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Abstract

By combining two types of uncertainty randomness and vagueness the concept of fuzzy
random variable was introduced in order to integrate fuzzy set theory into a branch of
statistical analysis called “statistics with vague data”. In this paper, a concept of fuzzy
random variable will be presented. Using classical techniques in Probability Theory, some
aspects and results associated to a random variable (including expectation, variance, co-
variance, correlation coefficient, fuzzy (empirical) cumulative distribution function) will
be extended to this notion of fuzzy random variable. This notion provides a useful frame-
work/results in order to extend statistical analysis to situations when the outcomes of
random experiment are fuzzy sets.

Keywords: fuzzy random variable, fuzzy expected value, fuzzy (empirical) cumulative distri-
bution function.

1. Introduction

Statistical data are frequently associated with an underlying imprecision due, for instance, to
inexactitude in the measuring process, vagueness of the involved concepts or a certain degree
of ignorance about the real values. In many cases, such an imprecision can be modeled by
means of fuzzy sets in a more efficient way than considering only a single value or category
(Zadeh 1965). Thus, these kinds of data are jointly affected by two sources of uncertainty:
fuzziness (due to imprecision, vagueness, partial ignorance) and randomness (due to sampling
or measurement errors of stochastic nature). Randomness models the stochastic variability
of all possible outcomes of a situation, and fuzziness relates to the unsharp boundaries of
the parameters of the model. As Zadeh (1995) states that “Probability Theory and Fuzzy
Logic are complementary rather than competitive”, clearly, a natural question is how fuzzy
variables could interact with the type of random variables found in association with many
real-life random experiments from different fields. In this way, by combining ideas, concepts
and results from both theories, this article focuses on one important dimension of this issue,
fuzzy random variables.

The concept of fuzzy random variable (frv) (also called “random fuzzy set” (Blanco-Fernéndez,
Casals, Colubi, Corral, Garcia-Barzana, Gil, Gonzalez-Rodriguez, Lépez, Lubiano, Montene-
gro, Ramos-Guajardo, De La Rosa De S4, and Sinova 2013)) was introduced in order to deal
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with situations where the outcomes of a random experiment are modeled by fuzzy sets (Col-
ubi, Dominguez-Menchero, Lopez-Diaz, and Ralescu 2001; Colubi, Ferndandez-Garcia, and Gil
2002; Colubi and Gil 2007; Colubi and Gonzéalez-Rodriguez 2007; Couso and Sanchez 2008;
Feng 2000; Gil 2001; Gil, Lopez-Diaz, and Ralescu 2006; Gonzélez-Rodriguez, Colubi, and Gil
2006a; Kratschmer 2001; Kruse and Meyer 1987; Kwakernaak 1978, 1979; Liu and Liu 2003;
Puri and Ralescu 1985, 1986; Shapiro 2009). An frv is a mapping that associates a fuzzy set of
the final space to each possible result of a random experiment in a provided probability space
structure. Thus, this concept generalizes the definitions of random variable and random set.
Although these generalizations are not unique in the literature but they can be formalized in
equivalent ways. Each definition differs from the others in the structure of the final space and
the way the measurability condition is transferred to this context. For instance, Kratschmer
(2001); Kruse and Meyer (1987) and Puri and Ralescu (1985, 1986) focused on the properties
of the multi-valued mappings associated to the a-cuts. Kwakernaak (1978, 1979) assumes
that the outcomes of the frv are fuzzy real subsets and the extreme points of their a-cuts are
classical random variables. Puri and Ralescu (1985, 1986) require the a-cuts to be measurable
(also different conditions for measurability of multi-valued mappings can be formulated). On
the other hand, Klement, Puri, and Ralescu (1986) and Diamond and Kloeden (1994) define
frv’s, as classical measurable mappings. Couso and Sanchez (2008) present three different
higher order possibility models that represents the imprecise information provided by an frv.

