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Abstract

Regression with compositional response or covariates, or even regression between parts
of a composition, is frequently employed in social sciences. Among other possible applica-
tions, it may help to reveal interesting features in time allocation analysis. As individual
activities represent relative contributions to the total amount of time, statistical pro-
cessing of raw data (frequently represented directly as proportions or percentages) using
standard methods may lead to biased results. Specific geometrical features of time budget
variables are captured by the logratio methodology of compositional data, whose aim is to
build (preferably orthonormal) coordinates to be applied with popular statistical methods.
The aim of this paper is to present recent tools of regression analysis within the logratio
methodology and apply them to reveal potential relationships among psychometric indi-
cators in a real-world data set. In particular, orthogonal logratio coordinates have been
introduced to enhance the interpretability of coefficients in regression models.

Keywords: regression analysis, compositional data, time budget structure, orthogonal logratio
coordinates, interpretation of regression parameters.

1. Introduction

Regression analysis becomes challenging when compositional data as observations carrying rel-
ative information (Aitchison 1986; Pawlowsky-Glahn, Egozcue, and Tolosana-Delgado 2015)
occur in the role of response or explanatory variables. Although this might frequently seem
to be a purely numerical problem, compositional data in any form inducing a constant sum
constraint (proportions, percentages) rather represent a conceptual feature. In fact, composi-
tional data may not necessarily be expressed with a constant sum of components (parts). The
decision whether data at hand are compositional or not depends on the purpose of analysis
- whether it is absolute values of components, or rather their relative structure, that is of
primary interest.

One of most natural examples of compositional data are time budget (time allocation) data,
discussed already in the seminal book on compositional data analysis (Aitchison 1986, p.
365). Apart from the compositional context, due to its psychological, social, and economic
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impacts, time allocation and its statistical analysis receives attention in many publications.
The distribution of the total amount of time among productive-, maintenance-, and leisure
activities reflects the current status and soundness of economy, with its labour-saving in-
ventions, communication technologies, means of transportation, information and mass media
channels, and level of consumption (Becker 1965; Garhammer 2002; Gershuny 2000; Juster
and Stafford 1991; Robinson and Godbey 1997). The economy is usually closely linked to
political arrangement, which through welfare state institutions (including child-care facilities)
relieve citizens of many obligations, thus opening possibilities for loosening and restructur-
ing their daily schedules (Korpi 2000; Gershuny and Sullivan 2003; Crompton and Lyonette
2006). Leisure time service is further provided for by various sports programs, holiday resorts,
outdoor activities and the like, for both adolescents and adults. Moreover, frequently also
supplementary qualitative/quantitative variables (age, gender, variables resulting from psy-
chometric scales) are of simultaneous interest, which calls for the use of regression modelling.

When considering the problem of time allocation from the statistical point of view, the in-
dividual activities represent relative contributions to the overall time budget. Particularly,
although the input data can be obtained either in the original time units, or directly in pro-
portions or percentages, the relevant information is conveyed by ratios between the parts
(time activities). Consequently, also differences between relative contributions of an activity
should be considered in ratios instead of absolute differences as they better reflect relative
scale of the original observations.

Both scale invariance and relative scale issues are completely ignored when the raw time bud-
get data or any representation thereof (like proportions or percentages) are analysed using
standard statistical methods. Although there do exist methods whose aim is to solve purely
numerical problems resulting from the nature of observations carrying relative information
(being of one dimension less than the actual number of their parts), these methods usually do
not represent a conceptual solution to the problem of compositional data analysis. Instead,
any reasonable statistical methodology for this kind of observations should be based on ratios
between parts, or even logratios (logarithm of ratios), which are mathematically much easier
to handle (Aitchison 1986; Pawlowsky-Glahn et al. 2015). Logratios as a special case of a
more general concept of logcontrasts are used to construct coordinates with respect to the
Aitchison geometry that captures all the above mentioned natural properties of compositions.
Nevertheless, possibly due to apparent complexity of the logratio methodology, logratio meth-
ods haven’t still convincingly entered applications in social sciences, specifically psychological
applications; methods to analyse time budget, mentioned in the seminal book of Van den
Ark (van den Ark 1999) and resulting from fixing the unit-sum constraint of compositional
data, were mostly overcome during the last 15 years of intensive development in the field of
compositional data. Very recently statistical analysis of psychological (ipsative) data seems to
attract attention (Batista-Foguet, Ferrer-Rosell, Serlavós, Coenders, and Boyatzis 2015; van
Eijnatten, van der Ark, and Holloway 2015). Nevertheless, still rather specific methods are
used without providing a concise data analysis, particularly concerning regression modelling
that frequently occurs in psychometrics.

