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Abstract

The censoring arises when exact lifetimes are known partially only, and it is useful
in life testing experiments for time and cost restrictions. In literature, there are several
types of censoring plans available. In which three different censoring plans have addressed
in the present comparative study. The Burr Type-XII distribution considered here as
the underlying model and the comparison made on Two-Sample Bayes prediction bound
lengths. The analysis of the present discussion has carried out by a real life example and
simulated data both.
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1. Introduction

The cumulative density and probability density function of Burr Type-XII distribution are
given as

F (x; θ, σ) = 1− (1 + xσ)−θ ; θ > 0, σ > 0, x ≥ 0 (1)

and
f (x; θ, σ) = σθxσ−1 (1 + xσ)−θ−1 ; θ > 0, σ > 0, x ≥ 0. (2)

The two-parameter Burr Type-XII distribution has unimodal or decreasing failure rate func-
tion

ρ(x) = σθxσ−1 (1 + xσ)−1 ; θ > 0, σ > 0, x ≥ 0 (3)

The shape of the failure rate function ρ(x) does not affected by the parameter θ. The pa-
rameter θ and σ both are known as shape parameter. Also, ρ(x) has a unimodal curve when
σ > 1 and it has decreased failure rate function when σ ≤ 1. The Burr Type-II distribution
is applied in several areas including study of quality control and reliability, duration study
and failure time modeling. The analysis of business failure data, the efficacy of analgesics in
clinical trials, and the times to failure of electronic components are the other areas of applica-
tion of the said distribution. Zimmer, Keats, and Wang (1998) discussed at several statistical
properties of the underlying distribution based on reliability analysis.
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El-Sagheer (2016) discussed in his recent paper, about the point and interval predictions
based on general progressive Type-II censored data by using generalized Pareto distribution
under Bayesian setup for two-sample prediction approach. Rao, Aslam, and Kundu (2015)
discuss about the multi-component stress strength reliability based on ML estimation criteria
by assuming Burr Type-XII distribution in his recent paper. Using Koziol-Green model of
random censorship Danish and Aslam (2014) deals the Bayes estimation for unknown param-
eters of the underlying distribution by assuming both the informative and non-informative
priors. Jang, Jung, Park, and Kim (2014) discussed some estimation based on Bayesian setup
for Burr Type-XII distribution under progressive censoring.

Soliman, Abd-Ellah, Abou-Elheggag, and Modhesh (2012) obtained some Bayes estimation
from Burr Type-XII distribution by using progressive first-failure censored data. Lee, Wu,
and Hong (2009) obtained Bayes and empirical Bayes estimators of reliability parameters
under progressively Type-II Burr censored samples. Many works have done on underlying
distribution, a little few of them discussed above, and a few more are Rodriguez (1977), Nigm
(1988), Al-Huesaini and Jaheen (1995), Ali-Mousa and Jaheen (1998), Wu and Yu (2005), El-
Sagheer and Ahsanullah (2015), Soliman, Abd-Ellah, Abou-Elheggag, and El-Sagheer (2015)
and El-Sagheer (2016).

It is not always possible that the experimentally observed the lifetimes of all inspected units
in life testing experiments, due to time limitation and/or cost or material resources for data
collection. In addition, when some sample values at either or both extremes adulterated, the
trimmed samples are useful. There are several types of censoring plans available in literature,
in which only three common censoring plans have addressed in the present study.

The article presents a comparative study under Two-Sample Bayes prediction bounds length
by using different censoring plans, wiz, Item-Failure, right Item-Failure, and Progressive Type-
II censoring. The Bayes prediction bounds lengths have obtained from the underlying model.
The properties of the procedures are illustrated by simulated data as well as a real data set.

2. Bayes prediction bound lengths (Two-sample technique)

When sufficient information regarding the past and the present behavior of an observation
is available, we predict the nature of the future behavior of an observation in the present
section. A Bayesian statistical analysis has applied here for predicting future statistic from
the model given in Eq. (2), based on all three considered censoring plans.