In the literature on frvs, there are only a few references to modeling the distribution of
these random elements. These models are theoretically well stated, but they are not soundly
supported by empirical evidence, since they correspond to restrictive random mechanisms and
hence they are not realistic in practice (Gonzélez-Rodriguez, Colubi, Gil, and Coppi 2006;
Mbéller, Graf, M., and Sickert 2002). This motivated us to present in this paper another
model that represents the imprecise information provided by an frv. Within this framework,
we use the tools of general Probability Theory (Billingsley 1995) to define fuzzy cumulative
distribution function and fuzzy empirical cumulative distribution function for an frv. We
also extend the concepts of expectation, variance, covariance and correlation coefficient of an
frv by reproducing classical techniques. For instance, when the images of the frv are convex
fuzzy subsets of R, we can use fuzzy arithmetic to derive a method of construction of the
fuzzy expectation. On the other hand, we can make a parallel construction of the variance:
let us consider a particular metric defined over the class of fuzzy subsets of the final space. In
this setting, we define the variance of an frv as the mean (classical expectation of a random
variable) of the squares of the distances from the images of the frv to the (fuzzy) expectation.
In this context the variance of an frv is a (precise) number that quantifies the degree of
dispersion of the images of the frv.

Extending these results is not just a matter of motivation, but the main issue is that the
concepts of fuzzy cumulative distribution function and fuzzy empirical cumulative distribution
function for an frv strongly affects the aim of the Statistics to be developed around (Hesamian
and Chachi 2013). Although in the literature distributions and parameters could be defined in
some senses in connection with the frv through Zadeh’s extension principle (Zadeh 1965), but
the objective of statistical developments refer usually to the distribution and parameters of
the underlying original real-valued random variable (Wu 1999). When the distribution of an
frv can be defined, the objective of statistical developments will only refer to the distribution
and parameters of the frv, since either there is no underlying real-valued random variable
behind the process (as happens when we deal with judgments, valuations, ratings, and so on)
or the interest is just to be focused on the fuzzy perception (Blanco-Ferndndez et al. 2013).
Therefore, the aim of inferential statistical developments with fuzzy data based on frvs will
be to draw conclusions about the distribution of the involved frvs over populations on the
basis of the information supplied by samples of (fuzzy) observations from these frvs. One of
the relevant inferential problems is to estimate the parameters or measures associated with
the distribution of an frv on the basis of the information provided by a sample of independent
data from it. Furthermore, when Statistics are based on the concept of frv, some additional
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problems arise (see also Conclusion), like

1. the lack of realistic general “parametric” families of probability distribution models for
frvs (Blanco-Fernandez et al. 2013);

2. the lack of Central Limit Theorems (CLTs) for frvs which are directly applicable for
inferential purposes (Wu 2000; Kratschmer 2002a,b).

The above first item will be considered in this paper for the proposed frv by defining the
concepts of fuzzy cumulative distribution function and fuzzy empirical cumulative distribution
function. The second item (and also some other items in Conclusion) can be addressed in
feature researches.

The paper is organized as follows. The next section provides the necessary technical back-
ground used for convenience of explaining general concepts concerned with fuzzy sets. In
Section 3, we propose a new definition of frv. In Section 4, using classical techniques in
Probability Theory, we extend some common characteristics of frvs including expectation,
variance, covariance, correlation coefficient. In Section 5, we generalize the concept of fuzzy
cumulative distribution function and fuzzy empirical cumulative distribution function for an
frv. We end the paper with some general concluding remarks and open problems.

2. Preliminary concepts

In this section, first, we shall review the basic definitions and terminologies of the fuzzy set
theory and uncertainty theory which are necessary for our paper (for further details, the
reader is referred to Liu (2002, 2016); Peng and Liu (2004); Viertl (2011); Zimmermann
(2001)). Then, a new definition of distance measure between fuzzy numbers is defined.

2.1. Fuzzy numbers

A fuzzy set A of the universal set X is defined by its membership function A X —[0,1]. In
this paper, we consider R (the real line) as the universal set. We denote by Ala] = {z € R :
A(x) > a} the a-level set (a-cut) of the fuzzy set A of R, for every a € (0, 1], and A[0] is the
closure of the set {x € R: A(z) > 0}. A fuzzy set A of R is called a fuzzy number if for every
a € [0,1], the set Ala] is a non-empty compact interval. We denote by F(R), the set of all
fuzzy numbers of R.

A specific type of fuzzy number, which is rich and flexible enough to cover most of the appli-
cations, is the so-called LR-fuzzy number. Typically, the LR fuzzy number N = (n,l,7)rr
with central value n € R, left and right spreads [ € R*, » € R™, decreasing left and right
shape functions L : R™ — [0,1], R : RT — [0,1], with L(0) = R(0) = 1, has the following

membership function

We can easily obtain the a-cut of N as follows

Nla] = [n— L7 Ya)l,n+ R Ya)r], ac]0,1].

