b ∈ R and a < b. If X be a random variable with density function (4), then
it will be displayed by GOGa-U(α, β, a, b). In Figure 1 some density and hazard functions for
GOGa-U have been drawn.

One can see in the curves of Figure 1 that the different states of density function including
symmetric density function (approximately), mild and high skewed (right and left) and bi-
modal (in the right bottom curve, one mode is in point zero) have been produced. In Figure 2
one can see some curves of the hazard function of the GOGa-U distribution for some para-
mentreters. According to Figure 2 you see that the U shape hazard functions are producible
by GOGa-U.

2.2. The generalized odd gamma-Weibull (GOGa-W)

In GOGa-G, suppose G is as follows Weibull distribution function:

G(x;λ, k) = 1− e−( xλ)
k

, x ≥ 0 .

In this case, by letting ξ = (λ, k) equation ( 2) will be changed as follows
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Figure 2: The sample curves of hazard function of GOGa-U(α, β, 0, 10).

f(x;α, β, λ, k) =

βk
(
x
λ

)k−1
e−( xλ)

k
[
1− e−( xλ)

k
]αβ−1

λΓ (α)

{
1−

[
1− e−( xλ)

k
]β}α+1 e

−

1−e
−( xλ)

kβ

1−

1−e
−( xλ)

kβ
, x ≥ 0 . (5)

where α, β, λ, k > 0. If X be a random variable with density function (5), then it will be
displayed by GOGa-W(α, β, λ, k). In Figure 3 some pdfs for GOGa-W have been drawn.

3. Main features

3.1. Quantile function

By considering (1) quantile function (qf) X is obtained as follows: If V ∼ Γ(α, 1) then the

solution of nonlinear equation xv = QG

[(
V

1+V

) 1
β

]
has cdf (1).

3.2. Asymptotics

Proposition 1. Let a = inf {x|f(x) > 0}, then the asymptotic of equation (1), (2) and (3)
when x→ a are given by

F (x) ∼ G(x)αβ

αΓ(α)

f(x) ∼ βg(x)G(x)αβ−1

Γ(α)

τ(x) ∼ βg(x)G(x)αβ−1

Γ(α)

Proposition 2. The asymptotic of equation (1), (2) and (3) when x→ +∞ are given by

F (x) ∼ 1−
γ
(
α, 1

βG(x)

)
Γ(α)
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Figure 3: The sample curves of density and hazard function of GOGa-W(α, β, 1, 1.5).

f(x) ∼ g(x)

βαΓ(α)G(x)α+1 e
−1

βG(x)

τ(x) ∼ g(x)e
−1

βG(x)

βα
[
Γ(α)− γ

(
α, 1

βG(x)

)]
G(x)α+1

3.3. Expansion for Pdf and Cdf and hrf

Using generalized binomial and taylor expansion one can obtain

f(x) =
βg(x)G(x)αβ−1

Γ(α)
[
1−G(x)β

]α+1

∞∑
i=0

(−1)i
(

G(x)β

1−G(x)β

)i
i!

=
βg(x)

Γ(α)

∞∑
i=0

∞∑
j=0

(−1)i

i!

(
−α− i− 1

j

)
G(x)β(α+i+j)−1

=
∞∑
i=0

∞∑
j=0

wi,jhβ(α+i+j)(x) . (6)

where

wi,j =

(−1)i
(
−α− i− 1

j

)
i! [α+ i+ j] Γ(α)

.

and hβ(x) = βg(x)G(x)β−1, denote the pdf of exp-G distribution with power parameter β.
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By integrating from equation (6) with respect to x, we have

F (x) =
∞∑
i=0

∞∑
j=0

wi,jHβ(α+i+j)(x) . (7)

where Hβ(x) = G(x)β.