Let x(1), x(2), ..., x(r) be the first r observed ordered failure items from a sample of size n
under considered censoring scheme for the model Eq. (2). If y(1), y(2), ..., y(k) is the second
(unobserved) items censored data of size k drawn independently from the same model of size
N , then the first sample is known as informative sample, while the second sample is referred
to as future sample. Our aim is to predict the jth order statistic in the future sample based
on an informative sample. This prediction technique is known as the, Two-sample Bayes pre-
diction technique. Recently, Prakash and Singh (2013) discussed about the Bayes prediction
limits under two-sample plan for the Pareto model.

2.1. Item-failure censoring

Let us suppose a total of n items from considering model are put under the life test and the
test terminates when first rth(r ≤ n) item fails. This censoring scheme is known as Item-
Failure censoring scheme. In such test situations, the observations usually occurred in ordered
of weakest items failed first.
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Let us assume that x(1), x(2), ..., x(n) be n ordered items from Eq. (2). If x ∼=
(
x(1), x(2), ..., x(r)

)
be first r observed failure items, then the joint probability density function for these order
statistics is defined as

fI (x|θ, σ) =

(
r∏
i=1

f
(
x(i); θ, σ

)) (
1− F

(
x(r); θ, σ

))n−r
=

(
r∏
i=1

σθxσ−1
(i)

(
1 + xσ(i)

)−θ−1
)(

1 + xσ(r)

)−θ(n−r)
⇒ fI (x|θ, σ) ∝ θrexp (−θTI (x; θ, σ)) ; (4)

where TI (x; θ, σ) =
∑r

i=1 log
(

1 + xσ(i)

)
+ (n− r)log

(
1 + xσ(r)

)
.

There is no honest way to define, which prior probability estimate is better. Based on personal
beliefs, one may choice a flexible family of priors, and chosen one from that family, which
matches best. In the present study, Gamma distribution G(1, α) taken as the conjugate family
of prior for unknown parameter θ, with the probability density function

πθ = αe−αθ ; α > 0, θ > 0. (5)

Based on Bayes theorem, the posterior density about the parameter θ under considered cen-
soring plan is defined as

π∗Iθ =
fI (x|θ, σ) · πθ∫

θ fI (x|θ, σ) · πθ dθ
. (6)

Using Eq. (4) and Eq. (5) in Eq. (6), the posterior density is now obtained as

π∗Iθ ∝
θrexp (−θTI (x; θ, σ)) · e−αθ∫

θ θ
rexp (−θTI (x; θ, σ)) · e−αθ dθ

⇒ π∗Iθ =
(T ∗
I (x; θ, σ))r+1

Γ(r + 1)
θrexp (−θT ∗

I (x; θ, σ)) ; T ∗
I (x; θ, σ) = TI (x; θ, σ) + α. (7)

The Bayes predictive density of future observation Y is denoted by hI (Y |x) and obtained by
simplifying the following relation

hI (Y |x) =

∫
θ
fI (y; θ, σ) · π∗Iθ dθ

⇒ hI (Y |x) = (r + 1)σyσ−1 (1 + yσ)−1 (T ∗
I (x; θ, σ))r+1(

T ∗
I (x; θ, σ) + log (1 + yσ)

)r+2 . (8)

Based on predictive density Eq. (8) of the future observation Y, the cumulative predictive
density function is denoted as GI (Y |x) and obtained as

GI (Y |x) = Pr (Y ≤ y)

= (T ∗
I (x; θ, σ))r+1 (r + 1)σ

∫ y

0

yσ−1 (1 + yσ)−1(
T ∗
I (x; θ, σ) + log (1 + yσ)

)r+2dy
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GI (Y |x) = 1−
(

T ∗
I (x; θ, σ)

T ∗
I (x; θ, σ) + log (1 + yσ)

)r+1

. (9)

Now, if Yj denote the jth order statistic in future sample of size k; 1 ≤ j ≤ k, then from k
future observations, the probability density function of the jth ordered future observation is
given as

ΦI (yj) = j
(
kCj

)
(GI (Yj |x))j−1 (1−GI (Yj |x))k−j hI (Yj |x)

⇒ ΦI (Yj) = j
(
kCj

)1−

 T ∗
I (x; θ, σ)