For the algebraic operations of LR-fuzzy numbers, we have the following result on the basis
of Zadeh’s extension principle. Let A = (a,l1,71)Lr and B = (b,l2,72) g be two LR-fuzzy
numbers and A € R — {0} be a real number. Then

T _ (Aa, Al1, Ar1) LR if  A>0,
B (Aa, [Ar, [All)pe i A <0,

A®B = (a+bl+1lo,r +72)LR

55
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2.2. Some notions from uncertainty theory

In the following, we introduce an index to compare fuzzy number A € F (R) and crisp value
2 € R. The index is used for defining a new notion of frv.

Definition 1 (Liu and Liu (2002)). Let A € F(R) and = € R. The index
C:FR)xR—][0,1],
which is defined by

. SupySLL’ Av(y) +1- Supy>a) g(y)
9 ’

shows the credibility degree that A is less than or equal to z. Similarly, C{g >z} =
1 — C{A < z} shows the credibility degree that A is greater than x (see also Liu (2016)).

Definition 2 (Liu (2002)). Let A € F(R) and « € [0, 1], then
Ay = inf{z € A[0] : C{A < 2} > a},

is called the a-pessimistic value of A. Tt is clear that A, is a non-decreasing function of
€ (0,1] (see also Peng and Liu (2004)).

Lemma 1. Let A, B € F(R) and X be a real number. Then

(A® B)y = Aq+ Ba.

~ A x A, ifA>0
A A), = = ’
A®4) {/\xAla ifA <0,

Example 1. Suppose that A= (a,l,7)rr is a LR-fuzzy number, and let = € R, then

~ lp(e=z) if z<a
— 2 = W
C{Aﬁﬂc}—{ _lR(%) if x> a.

[\

We can easily obtain the a-pessimistic values of A as follows

o IL71(2a) if 0.0<a<0.5,
“7 | a+rR7I(2(1 - ) if 0.5<a<1.0.

As an example, consider the triangular fuzzy number A= (a,l,7)p, then

0 if € (—o0,a — 1),
- z—a+l if [a )
< — 2l 1
{4 <z} g-atr if € la,a + ),
1 if € [a+r 00).
i - a—1I(1-2a) if 0.0<a<0.5,
« a—r(l-2a) if 0.5<a<1.0.

2.3. A new distance measure between fuzzy numbers

In the literature one can find many useful metrics between fuzzy numbers. Valuable references
on this topic can be found in Blanco-Fernandez et al. (2013); Feng and Liu (2006); Liu and
Liu (2002). In the following, a new definition of metrics between fuzzy numbers is defined.
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Definition 3. The distance measure is defined as the mapping D : F(R) ® F(R) — [0,00)
such that it associates with two fuzzy numbers A, B € F(R) the following value

D(i.B)= [ (A~ B.)" da
0

One can conclude that the mapping D : F(R) ® F(R) — [0, 00) satisfies the following condi-
tions:

1. For any A, B € F(R), D(A, B) =0 if and only if A = B.

2. For any A, B € F(R), D(A, B) = D(B, A).

3. Forany A, B,C € F(R), such that A C B C C, then D(A, C) > max{D(A, B), D(B,C)}.
4. For any A, B,C € F(R), D(A,C) < D(A,B) + D(B,C).

As an example, we can easily obtain the distance between two LR-fuzzy numbers A =
(a,l1,71)Lr and B = (b,la,72) R as follows

o _ )2 [ SRY St
D(A,B) = (a—b)2+7(l1 212) /U(Ll(a))2 da+7(l 5 2) /O(Rl(oz))2 da

—(a—b)(ll—lg)/o L) da—&—(a—b)(rl—rg)/o R(a) da.

For symmetric fuzzy numbers A = (a,l,1) and B= (b,r,7)r, we have

D(A,B) = (a—b)?+ (I —r)? /01 (1'71(04))2 do.

3. Fuzzy random variables

In the context of random experiments whose outcomes are not numbers (or vectors in RP)
but they are expressed in inexact terms, the concept of frv turns out to be useful. Random
fuzzy numbers (or, more generally, random fuzzy sets (Blanco-Ferndndez et al. 2013)) is a
well-stated and supported model within the probabilistic setting for the random mechanisms
generating fuzzy data. They integrate randomness and fuzziness, so that the first one affects
the generation of experimental data, whereas the second one affects the nature of experimental
data which are assumed to be intrinsically imprecise. The notion of random fuzzy set can be
formalized in several equivalent ways. Thus, in this regard, different notions of frv have been
introduced and investigated in the literature (Colubi et al. 2001; Couso and Sénchez 2008;
Feng 2000; Gil et al. 2006; Gonzalez-Rodriguez et al. 2006a; Hesamian and Chachi 2013;
Kréatschmer 2001; Kruse and Meyer 1987; Kwakernaak 1978, 1979; Liu and Liu 2003; Puri
and Ralescu 1985, 1986; Shapiro 2009).