By considering G(x) = 1− [1−G(x)] and binomial expansion we have:

G(x)β(α+i+j) =

∞∑
l=0

(−1)l
(
β(α+ i+ j)

l

)
[1−G(x)]l

=
∞∑
l=0

l∑
k=0

(−1)l+k
(
β(α+ i+ j)

l

)(
l
k

)
G(x)k

=

∞∑
k=0

∞∑
l=k

(−1)l+k
(
β(α+ i+ j)

l

)(
l
k

)
G(x)k

In this case, regarding to (7) cdf extends as follows

F (x) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
l=k

wi,j(−1)l+k
(
β(α+ i+ j)

l

)(
l
k

)
G(x)k .

then

F (x) =
∞∑
k=0

bkG(x)k (8)

where

bk =
∞∑
i=0

∞∑
j=0

∞∑
l=k

wi,j(−1)l+k
(
β(α+ i+ j)

l

)(
l
k

)
(9)

and finally regarding to (8) for cdf we also have

f(x) =
∞∑
k=0

bk+1 hk+1(x)

3.4. Moments

The rth ordinary moment of X is given by

µ′r = E(Xr) =

∫ +∞

−∞
xrf(x)dx .

Using (1), we obtain the following:

µ′r =

∞∑
k=0

bk+1E(Y r
k+1) . (10)

Hereafter, Yk+1 denotes the Exp-G distribution with power parameter (k + 1). Setting r = 1
in (10), We have the mean f X. The last integration can be computed numericaly for most
parent distributions. The skewness and kurtosis measures can be calculated from the ordinary
moments using well-known relationships. The nth central moment of X, say Mn, follows as

Mn = E(X − µ)n =
n∑
h=0

(−1)h
(
n
h

)(
µ′1
)n
µ′n−h .
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Figure 4: Skewness and kurtosis for GOGa-U.

The cumulants (κn) of X follow recursively from

κn = µ′n −
n−1∑
r=0

(
n− 1
r − 1

)
κrµ

′
n−r .

where κ1 = µ′1, κ2 = µ′2 − µ′1
2, κ3 = µ′3 − 3µ′2µ

′
1 + µ′1

3, etc. The skewness and kurtosis
measures also can be calculates from the ordinary moment using well-known relationships.
The moment generating function (mgf) of X, say MX(t) = E

(
etX
)
, is given by

MX(t) =

∞∑
r=0

tr

r!
µ′r =

∞∑
k,r=0

trbk+1

r!
E(Y r

k+1)

3.5. Incomplete moments

The main application of the first incomplete moment refers to Bonferroniand Lorenz curves.
These curves are very useful in economics, reliability, demography, insurance and medicine.
The answers to many important questions in economics require more than just knowing the
mean of the distribution, its shape as well. This is obvious both in the study of econometrics
and in areas as well. The sth incomplete moments, say ϕs (t), is given by

ϕs (t) =

∫ t

−∞
xsf(x)dx

Using equation (8), we obtain

ϕs (t) =
∞∑
k=0

bk+1

∫ t

−∞
xshk+1(x)dx . (11)

The first incomplete of the GOGa-G family, ϕ1 (t), can be obtained by setting s = 1 in (11).
Another application of the first incomplete moment is related to meanresidual life and mean
waiting tie given by m1 (t) = [1− ϕ1 (t)] /R(t)− t and M1 (t) = t− [ϕ1 (t) /F (t)], respectively.

3.6. Entropy

Entropy is an index for measuring variation or uncertainty of a random variable. The measure
of entropy, Rrnyi (1961), is defined as follows

IR(γ) =
1

1− γ
log

(∫ ∞
0

fγ(x)dx

)
.
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Figure 5: Curves of the GOGa-U entropy function for some parameter values.

for γ > 0 and γ 6= 1. The Shannon entropy measure is also defined by E {− log [f(x)]} that
is a special state of the Rényi entropy when γ ↑ 1.

f(x)γ =

 βgGαβ−1e
−Gβ

1−Gβ

Γ(α)[1−Gβ]
α+1

γ

=
βγgγGγ(αβ−1)e

−Gβ

1−Gβ

[Γ(α)]γ [1−Gβ]
γ(α+1)

=
βγ

[Γ(α)]γ

∞∑
i=0

(−1)i

i!
γi
Gγ(αβ−1)+βie

−Gβ

1−Gβ

[1−Gβ]
γ(α+1)+i

gγ

=
βγ

[Γ(α)]γ

∞∑
i=0

∞∑
j=0

(−1)i+j

i!