T ∗
I (x; θ, σ) + log

(
1 + yσj

)
r+1j−1

·

 T ∗
I (x; θ, σ)

T ∗
I (x; θ, σ) + log

(
1 + yσj

)
r+1k−j

·(r + 1)σyσ−1
j

(
1 + yσj

)−1 (T ∗
I (x; θ, σ))r+1(

T ∗
I (x; θ, σ) + log

(
1 + yσj

))r+2 ; yj > 0. (10)

Let us assume the transformation

Z = 1−

 T ∗
I (x; θ, σ)

T ∗
I (x; θ, σ) + log

(
1 + yσj

)
r+1

then the probability density function for the jth ordered future observation becomes

ΦI (Z) = j
(
kCj

)
(Z)j−1 (1− Z)k−j ;Z > 0. (11)

Now, we say that (l1, l2) is a 100(1− ε)% prediction limits for a future random variable Y, if

Pr (l1 ≤ Y ≤ l2) = 1− ε. (12)

Here l1 and l2 be the lower and upper Bayes prediction limits of the random variable Y, and
1 − ε is called the confidence prediction coefficient. To find the prediction limits under the
two-sample plan for Yj , j

th observation from a set of k future observations, we rewrite the Eq.
(12) under the equal tail limits, as

Pr (Yj ≤ l1j) =
ε

2
= Pr (Yj ≤ l2j)∀ j = 1, 2, ..., k. (13)

Using the Eq. (11) and Eq. (13), the expressions of the limits for the jth future observation
are obtained by solving following equations

j
(
kCj

)∫ l̂1

0
Zj−1 (1− Z)k−j dZ =

ε

2

and

j
(
kCj

)∫ l̂2

0
Zj−1 (1− Z)k−j dZ = 1− ε

2
, (14)
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where l̂i = 1−
(

T ∗
I (x;θ,σ)

T ∗
I (x;θ,σ)+log(1+l

σ
ij)

)r+1

; i = 1, 2.

Solving Eq. (14) for j = 1, the lower and upper Bayes prediction limits for the first fu-
ture observation are given as

l11I = {exp ((ε∗ − 1)T ∗
I (x; θ, σ))− 1}1/σ ; ε∗ =

(
2− ε

2

)−1/k(r+1)

and

l21I = {exp ((ε∗∗ − 1)T ∗
I (x; θ, σ))− 1}1/σ ; ε∗∗ =

( ε
2

)−1/k(r+1)
.

Similarly, solving the Eq. (14) for j = k, the prediction limits for the last future observation
is

l1kI = {exp ((τ∗ − 1)T ∗
I (x; θ, σ))− 1}1/σ ; τ∗ =

(
1−

( ε
2

) 1
k

)−1/(r+1)

and

l2kI = {exp ((τ∗∗ − 1)T ∗
I (x; θ, σ))− 1}1/σ ; τ∗∗ =

(
1−

(
2− ε

2

) 1
k

)−1/(r+1)

.

Hence, the Bayes prediction lengths for the smallest (first) and the largest (last) future ob-
servations are obtained as

L(IS) = l21I − l11I

and

L(IL) = l2kI − l1kI . (15)

2.2. Right item-failure censoring

Since all n items from the considered model are put under the life test without replacement.
In which only r(≤ n) ordered items are measurable, while the remaining (n − r) items are
censored. These (n − r) censored lifetimes will be ordered distinctly. This process is known
as the right Item failure-censoring scheme (Prakash (2014)).

Now, let us consider a sequence of independent random sample from Burr Type-XII dis-
tribution of size n such as x(1), x(2), ..., x(r−1), x(r), x(r+1), ..., x(n). All n items are put to test
without replacement and the first r items x ∼=

(
x(1), x(2), ..., x(r−1), x(r)

)
are fully measured

while remaining (n− r) items
(
x(r+1), x(r+2), ..., x(n)

)
are censored. Based on above the joint

probability density function of these order statistics is defined as

fR (x|θ, σ) ∝

(
r∏
i=1

f
(
x(i); θ, σ

))
·

(
n∏

i=r+1

(
1− F

(
x(i); θ, σ

)))