Definition 4. Suppose that a random experiment is described by a probability space (€2, A, P),
where € is a set of all possible outcomes of the experiment, A is a o-algebra of subsets of €2
and P is a probability measure on the measurable space (2, A). The fuzzy-valued mapping
X : Q — F(R) is called an frv if for any « € [0,1], the real-valued mapping X, : @ — R is a
real-valued random variable on (€2, .4, P). Throughout this paper, we assume that all random
variables have the same probability space (2, A, P)

Kwakernaak (1978, 1979) introduced the notion of frvs which has been later formalized in
a_clear way by Kruse and Meyer (1987) as: given a probability space (€2, A, P), a mapping

X: Q — F(R) is said to be an frv if for all o € (0, 1] the two real-valued mappings X% : @ — R
and XU : Q — R are real-valued random variables.
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It can be easily investigated that the following relationships are held between the notion of
frv proposed in Definition 4 and Kwakernaak and Kruse’s definition of frv (see also, Example

b

5 Xk for 0.0 <a<0.5,
| XS for 0.5 <a<1.0,
)A(:[Oé] = [5(:%75(:17%]7 a € (0, 1]

The ﬁ~rst relation shows that the information contained in the two-dimensional variable
(XL, XYY is summarized in the one-dimensional variable X, making the computational pro-
cedures in the problems more easier.

Definition 5. Two frvs X and Y are said to be independent if X and Y are independent,
for all @ € [0,1]. In addition, we say that two frvs X and Y are identically distributed if X,

and Y, are identically distributed, for all a € [0, 1]. Similar arguments can be used for more
than two frvs. We also say that Xi,...,X,, is a fuzzy random sample if X;’s are independent
and identically distributed frvs. We denote by 1, ..., Z, the observed values of fuzzy random
sample X1,...,X,.

4. Fuzzy expected value, variance and covariance of an frv

In analyzing fuzzy data two main types of summary measures/parameters may be distin-
guished:

1. fuzzy-valued summary measures, like the mean value of an frv or the median of an frv
as measures for the central tendency of their distributions;

2. real-valued summary measures, like the variance of an frv as a measure for the mean er-
ror /dispersion of the distributions of the frv, or the covariance and correlation coefficient
as measures of the (absolute) linear dependence/association of an frv.

Definition 6. Let (€2, A, P) be a probability space and X : Q@ — R be a real-valued random
variable. We say that X has finite mean and write X € L'(Q, A, P) if and only if E(X) =
Jo X dP < M, for some constant M < oc.

Definition 7. Given a probability space (2,4, P) and an associated frv X : Q — F(R) such
that for any a € [0,1] the real-valued random variable X, : Q= Ron (2, A, P) has finite
mean then the mean value of X is the fuzzy value E(X) € F(R) such that for all o € [0, 1]

E(X)a = E(Xa) = /Q)Za dP.

The mean value of an frv satisfies the usual properties of linearity and it is the Fréchet’s
expectation w.r.t. D, which corroborates the fact that it is a central tendency measure
(Néther 2001). In this way,

Proposition 1. E is additive (i.e., equivariant under the sum of frvs), that is, for frus X and
Y associated with the same probability space (2, A, P) and such that X,,Y, € LY(Q, A, P),
we have that

EA& X) = A& E(X), for any constant number \ € R.
2. EO® X) = A® E(X), for any constant number X € R.
3. E(XaY)=EX)®E®Y).
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Proposition 2. E is the Fréchet’s expectation of)N( w.r.t. D, that is,

E(X) = argminﬁef(R)E [D()?, (7)} ,

so that the mean is the fuzzy value leading to the lowest mean squared D-distance (or error)
with respect to the frv distribution, and this corroborates the fact that it is a central tendency
measure.