(
−γ (α+ 1)− i

j

)
γigγGγ(αβ−1)+β(i+j)

⇒ IR(γ) =
1

1− γ
log

[∫ +∞

−∞
fγ(x)dx

]

=
γ

1− γ
log

[
β

Γ(α)

]
+

1

1− γ
log

 ∞∑
i=0

∞∑
j=0

vi,jI (γ, α, β, i, j)

 .
where vi,j = (−1)i+jγi

i!

(
−γ (α+ 1)− i

j

)
and I (γ, α, β, i, j) =

∫ +∞
−∞ g(x)γG(x)γ(αβ−1)+β(i+j)dx.

In Figure 5 one can see some curves of the entropy function of the GOGa-U distribution for
some parameters.
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3.7. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Sup-
pose X1, . . . , Xn is a random sample from any GOGa-G distribution. Let Xi:n denote the ith
order statistic. The pdf of Xi:n can be expressed as

fi:n(x) = c f(x)F i−1(x) {1− F (x)}n−i = c

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)j+i−1 .

where c = 1
B(i,n−i+1) .

We use the result 0.314 of Gradshteyn and Ryzhik (2000) for a power series raised to a positive
integer n (for n ≥ 1) ( ∞∑

i=0

ai u
i

)n
=
∞∑
i=0

cn,i u
i . (12)

where the coefficients cn,i (for i = 1, 2, . . .) are determined from the recurrence equation (with
cn,0 = an0 )

cn,i = (i a0)−1
i∑

m=1

[m(n+ 1)− i] am cn,i−m . (13)

By using equations (9), (12), (13), We can demonstrate that the density function of the ith
order statistic of any GOGa-G distribution can be expressed as follows:

fi:n(x) =
∞∑

r,k=0

mr,k hr+k+1(x) . (14)

where hr+k+1(x) denotes the exp-G density function with parameter r + k + 1,

mr,k =
n! (r + 1) (i− 1)! br+1

(r + k + 1)

n−i∑
j=0

(−1)j fj+i−1,k

(n− i− j)! j!
,

br is given by equation (9) and the quantities fj+i−1,k can be determined given that fj+i−1,0 =

bj+i−1
0 and recursively for k ≥ 1

fj+i−1,k = (k b0)−1
k∑

m=1

[m (j + i)− k] bm fj+i−1,k−m .

We can obtain the ordinary and incomplete moments, generating function and mean devia-
tions of the GOGa-G order statistics from equation (14) and some properties of the exp-G
model.

4. The maximum likelihood estimator

The MLE is one of the most common point estimators. This estimator is very applicable in
confidence intervals and hypothesis testing. By MLE, various statistics is built for assessing
the goodness-of-fit in a model, such as: the maximum log-likelihood (ˆ̀

max), Akaike Infor-
mation Criterion (AIC), Bayesian Information Criterion (BIC), Anderson-Darling (A∗) and
Cramér–von Mises (W ∗), described by Chen and Balakrishnan (1995). The lower values of
these statistics indicate that the model have better fitting. We use these statistics in section
5.
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Figure 6: Three density functions for simulation study.

To calculating the MLE, let x1, x, ..., xn are observations from pdf (2). In this case, by letting
θ = (α, β, ξ) we have

`n(θ) = n ln(β) +

n∑
i=0

ln(g(xi; ξ)) + (αβ − 1)

n∑
i=0

ln(G(xi; ξ))

−
n∑
i=0

G(xi; ξ)β

1−G(xi; ξ)β
− n ln(Γ(α))− (α+ 1)

n∑
i=0

ln(1−G(xi; ξ)β)

By numerically solving the following equations, the maximum likelihood estimators can be
obtained.