⇒ fR (x|θ, σ) ∝ θrexp (−θTR (x; θ, σ)) ; TR (x; θ, σ) =

n∑
i=1

log
(

1 + xσ(i)

)
. (16)

Using Eq. (5) and Eq. (16) in Eq. (6), the posterior density for unknown parameter θ under
right item-failure censoring is obtained as

π∗Rθ =
(T ∗
R (x; θ, σ))r+1

Γ(r + 1)
θrexp (−θT ∗

R (x; θ, σ)) ; T ∗
R (x; θ, σ) = TR (x; θ, σ) + α. (17)
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On similar lines, the Bayes predictive density, cumulative predictive density functions of
future observation Y and probability density function of the jth ordered future observation
are obtained respectively as

hR (Y |x) = (r + 1)σyσ−1 (1 + yσ)−1 (T ∗
R (x; θ, σ))r+1(

T ∗
R (x; θ, σ) + log (1 + yσ)

)r+2 ,

GR (Y |x) = 1−
(

T ∗
R (x; θ, σ)

T ∗
R (x; θ, σ) + log (1 + yσ)

)r+1

and
ΦR (Z) = j

(
kCj

)
(Z)j−1 (1− Z)k−j ;Z > 0 (18)

where Z = 1−
(

T ∗
R(x;θ,σ)

T ∗
R(x;θ,σ)+log(1+y

σ
j )

)r+1

.

Solving Eq. (18) for j = 1 and j = k, the lower and upper Bayes prediction bound lim-
its for first and last future observation are given respectively as

l11R = {exp ((ε∗ − 1)T ∗
R (x; θ, σ))− 1}1/σ,

l21R = {exp ((ε∗∗ − 1)T ∗
R (x; θ, σ))− 1}1/σ,

l1kR = {exp ((τ∗ − 1)T ∗
R (x; θ, σ))− 1}1/σ

and
l2kR = {exp ((τ∗∗ − 1)T ∗

R (x; θ, σ))− 1}1/σ.

Now, the Bayes prediction intervals for first and last future observations are obtained similarly
as

L(RS) = l21R − l11R
and

L(RL) = l2kR − l1kR. (19)

2.3. Progressive Type-II censoring

The progressive censoring seems to be a great importance in strategic interval experiments. In
many industrial experiments involving lifetimes of machines or units, it is required to dismiss
the experiments early with failures must be limited for various reasons. This censoring cri-
terion plays a significant role in such lifetime studies, in which the experiments terminate early.

Let us suppose an experiment in which n independent and identical units x(1), x(2), ..., x(n)
are placed on a live test at beginning time and first r; (1 ≤ r ≤ n) failure items are observed.
At the time of each failure occurring prior to termination point, one (or more) enduring units
detached from the test. The experiment is terminated at the time of rth failure, and all re-
maining surviving units are removed from the test. See Prakash (2015) for more details on
Progressive censoring.

Let x ∼=
(
x(1), x(2), ..., x(r)

)
are the lifetimes of completely observed units to fail andR1, R2, ..., Rr

are the numbers of units withdrawn at these failure times. Here, R1, R2, ..., Rr all are prede-
fined integers following the relation

r∑
i=1

Ri + r = n.
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Based on progressively type-ii censoring scheme the joint probability density function of order
statistics x ∼=

(
x(1), x(2), ..., x(r)

)
is defined as

fp (x|θ, σ) = Cp

r∏
i=1

f
(
x(i); θ, σ

) (
1− F

(
x(i); θ, σ

))Ri ; (20)

Here, Cp is known as progressive normalizing constant. Simplifying Eq. (20), we get

⇒ fP (x|θ, σ) ∝ θrexp (−θTP (x; θ, σ)) ; TP (x; θ, σ) =

r∑
i=1

(1 +Ri) log
(

1 + xσ(i)

)
.

The posterior density about the parameter θ under progressive censoring plan is

π∗Pθ =
(T ∗
P (x; θ, σ))r+1

Γ(r + 1)
θrexp (−θT ∗

P (x; θ, σ)) ; T ∗
P (x; θ, σ) = TP (x; θ, σ) + α.