For this reason, the aim of this paper is to perform a comprehensive regression analysis of
time budget structure of college students by taking real-world data from a large psychological
survey at Palacký University in Olomouc (Czech Republic). With that view, relations with
other response/explanatory variables (as well as those within the original composition) will
be analysed using proper regression modelling.

The structure of the paper is as follows. In the next section, the orthonormal logratio coordi-
nates are introduced first, and then regression modelling is discussed in more detail in Section
3. In order to achieve better interpretability of regression parameters while preserving all im-
portant features of regression models for compositional data, orthogonal coordinates (instead
of orthonormal ones) are introduced as an alternative in Section 4. Section 5 is devoted to
logratio analysis of the concrete time budget data set and the final Section 6 (Discussion)
concludes.
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2. Orthonormal logratio coordinates for compositional data

For a D-part composition x = (x1, . . . , xD)′, considering all possible logratios ln(xi/xj), i, j =
1, . . . , D, for statistical analysis means to take into account D(D− 1)/2 variables (up to sign
of the logarithm). This would lead to a complex ill-conditioned problem already for data sets
with moderate number of variables. Moreover, information related to the original parts (al-
though expressed possibly in logratios) is usually of primary interest. For this reason, a natural
choice is to aggregate logratios meaningfully to logcontrasts (variables of type

∑D
i=1 ci lnxi,

where
∑D
i=1 ci = 0), that are able to capture all the relative information about single composi-

tional parts (time activities). In other words, when x1 plays the role of such a part, we proceed

to variable ln(x1/x2) + . . .+ ln(x1/xD) = (D− 1) ln(x1/
D−1

√∏D
i=2 xi), i.e. to logcontrast that

highlights the role of x1 (?). In order to build a system of orthonormal coordinates, this
variable needs to be further scaled and also the remaining D − 2 coordinates, orthonormal
log-contrasts, are constructed consequently (we refer to isometric logratio (ilr) coordinates
(Egozcue, Pawlowsky-Glahn, Mateu-Figueras, and Barceló-Vidal 2003)). One possible choice
of ilr coordinates that fulfil the above requirements (for any of parts xl, l = 1, . . . , D, in place

of x1) is z(l) = (z
(l)
1 , . . . , z

(l)
D−1)

′,

z
(l)
i =

√
D − i

D − i+ 1
ln

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1. (1)

The case of x1 would be obtained by choosing l = 1. In a more general setting, the composition

(x
(l)
1 , x

(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D )′ stands for such a permutation of the parts (x1, . . . , xD)′ that

always the l-th compositional part fills the first position, (xl, x1, . . . , xl−1, xl+1, . . . , xD)′. In

such a configuration, the first ilr coordinate z
(l)
1 explains all the relative information (merged

into the corresponding logcontrast) about the original compositional part xl, the coordinates

z
(l)
2 , . . . , z

(l)
D−1 then explain the remaining logratios in the composition. Note that the only

important position is that of x
(l)
1 (because it can be fully explained by z

(l)
1 ), the other parts

can be chosen arbitrarily, because different ilr coordinates are orthogonal rotations of each
other (Egozcue et al. 2003). Although this particular choice of ilr coordinates has been
used successfully in many geological and chemometrical applications (Buccianti, Egozcue, and
Pawlowsky-Glahn 2014; Filzmoser, Hron, and Reimann 2012; Kalivodová, Hron, Filzmoser,
Najdekr, Janečková, and Adam 2015), no experiences are recorded in the psychometrical
context.

3. Regression analysis within the logratio methodology

Regression analysis is an important tool for analysing the relationships between the response
variable Y and known explanatory variables x, see, e.g. (Montgomery, Peck, and Vining
2006). Although in the psychometrical context it is often difficult to distinguish whether
the covariates are driven by an error as well, or not, we will follow the assumption of fixed
covariates in order to enable estimation of regression parameters using the standard least
squares (LS) method, resulting in easy-to-handle statistical inference (hypotheses testing).
When the response variables or explanatory variables are compositional, special treatment
in regression is necessary. A natural way for introducing regression with compositional ex-
planatory variables x = (x1, x2, . . . , xD)′ is to perform a standard multiple regression where
the explanatory variables zi = (1, zi,1, zi,2, . . . , zi,D−1)

′ represent the ilr coordinates of xi and
1 for the intercept (Hron, Jeĺınková, Filzmoser, Kreuziger, Bednář, and Barták 2012). Us-
ing a special choice of ilr coordinates z(l) given by (1), we can consider the lth ilr basis, for
l = 1, 2, . . . , D, and we obtain D different multiple regression models in the form

Yi = β0 + β
(l)
1 z

(l)
i,1 + · · ·+ β

(l)
D−1z

(l)
i,D−1 + ε

(l)
i , i = 1, 2, . . . , n, (2)
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where β0, β
(l)
1 , . . . β