∂`n(θ)
∂α = β

n∑
i=0

lnG(xi)− nΓ′(α)
Γ(α) +

n∑
i=0

ln(1−G(xi)
β) = 0

∂`n(θ)
∂β = n

β + α
n∑
i=0

lnG(xi)−
n∑
i=0

G(xi)
β lnG(xi)

(1−G(xi)β)
2 + (α+ 1)

n∑
i=0

lnG(xi)G(xi)
β

(1−G(xi)β
= 0

∂`n(θ)
∂ξ =

n∑
i=0

g(xi)
(ξ)

g(xi)
+ (αβ − 1)

n∑
i=0

Gi
(ξ)

G(xi)
−

n∑
i=0

βGi
(ξ)G(xi)

β−1

(1−G(xi)
β)

2 + (α+ 1)
n∑
i=0

βGi
(ξ)G(xi)

β−1

1−G(xi)
β = 0

where gi
(ξ) = ∂g(xi;ξ)

∂ξ and Gi
(ξ) = ∂G(xi;ξ)

∂ξ

5. Simulation study

In this section, the Maximum likelihood estimators for additional parameters α and β in pdf
(4) for three different states, has been assessed by simulating: (α, β) = (0.6, 1.6), (α, β) =
(2, 2) and (α, β) = (13, 0.1). In each three case, the uniform distribution parameters in (4)
are (a, b) = (0, 10). The density functions for one of the three states, has been indicated in
Figure 6. One can see three different states of GOGa-U density functions, means skewed to
the left, right and the symmetric .

To verify the validity of the maximum likelihood estimator, Mean Square Error of the Estimate
(MSE), Coverage Probability (CP) and Coverage Lenght (CL) have been used. For example,
as described in Section 3.1, for (α, β) = (0.6, 1.6), N = 10000 times have been simulated
samples of n = 30, 40, ..., 500 of GOGa-U(0.6, 1.6, 0, 10). To estimate the numerical value of
the maximum likelihood, the optim function (in the stat package) and L-BFGS-B method in
R software has been used. If θ = (α, β), for any simulation by n volume and i = 1, 2, ..., N ,
the maximum likelihood estimates are obtained as θ̂i = (α̂i, β̂i). The standard deviation of
estimations, which is obtained through the information matrix is shown by s

θ̂i
= (sα̂i , sβ̂i).

In this case, the MLE, Bias, MSE, CP and CL are calculated by the following formula

MLE
θ̂
(n) =

1

N

N∑
i=1

θ̂i
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Figure 7: Biases, MSEs, CPs and CLs of α̂, β̂ versus n when (α, β) = (0.6, 1.6).

Bias
θ̂
(n) =

1

N

N∑
i=1

(θ̂i − θi)

MSE
θ̂
(n) =

1

N

N∑
i=1

(θ̂i − θi)
2

CP
θ̂
(n) =

1

N

N∑
i=1

I(θ̂i − 1.96s
θ̂i
, θ̂i + 1.96s

θ̂i
)

CL
θ̂
(n) =

3.92

N

N∑
i=1

s
θ̂i

In Figures 7 represent the Biases, MSEs, CPs and CLs plots for (α, β) = (0.6, 1.6) . As
expected, the biases and MSE of estimated parameters converges to zero while n growing.
The CPs plots should converge to 0.95 and CLs plots should be descending they are correct
in Figures 7. Plots of parameters vector (α, β) = (2, 2) and (α, β) = (13, 0.1) have the same
position that one can see in Appendix 7.1.

6. Applications

In this section, fitting of GOGa-U and some famous models to the two real data sets has been
assessed. The Akaike information criterion (AIC), Bayesian information criterion (BIC),
Anderson-Darling (A∗) and Cramér-von Mises (W ∗) , KolmogorovâĂŞSmirnov (K.S) and
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Figure 8: Histogram and estimated pdfs for the AG negative data.

the P-Value of K.S test , have been chosen to comparison of the models. The distribu-
tions: Beta Exponential (BE) (Nadarajah and Kotz (2006)), Beta Generalized Exponential
(BGE) (Barreto-Souza, Santos, and Cordeiro (2010)), Beta Genearlized Half-Normal (BGHN)
(Pescim, Demétrio, Cordeiro, Ortega, and Urbano (2010)), Beta Pareto (BP) (Akinsete,
Famoye, and Lee (2008)), Exponentiated Pareto (EP) (Kuş (2007)), Genearlized Half-Normal
(GHN) (Cooray and Ananda (2008)), Gamma-Uniform (GU) (Torabi and Hedesh (2012)), Ku-
maraswamy Gumbel (KwGu) (Cordeiro, Nadarajah, and Ortega (2012)) and Weibull-G{E}
(Alzaatreh, Lee, and Famoye (2015)) have been selected for comparison. The parameters of
models have been estimated by the MLE method.