Definition 8. The variance of an frv X is defined as

y(X) = E[D()?,E()N())}

_ E</01<)~(Q—E()?a) 2da>
_ /Q/Ol()“('a—E()?a))Q do dP
_ /Ol/gl(ya_E()?a))2 dP do

1
= /Var(Xa)doz.
0

The situation with the usual random variable is a special case of the proposed procedure.
By using the indicator function I;xy as the membership function for the frv, the variance of
the crisp random variable X, i.e. Var(X), coincides with v(X), therefore, we have v(X) =
Var(X).

Now, if we define the scalar multiplication between frvs X and Y as follows

~ ~ 1~

(X,Y)= [ Xy Yado,
0

then, it is easy to conclude that v(X) = E(X, X) — (E(X), E(X)).

Proposition 3. Let X = ()?1,)?2, ... ,)Z'n) be a fuzzy random sample, and

b (5.%).

be the crisp variance value of the fuzzy sample 5(, where X = % Dy )N(z is the fuzzy sample
mean value. Then the following properties are held:

52

1. E[S2(X)] = v(X), i.e. S2(X) is an unbiased estimator of the parameter v(X) (popula-
tion variance).

2. limy, 00 S2(X) = v(X).
3. vIAN® X) = X2u(X), for any constant number \ € R.
4. v(IN® X) =v(X X), for any constant number A € R.

Definition 9. The covariance and correlation coefficient of frvs X and Y are defined as
follows, respectively,

Cov(X,Y) = E(X,Y)- (E(X),E(Y)),
-~ X o E( )Y@E (V)

p(X,Y) = Cov
Y )

We can easily show that

59



60 On Distribution Characteristics of an FRV

Table 1: Data set in Example 2

= (0.23,0.04,0.07)7 | 211 = (0.41,0.03,0.08)7 | a21 = ( )

—(0.76,0.05,0.02)7 | Z12 = (0.86,0.08,0.04)1 | @2z — ( )

= (0.98,0.12,0.00)7 | 215 = (1.02,0.03,0.10)7 | Za3 = ( )
%1 = (114,006,0.09)7 | #14 = (1.23,008,014)y | @24 = (1.37,0.08,006)1
= (1.46,0.10,0.07) 1 = (1.53,0.13,0.15)7 | 225 = (1.64,0.02,0.08)7
= (1.69,0.05,0.12)7 | @16 = (1.78,0.04, 0.06)7 | 726 = (1.83,0.09,0.05)7
( ) ( ) ( )
= ( ) ( ) ( )
= ( ) ( ) ( )
( ) ( ) ( )

0.64,0.11,0.07)7
0.94,0.09, 0.04) 7
1.08,0.10,0.06) 1

ac7 = (1.95,0.05,0.11)7 | Z17 = (1.99,0.08,0.09)1 | T27 = (2.04,0.11,0.06)1
2.17,0.03,0.05)7 | Z1s = (2.25,0.04,0.04)7 | Zog =
2. 4070.0870.12 T 3?19 = (2. 45,0.0170.08 T .1‘29 =
xw = (2.51,0.10,0.14)7 | 220 = (2.57,0.07,0.02)7 | 230 =

2.36,0.05,0.09) 7
2.49,0.13,0.05)7
2.61,0.08,0.06) 7

1. Cov(X, ) = 0 for any constant number A € R.

N

Cov(X, X) = v(X).

3. Cov(X,Y) = 0 for independent frvs X and Y.

4. Let A1, Ao, p1, u2 € R, then
Cov ()\1 BN ®X), 11 ® (12 ® ?)) = MmCou(X,Y),
> > A =S
p(uoeeX)me peal)) = SULAXY).

5. Fuzzy cumulative distribution function

In this section, we extend the concepts of Fuzzy Cumulative Distribution Function (F.C.D.F.)
and Fuzzy Empirical Cumulative Distribution Function (F.E.C.D.F.) for an frv.

—_—

Definition 10. The F.C.D.F. of frv X at = € R is defined as fuzzy set Fg(x) with the
following membership function

Fg(x)(y) = sup {a €0,1:P ()Z'a < a:) = y}, y € 10,1],

Definition 11. We say that F.C.D.F. F'¢(z) is continuous at = € R, if for every a € [0, 1], the
function (Fg(x))g is continuous at x (or equivalently, for every a € [0, 1], the crisp random

variable X, is continuous).