Similarly, the Bayes predictive density, cumulative predictive density functions of future ob-
servation Y and probability density function of the jth ordered future observation under
progressive censoring are obtained and given respectively as

hP (Y |x) = (r + 1)σyσ−1 (1 + yσ)−1 (T ∗
P (x; θ, σ))r+1(

T ∗
P (x; θ, σ) + log (1 + yσ)

)r+2 ,

GP (Y |x) = 1−
(

T ∗
P (x; θ, σ)

T ∗
P (x; θ, σ) + log (1 + yσ)

)r+1

and

ΦP (Z) = j
(
kCj

)
(Z)j−1 (1− Z)k−j ;Z > 0 (21)

where Z = 1−
(

T ∗
P (x;θ,σ)

T ∗
P (x;θ,σ)+log(1+y

σ
j )

)r+1

.

Substituting j = 1 and j = k in Eq. (21). The lower and upper Bayes prediction bound
limits for first and last future observation are given as

l11P = {exp ((ε∗ − 1)T ∗
P (x; θ, σ))− 1}1/σ,

l21P = {exp ((ε∗∗ − 1)T ∗
P (x; θ, σ))− 1}1/σ,

l1kP = {exp ((τ∗ − 1)T ∗
P (x; θ, σ))− 1}1/σ.

and

l1kP = {exp ((τ∗∗ − 1)T ∗
P (x; θ, σ))− 1}1/σ.

Thus, the Bayes prediction intervals for the smallest and the largest future observation are
obtained and given as

L(PS) = l21P − l11P

and

L(PL) = l2kP − l1kP .
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3. Numerical analysis

The performance of the proposed procedures is studied by a numerical illustration based on
a real data set for a clinical trial describe a relief time (in hours) for 30 arthritic patients
considered here form data provided by Wingo (1993) and used recently by Wu, Wu, Chen,
Yu, and Lin (2010). The data are given in the Table (1).

Table 1: Relief time (in hours) for 30 arthritic patients

0.70 0.58 0.54 0.59 0.71 0.55 0.63 0.84 0.49 0.87
0.73 0.72 0.62 0.82 0.84 0.29 0.51 0.61 0.57 0.29
0.36 0.46 0.68 0.34 0.44 0.75 0.39 0.41 0.46 0.66

We fit the Burr Type-XII distribution to the given data in Table (1). The Kolmogorov-
Smirnov (K-S) distances between the fitted and the empirical distribution functions is 0.0675
with p-value is > 0.05. Based on the K-S test statistic, Burr Type-XII distribution provides
an adequate fit the data sets. In addition, the graph for both the empirical survival function
and the estimated survival functions is given in Figure (3.3). (El-Sagheer (2015))

We carry out this comparison by considering the given data of size n(= 30) with σ(= 1.00)
and α(= 0.50). The selected values of level of significance are ε = 99%, 95%, 90%.

3.1. Item-failure censoring scheme

Let the test is terminated when r(= 5, 10, 15), as it is supposed from n = 30. Help of a con-
sidered set of parametric values, obtains the one-sided two-sample Bayes prediction bound
lengths with the data given in Table (1) and presented in Table (3).

It is noted that when confidence level ε increases the length of intervals tends to be wider. A
decreasing trend has been seen in bound lengths when censored sample size increases.

3.2. Right item-failure censoring scheme

The one-sided two-sample Bayes prediction bound lengths have been obtained under similar
set of considered parametric set of values as discussed above and presented in Table (3) for
right item-failure censoring data.

All properties have seen similar for the bound lengths obtained under item-failure censoring
criterion. However, the bound lengths become narrower as compared to item-failure censoring
criterion for all considered parametric set of values

3.3. Progressive censoring scheme

The Bayes prediction bound length under two-sample criterion have been obtained and pre-
sented in Table (3) for a similar set of parametric values as discussed above in censoring plan
Ri; i = 1, 2, ..., r, given in (2).