6.1. The myelogenous leukemia data for AG negative

This sub-section is related to study of AG data which presented by Feigl and Zelen (1965) that
include 16 observations. Observed survival times (weeks) for AG negative were identified by
the presence of Auer rods and significant granulative of the leukemic cells in the bone marrow
at diagnosis. For the AG negative patients these factors were absent. The data set is: 56, 65,
17, 17, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43.

The Tables 1 and 2 display a summary of the fitted information criteria and MLEs for this data
with different models, respectively. Models have been sorted from the lowest to the highest
value of AIC. As you see, the GOGa-U is selected as the best model with all the criteria.
Note that P-Value for GOGa-U is also more than all other distributions. The histogram of
the AG nagative data and the plots of fitted pdf are displayed in Figure 8.

Table 1: Information criteria for the AG negative data.

Model AIC BIC W ∗ A∗ K.S P-Value
GOGa-U 121.29 124.38 0.07 0.46 0.18 0.687
G-U 122.68 125.77 0.06 0.39 0.18 0.678
EP 129.09 130.64 0.1 0.65 0.21 0.475
BE 129.66 131.98 0.1 0.72 0.3 0.105
GHN 130.21 131.76 0.11 0.65 0.22 0.422
BP 131.41 134.5 0.11 0.66 0.22 0.404
Weibull-G{E} 131.55 134.64 0.11 0.68 0.22 0.441
BGHN 131.83 134.93 0.11 0.67 0.23 0.356
BGE 132.55 135.64 0.1 0.67 0.23 0.343
KwGu 134.22 137.31 0.1 0.65 0.3 0.123
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Table 2: MLEs for the the AG negative data.

Model Parameters

GOGa-U (α̂, β̂, â, b̂) = (0.01, 51.13, 1.99, 66.67)
(sα̂, sβ̂ , sâ, sb̂) = (0.01, 62.04, 0.01, 2.63)

G-U (α̂, β̂, â, b̂) = (0.40, 0.81, 1.99, 98.91)
(sα̂, sβ̂ , sâ, sb̂) = (0.15, 1.20, 0.01, 53.41)

EP (λ̂, β̂) = 1.01, 0.04)
(sλ̂, sβ̂) = (1.88, 0.02)

BE (â, b̂, λ̂) = (8.24, 0.04, 1.54)
(sâ, sb̂, sλ̂) = (40.43, 0.08, 2.85)

GHN (α̂, θ̂) = (0.74, 22.79)
(sα̂, sθ̂) = (0.15, 6.04)

BP (α̂, β̂, θ̂, k̂) = (98.66, 3.01, 0.01, 0.53)
(sα̂, sβ̂ , sθ̂, sk̂) = (593.87, 17.51, 0.02, 1.80)

Weibull-G{E} (ĉ, γ̂, α̂, β̂) = 0.48, 3.09, 5.02, 1.40)
(sĉ, sγ̂ , sα̂, sβ̂) = (0.09, 1.47, 0.50, 0.01)

BGHN (â, b̂, α̂, θ̂) = (0.03, 76.12, 508.34, 270.67)
(sâ, sb̂, sα̂, sθ̂) = (0.04, 4235.56, 1349.84, 471.83)

BGE (â, b̂, λ̂, α̂) = (14.23, 6.84, 0.00, 0.13)
(sâ, sb̂, sλ̂, sα̂) = (33.74, 4.52, 0.00, 0.27)

KwGu (â, b̂, µ̂, σ̂) = (0.01, 0.11, 10.51, 1.93)
(sâ, sb̂, sµ̂, sσ̂) = (0.01, 0.03, 0.01, 0.02)