Definition 12. Suppose that )?1,5(:2, e Xn is a fuzzy random sample. The F.E. C D.F. of

fuzzy random sample X1, Xo, ..., X,,, at * € R is defined to be the fuzzy set F, ( ) with the
following membership function

Fol@)(y) = sup{a ey =2 _ y}7 ye 0.1,

Example 2. Suppose that, based on a fuzzy random sample of size n = 30, we observe
the triangular fuzzy numbers given in Table 1 (Hesamian and Chachi 2013; Viertl 2011).
According to Definition 12, the F.E.C.D.F. of this fuzzy random sample is obtained and
the 3-dimensional curve of its membership function is shown in Fig. 1, for every = € [0, 3].
Moreover, in order to make the 3-dimensional curve of the membership function in Fig. 1
more clear, the a-cut of this membership function is shown in Fig. 2, for « = 0.3.
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Degree of membershisp
1 _

0.8
N ——

0.6
N—

Empirical cumulative
distribution values

0 ’ Value of x in [0,3]

Figure 1: The plot of membership function of F.E.C.D.F. of the fuzzy observations in Table
1 for values of z € [0, 3]

Empirical cumulative distribution values

ACEEH : Jj‘rf |
N S 11 SR RS B S r/ o
08 T
0.7 : ' :
06 fnt 1 -
0.5 : :
04
03
02
0.1

2 2.5 3

Value of x in [0,3]

Figure 2: The a-cut of the 3-dimensional curve of the membership function shown in Figure
1 for @ = 0.3. For each value of x € [0, 3], the vertical line is the domain of the a-cut.

Example 3. Let X=0a E, where = is a (usual) normal random variable with mean 0 and
variance o2, i.e. Z ~ N (0, 0?), and © is a constant fuzzy set. For example, suppose © is
a LR-fuzzy number, i.e. © = (0,l,7),r with known 6, [, 7, and fixed functions L, and R.
Therefore, X = (4 6,1,7)rr and for each w, X (w) = (E(w) + 0,1,r)r is an observation of
X. Now, we have (see also, Example 1)

X, = =+60—1L"1(2a) if a€l0,0.5],

Since = is a normal random variable, therefore, it is clear that )Z'a is a normal random variable
for each o € [0, 1], i.e.

%o~ N (60— lL:ll(Qoe),UQ) , %f a € 10,0.5],
N (6 +7R712(1 — )),0?) if «ael0.5,1].
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Oz +1—2a)

LT T N

! a=3@+1-0Yy)

Figure 3: The graphical solution of the equation ®(z + 1 — 2a) = y in Example 3

Fx(2)(y) = 3z +1-27'(y))

T )
Oz —1) Oz +1) 1

0

P

Figure 4: The membership function of the fuzzy cumulative distribution function Fg(z) in
Example 3

So, according to Definition 4, X is an frv. We can easily show that E(X) = ©, and v(X) = o2
Now, we are going to obtain the membership function of fuzzy set F'g(w), i.e. the F.C.D.F.
of the frv X at x € R. Its membership function is defined as

Fg(w)(y):sup{ae[0,1]:P()Za§x) :y}, y € 10,1],
in which
_ o M) if ael0,0.5],
<z)= ’
i (X“ - x) o I‘G‘TR*;(Q“‘“))) it acl0.5,1],

where, ® is the cumulative distribution function of standard normal random variable Z, i.e.
if Z ~ N(0,1) then P(Z < z) = ®(2), z € R. We consider a simplification of the parameters
O and o2, therefore, we take o= (0,1,1)r and o = 1 as special cases. Substituting these
values in the above equations, we can easily obtain

P(Xaga:)zcb(xﬂ—m) if aelo,1].

P

Thus, the membership function of fuzzy set Fg(x) is given as follows for any y € [0, 1]

Fg(x)(y) =sup{a € [0,1] : (z + 1 - 2a) = y}.

Note that, the function ®(z + 1 — 2«) is strictly decreasing with respect to « € [0, 1], for any
fixed z € R (see Fig. 3). Therefore, for any y € [0, 1]

<I>(a:+1—2a):y<:>a:%(a:ﬂ—qu(y)).
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The above obtained @ must be between 0 and 1, so

0<

1
_§(x+1—q>—1(y))§1<:>0§q>(x—1)§ygq>(x+1)§1.

—_—

Finally, according to the above equations, the membership function of Fiz(z) at » € R is
given by

—~—

Felo)y) = 3o +1- 87 (), y e [®x— 1), 8+ 1)] < [0,1].

The membership function Fg(x) is depicted in Fig. 4.