Again, all the behaviors have seen similar as discussed above when compared with both
censoring criteria. Further, it is noted that the magnitude of bound lengths under progres-
sive censoring criteria are wider than compared to item-failure or right item-failure censoring
criterion. It is also remarkable that for small confidence level, the bound length for largest
observation is narrower as compared to the item-failure censoring criterion.
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Figure 1: Empirical and estimated survival functions

Table 2: Different progressive censoring plan

Case m Ri; i = 1, 2, ...,m
1 5 1 2 1 0 1
2 10 1 0 0 3 0 0 1 0 0 1
3 15 1 0 2 0 0 1 0 2 0 0 0 1 0 0 1

4. Simulation study

Based on simulation, the performances of the procedures are studied in the present section.

Using Eq. (5), the values of shape parameter θ have been generated by using α(= 0.25, 0.50, 1.00).
Using these three generated values of θ with a known set of values of parameter σ(= 0.50, 1.00, 2.00),
generates 10, 000 random samples, each of size n = 30.

All desired censored samples are generated by using following relation xi =
{

(1− Ui)−
1
θ − 1

} 1
σ
.

Here, Ui are independently distributed U(0, 1). The one-sided two-sample Bayes prediction
bound lengths based on simulated data are presented in the Tables 04-06 for item-failure,
right item-failure, and progressive censored data respectively.

The bound length becomes wider as combination of prior parameter increase. However, a
decreasing trend has seen for higher set of prior values (α = 1.00, σ = 2.00). All other
properties have seen similar as discussed in the previous section.

Conclusion

The properties of Bayes prediction bound lengths based on two-sample technique are the main
aim of the present discussion. The underlying model is assumed here as the Burr Type-XII
distribution and the analysis presented by simulated data set and a real data set provided by
Wingo (1993). The item-failure, right item-failure, and progressive Type-II censoring is used
for the present comparative study.
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Table 3: Two-sample Bayes prediction bound lengths under different censoring plans

α = 0.50 Item-Failure Censoring Plan
σ = 1.00 The First Future Observation The Last Future Observation
r ↓ ε→ 99% 95% 90% 99% 95% 90%

5 3.3742 3.3501 3.3237 4.7201 4.6645 4.5772
10 2.5178 2.4556 2.3996 3.3748 3.3128 3.1849
15 2.1914 1.9791 1.9152 2.8201 2.6846 2.5436

Right Item-Failure Censoring Plan
5 3.2511 3.2078 3.1423 4.5177 4.2942 4.1967
10 2.4158 2.3359 2.2312 3.2116 3.1018 3.0186
15 2.0414 1.9268 1.8753 2.6171 2.5366 2.4507

Progressive Type-II Censoring Plan
5 3.8061 3.7488 3.6002 5.1837 4.8177 3.9006
10 3.1998 3.0739 2.8952 3.5538 3.1084 2.9082
15 2.7939 2.5121 2.4109 3.1664 3.0008 2.4610

Table 4: Bound lengths under item-failure censoring plan

n = 30 The First Future Observation The Last Future Observation
(α, σ) ↓ r ↓ ε→ 99% 95% 90% 99% 95% 90%

5 2.9547 2.9031 2.6749 3.0745 3.0616 3.0194
0.25, 0.50 10 2.1815 2.1215 2.0149 2.3124 2.1822 2.0974

15 1.6953 1.4341 1.1327 1.9057 1.6216 1.5998
5 3.1231 3.0178 2.9104 3.3538 3.3297 3.2607

0.50, 1.00 10 2.3081 2.0387 1.8196 2.5024 2.4504 2.2652
15 1.9128 1.8114 1.6418 2.1488 1.9871 1.9333
5 3.0445 3.0193 2.9522 3.3124 3.2786 3.0501

1.00, 2.00 10 2.2696 2.1615 2.1527 2.4615 2.4101 2.2336
15 1.8892 1.7889 1.7203 2.1235 1.9426 1.9294

Based on selected parametric values, the one-sided two-sample Bayes prediction bound lengths
are wider under the Progressive censoring scheme as compared to other censoring patterns.
It is also remarkable that for small confidence level, the bound length for largest observation
is narrower under Progressive censoring criterion as compared to the item-failure censoring
criterion.
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Table 5: Bound lengths under right item-failure censoring plan
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