6.2. The sum of skin folds data

The second data set which contains 202 observation can be seen in Weisberg (2005) that have
been used in Alzaatreh (2015) (article not yet published). These data are the sum of skin
folds in 202 athletes collected at the Australian Institute of Sports and are as follows:
28.0, 98, 89.0, 68.9, 69.9, 109.0, 52.3, 52.8, 46.7, 82.7, 42.3, 109.1, 96.8, 98.3, 103.6, 110.2,
98.1, 57.0, 43.1, 71.1, 29.7, 96.3, 102.8, 80.3, 122.1, 71.3, 200.8, 80.6, 65.3, 78.0, 65.9, 38.9,
56.5, 104.6, 74.9, 90.4, 54.6, 131.9, 68.3, 52.0, 40.8, 34.3, 44.8, 105.7, 126.4, 83.0, 106.9, 88.2,
33.8, 47.6, 42.7, 41.5, 34.6, 30.9, 100.7, 80.3, 91.0, 156.6, 95.4, 43.5, 61.9, 35.2, 50.9, 31.8,
44.0, 56.8, 75.2, 76.2, 101.1, 47.5, 46.2, 38.2, 49.2, 49.6, 34.5, 37.5, 75.9, 87.2, 52.6, 126.4,
55.6, 73.9, 43.5, 61.8, 88.9, 31.0, 37.6, 52.8, 97.9, 111.1, 114.0, 62.9, 36.8, 56.8, 46.5, 48.3,
32.6, 31.7, 47.8, 75.1, 110.7, 70.0, 52.5, 67, 41.6, 34.8, 61.8, 31.5, 36.6, 76.0, 65.1, 74.7, 77.0,
62.6, 41.1, 58.9, 60.2, 43.0, 32.6, 48, 61.2, 171.1, 113.5, 148.9, 49.9, 59.4, 44.5, 48.1, 61.1, 31.0,
41.9, 75.6, 76.8, 99.8, 80.1, 57.9, 48.4, 41.8, 44.5, 43.8, 33.7, 30.9, 43.3, 117.8, 80.3, 156.6,
109.6, 50.0, 33.7, 54.0, 54.2, 30.3, 52.8, 49.5, 90.2, 109.5, 115.9, 98.5, 54.6, 50.9, 44.7, 41.8,
38.0, 43.2, 70.0, 97.2, 123.6, 181.7, 136.3, 42.3, 40.5, 64.9, 34.1, 55.7, 113.5, 75.7, 99.9, 91.2,
71.6, 103.6, 46.1, 51.2, 43.8, 30.5, 37.5, 96.9, 57.7, 125.9, 49.0, 143.5, 102.8, 46.3, 54.4, 58.3,
34.0, 112.5, 49.3, 67.2, 56.5, 47.6, 60.4, 34.9

the Tables 3 and 4 display a summary of the fitted information criteria and MLEs for this
data with different models , respectively. Models have been sorted from the lowest to the
highest value of AIC. As you see, the GOGa-U is selected as the best model with all the
criteria. Here P-Value for GOGa-U is also more than all other distributions. The histogram
of the sum of skin folds data and the plots of fitted pdf are displayed in Figure 9.
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Figure 9: Histogram and estimated pdfs for the sum of skin folds data.

Table 3: Information criteria for the sum of skin folds data.

Model AIC BIC W ∗ A∗ K.S P-Value
GOGa-U 1897.11 1910.34 0.09 0.55 0.05 0.731
G-U 1897.15 1910.38 0.08 0.47 0.05 0.668
KwGu 1906.25 1919.48 0.11 5.05 0.06 0.393
BP 1915.68 1928.91 0.18 1.57 0.07 0.228
Weibull-G{E} 1916.04 1929.27 0.2 2.4 0.07 0.34
BGE 1920.58 1933.81 0.26 0.76 0.08 0.179
BGHN 1925.11 1938.34 0.32 1.21 0.08 0.135
BE 1930.2 1940.13 0.4 1.25 0.09 0.063
GHN 1978.34 1984.96 0.86 2.36 0.13 0.002
EP 2119.1 2125.71 0.41 1.89 0.35 0

Table 4: MLEs for the sum of skin folds data.