This notion of frv is the definition of normality for frvs and X=08E, (2~ N(0,02), and
O is a constant fuzzy set) is called the normal (Gaussian) frv in the literature (Feng 2000;
Puri and Ralescu 1985).

6. Conclusions

In this paper the concept of modeling fuzzy random variable is presented dealing with situ-
ations where the outcomes of a random experiment are modeled by fuzzy sets. In order to
model the imprecise information of random experiments the notions of fuzzy cumulative dis-
tribution function and fuzzy empirical cumulative distribution function are considered (Moller
et al. 2002). To achieve suitable statistical methods dealing with imprecise data and extend
the usual approaches to imprecise environments several probabilistic definitions have been
obtained in connection with this random element, some of them having immediate statistical
implications. Fuzzy set theory seems to have suitable tools for modeling the imprecise infor-
mation of random experiments and provides appropriate statistical methods based on them
(see, for instance, Bandemer and Nither (1992); Chachi and Taheri (2011); Chachi, Taheri,
and Viertl (2012); Colubi (2009); Colubi and Gil (2007); Colubi and Gonzélez-Rodriguez
(2007); Colubi, Gonzélez-Rodriguez, Lubiano, and Montenegro (2006); Coppi, Gil, and Kiers
(2006); Gebhardt, Gil, and Kruse (1998); Gonzalez-Rodriguez, Montenegro, Colubi, and Gil
(2006b); Hesamian and Chachi (2013); Kruse and Meyer (1987); Taheri and Hesamian (2011)).
As a consequence, different approaches can also be provided for developing fuzzy statistical
methods using the new concept of frv proposed in this paper. We end the paper with some
general concluding remarks and open problems.

1- The new concept of frv proposed in this paper can be used to develop some kind of linear
estimation theory. The attempt can be done to develop a certain kind of linear theory for frvs
with respect to extended addition and scalar multiplication. However, the classical estimation
problem in a linear regression model in view of fuzzy data can be a potential topic for further
researches (see, for instance, Wiinsche and Néther (2002)).

2- The new concept of frv can be studied successfully for limit theorems, and can be applied
to asymptotic statistics with vague data (see, for instance, Klement et al. (1986)). Notice
that there are lack of Central Limit Theorems (CLT's) for frvs which are directly applicable
for inferential purposes (actually, there exist some CLTs for frvs according to which the
normalized distance sample-population fuzzy mean converges in law to the norm of a Gaussian
random element but with values often out of the cone) (Wu 2000; Kritschmer 2002a,b). Also,
the essential large sample properties of the fuzzy empirical distribution function (like Cantelli-
Glivenko’s Lemma (Govindarajulu 2003)) can be stated and proved.

3- From a statistical point of view, fuzzy expected value and fuzzy median play important
roles as central summary measures. The point estimation of these measures can be one of
the first statistical analysis concerning frvs. Later, the initial hypothesis testing procedures
can be studied, although they need some theoretical/practical constraints (see, for instance,
Colubi (2009)).
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4- The bootstrap techniques have empirically shown to be efficient and powerful in hypothesis
testing. Furthermore, analogous two-sample tests and, in general, multi-sample tests for the
equality of fuzzy expected values can also be obtained (see, for instance, Gonzalez-Rodriguez
et al. (2006Db)).

5- As for the real/vectorial-valued case, hypotheses could either concern parameters/measures
of the distribution of the frv(s) (see items 3 and 4 above) or concern the distribution itself
(parametric/non-parametric). Therefore, testing hypothesis related to the distribution(s) of
one-sample or multi-sample of observations can be considered. In this regard, non-parametric
tests (like goodness-of-fit tests) can be developed to determine whether two underlying one
dimensional distributions (or multi underlying one dimensional distributions) are the same or
not. Here based on the definition of fuzzy empirical cumulative distribution functions, test
statistics and test functions can be defined (see, for instance, Lin, Wu, and Watada (2010);
Hesamian and Chachi (2013); Hryniewicz (2006); Taheri and Hesamian (2011))

6- It has been shown that the distribution of any real-valued random variable can be rep-
resented by means of a fuzzy set. The characterizing fuzzy sets correspond to the expected
value of a certain frv based on a family of fuzzy-valued transformations of the original real-
valued ones (Gonzdalez-Rodriguez et al. 2006a). They can be used for descriptive/exploratory
or inferential purposes. This fact adds an extra-value to the fuzzy expected value and the
preceding statistical procedures, that can be used in statistics about real distributions.
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