Model Parameters

GOGa-U (α̂, β̂, â, b̂) = (8.95, 0.04, 27.99, 650.04)
(sα̂, sβ̂ , sâ, sb̂) = (1.96, 0.01, 0.02, 169.55)

G-U (α̂, β̂, â, b̂) = (1.27, 0.07, 27.88, 579.87)
(sα̂, sβ̂ , sâ, sb̂) = (0.17, 0.05, 0.25, 334.16)

KwGu (â, b̂, µ̂, σ̂) = (0.01, 0.21, 68.93, 7.15)
(sâ, sb̂, sµ̂, sσ̂) = (0.01, 0.06, 2.22, 1.78)

BP (α̂, β̂, θ̂, k̂) = (102.94, 4.20, 3.31, 1.14)
(sα̂, sβ̂ , sθ̂, sk̂) = (183.57, 4.22, 3.43, 0.63)

Weibull-G{E} (ĉ, γ̂, α̂, β̂) = (0.01, 0.21, 68.93, 7.15)
(sĉ, sγ̂ , sα̂, sβ̂) = (0.01, 0.06, 2.22, 1.78)

BGE (â, b̂, λ̂, α̂) = (1.23, 0.73, 0.05, 8.77)
(sâ, sb̂, sλ̂, sα̂) = (1.98, 0.25, 0.01, 16.52)

BGHN (â, b̂, α̂, θ̂) = (0.27, 34.18, 43.46, 13.78)
(sâ, sb̂, sα̂, sθ̂) = (0.10, 37.32, 31.62, 0.50)

BE (â, b̂, λ̂) = (5.34, 5.86, 0.01)
(sâ, sb̂, sλ̂) = (0.53, 1.62, 0.00)

GHN (α̂, θ̂) = (1.65, 86.05)
(sα̂, sθ̂) = (0.09, 2.89)

EP (λ̂, β̂) = (0.01, 0.01)
(sλ̂, sβ̂) = (1.65, 86.05)
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7. Conclusions

In many applied areas there is a clear need for extended forms of the well-known distributions.
Generally, the new distributions are more flexible to model real data that present a high de-
gree of skewness and kurtosis. We propose Generalized Odd Gamma-G (GOGa-G) family
of distributions. Many well-known models emerge as special cases of the GOGa-G family
by using special parameter values. Some mathematical properties of the new class including
explicit expansions for the ordinary and incomplete moments, quantile and generating func-
tions, mean deviations, entropies and order statistics are provided. The model parameters are
estimated by the maximum likelihood estimation method. We prove empirically by means of
an application to a real data set that special cases of the proposed family can give better fits
than other models generated from well-known families.
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Cordeiro GM, Ortega EM, Popović BV, Pescim RR (2014b). “The Lomax Generator of Dis-
tributions: Properties, Minification Process and Regression Model.” Applied Mathematics
and Computation, 247, 465–486.

Feigl P, Zelen M (1965). “Estimation of Exponential Survival Probabilities with Concomitant
Information.” Biometrics, pp. 826–838.

Gradshteyn IS, Ryzhik I (2000). “Table of Integrals, Series, and Products. Translated from
the Russian. Translation Edited and with a Preface by Alan Jeffrey and Daniel Zwillinger.”
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Figure 10: Biases, MSEs, CPs and CLs of α̂, θ̂ versus n when (α, β) = (2, 2).
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Figure 11: Biases, MSEs, CPs and CLs of α̂, θ̂ versus n when (α, β) = (13, 0.1).
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Appendices B

Program developed in R to obtain the value of density (dGOGaG), distribution (pGOGaG),
hazard (hGOGaG), quantile (qGOGaG) function and random generation (rGOGaG) for the
GOGa-G distribution.

dGOGaG = function(x, par, Ge = ”uniform”)
{
if (Ge == ”uniform”)
{
G = punif(x,par[3],par[4])
g = dunif(x,par[3],par[4])
}

if (Ge == ”weibull”)
{
G = pweibull(x,par[3],par[4])
g = dweibull(x,par[3],par[4])
}

Gb = G∧par[2]
pdf = par[2]*g*G∧(par[1]*par[2]-1)*exp(-Gb/(1-Gb))/

(gamma(par[1])*(1-Gb)∧(par[1]+1))
pdf[!is.finite(pdf)] = NA
pdf
} # end of dGOGaG

pGOGaG = function(x, par, Ge = ”uniform”)
{
if (Ge == ”uniform”)
{
G = punif(x,par[3],par[4])
g = dunif(x,par[3],par[4])
}

if (Ge == ”weibull”)
{
G = pweibull(x,par[3],par[4])
g = dweibull(x,par[3],par[4])
}

Gb = G∧par[2]
cdf = pgamma(Gb/(1-Gb),par[1],1)
cdf[!is.finite(cdf)] = NA
cdf
} # end of pGOGaG

qGOGaG = function(p, par, Ge = ”uniform”)
{
a = qgamma(p,par[1],1)
b = (a/(1+a))∧(1/par[2])
if (Ge == ”uniform”)
{
return(qunif(b,par[3],par[4]))
}

if (Ge == ”weibull”)
{
return(qweibull(b,par[3],par[4]))
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}
} # end of qGOGaG

hGOGaG = function(x, par, Ge = ”uniform”)
{
pdf = dGOGaG(x=x, par=par, Ge = Ge)
cdf = pGOGaG(x=x, par=par, Ge = Ge)
hrf = pdf/(1 - cdf)
hrf[!is.finite(hrf)] = NA
hrf
} # end of hGOGaG

rGOGaG = function(n, par, Ge = ”uniform”)
{
GI=rgamma(n,par[1],1)
if (Ge == ”uniform”)
{
return(qunif((GI/(1+GI))∧(1/par[2]),par[3],par[4]))
}

if (Ge == ”weibull”)
{
return(qweibull((GI/(1+GI))∧(1/par[2]),par[3],par[4]))
}

} # end of rGOGaG

Program developed in R of claculatition for one-dimensional integral based on observations
and the trapezoidal rule integration:

intob = function(x, y) 0.5*sum(diff(x)*(y[1:length(x)-1]+y[2:length(x)]))

Program developed in R of claculatition for the value of Rényi entropy:

REntropy = function(par, gamma)
{
fgamma = function(x) dGOGaG(x, par = par, Ge = ”uniform”)∧gamma
x = seq(par[3], par[4], le=10000)
y = fgamma(x)
ent = log(intob(x,y))/(1-gamma)
ent = ent[!is.finite(ent)] = NA
return(ent)
} # end of REntropy

Program developed in R of claculatition for the value of moment, skewness and kurtosis:

moment = function(par, order)
{
x = seq(par[3], par[4], le=10000)
y = dGOGaG(x = x, par = par, Ge = ”uniform”)
return(intob(x, x∧order * y))
} # end of moment

skew = function(par)
{
x = seq(par[3], par[4], le=10000)
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y = dGOGaG(x = x, par = par, Ge = ”uniform”)
m1 = intob(x, x*y)
m2 = intob(x, (x-m1)∧2*y)
return(intob(x, ((x-m1)∧3*y))/sqrt(m2)∧3)
} # end of skew

kurt = function(par)
{
x = seq(par[3], par[4], le=10000)
y = dGOGaG(x = x, par = par, Ge = ”uniform”)
m1 = intob(x, x*y)
m2 = intob(x, (x-m1)∧2*y)
return(intob(x, (x-m1)∧4*y)/sqrt(m2)∧4)
} # end of kurt

Program developed in R of optimization for simulations and applications. The initpar need
to change for some observations.

loglikeSimulation = function(alpha,beta)
-sum(log(dGOGaG(x, c(alpha,beta,par[3],par[4]), Ge = ”uniform”)))

optim(par = initpar, fn = loglikeSimulation, lower=c(0.005,0.005),
upper=c(Inf,Inf), method=”L-BFGS-B”, hessian = TRUE)

loglikeApplication = function(alpha,beta,a,b)
-sum(log(dGOGaG(x, c(alpha,beta,a,b), Ge = ”uniform”)))

optim(par = initpar, fn = loglikeApplication,
lower=c(0.005,0.005, min(x)-.001,max(x)+0.001),
upper=c(Inf,Inf,-Inf,Inf), method=”L-BFGS-B”, hessian = TRUE)
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