(l)
D−1 are unknown regression parameters and ε

(l)
i are random errors in the

lth model. Due to the orthogonality of different ilr bases, the intercept term β0 is the same
for all D models (similarly as the index of determination R2 or the F statistic to test the
overall significance of the covariates) (Hron et al. 2012). The regression parameters can
be estimated in the standard way by the least squares (LS) method. Using the notation

Y = (Y1, Y2, . . . , Yn)′ for the observation vector, Z(l) = (z
(l)
1 , z

(l)
2 , . . . , z

(l)
n )′ for n × D design

matrix, β(l) = (β0, β
(l)
1 , . . . , β

(l)
D−1)

′ for regression parameters, and ε(l) = (ε
(l)
1 , ε

(l)
2 , . . . , ε

(l)
n )′

for the error term, models (2) can be rewritten in the matrix form

Y = Z(l)β(l) + ε(l), l = 1, 2, . . . , D. (3)

We can consider that random errors in the lth model are not correlated with the same variance
σ2(l). Then the best linear unbiased estimators of regression parameters β(l) by the LS method
are

β̂
(l)

= (Z′(l)Z(l))−1Z′(l)Y, l = 1, 2, . . . , D. (4)

From the practical point of view, only the parameter β
(l)
1 is important, since it corresponds to

the first ilr coordinate z
(l)
1 that explains all the relative information about the part x

(l)
1 . The

other parameters β
(l)
2 , . . . , β

(l)
D−1 do not have such straightforward interpretation. So, we can

say, e.g., that the absolute change of the conditional mean of Y with respect to coordinate

z
(l)
1 is about β

(l)
1 , if other coordinates z

(l)
j , j = 2, 3, . . . , D − 1 (representing subcomposition

(x1, . . . , xl−1, xl+1, . . . , xD)′), are fixed.

The unbiased estimator of σ2(l) in the lth model (3) is

σ̂2(l) = (Y − Z(l)β̂
(l)

)′(Y − Z(l)β̂
(l)

)/(n−D), (5)

that can be used to estimate the variance-covariance matrix of the estimator of regression
parameters,

v̂ar(β̂
(l)

) = σ̂2(l)(Z
′(l)Z(l))−1. (6)

Under assumption of normality of random errors we can perform any standard statistical
inference, e.g. test the significance of regression parameters, or to construct confidence in-
tervals for them. The significance of the individual regression parameters in the lth model,
l = 1, 2, . . . , D, can be tested by the following statistics:

T0 =
β̂0

σ̂(l)

√
{(Z′(l)Z(l))−1}1,1

; T
(l)
i =

β̂
(l)
i

σ̂(l)

√
{(Z′(l)Z(l))−1}i+1,i+1

, (7)

i = 1, 2, . . . , D − 1. Here the symbol {(Z′(l)Z(l))−1}i+1,i+1 denotes the (i + 1)th diagonal
element of the matrix (Z′(l)Z(l))−1. Under the null hypothesis that regression parameters are

zeros, the statistics T0 and T
(l)
i each follow a Student t-distribution with n − D degrees of

freedom. The statistic T0 is the same irrespective of the choice of l = 1, . . . , D in (2), see (Hron
et al. 2012) for details. Of course, the response variable can have also another distribution
than normal, i.e. the methodology of generalized linear models (Dobson and Barnett 2008)
can be directly implemented.

Similarly, when the response variables Y = (Y1, Y2, . . . , YD)′ are compositional and explana-
tory variables x = (x1, x2, . . . , xk)

′ are non-compositional, one can use the regression mod-
els where the response variables Z1, . . . , ZD−1 represent the ilr coordinates of Y (Egozcue,
Daunis-i Estadella, Pawlowsky-Glahn, Hron, and Filzmoser 2011). Using the ilr coordinates

(1), where only the first ilr coordinate Z
(l)
1 is of interest, we obtain D different multiple

regression models in the form

Z
(l)
i,1 = γ

(l)
0 + xi,1γ

(l)
1 + · · ·+ xi,kγ

(l)
k + ε

(l)
i , i = 1, 2, . . . , n, l = 1, 2, . . . , D. (8)
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In this case, the interpretation of regression parameters is the following. For example, if

x2, . . . , xk are fixed, then for each change of 1 unit in x1, the conditional mean of Z
(l)
1 changes

γ
(l)
1 units. Nevertheless, similarly as for the case of regression with compositional explanatory

variables, because the orthonormal coordinates (1) have to be interpreted in terms of scaled
logratios under natural logarithm, the interpretation of these “units” and thus also values
of regression parameters might get rather complex for practical purposes. Under the usual
multiple regression model assumptions, (8) can be expressed in the matrix form

Z
(l)
1 = Xγ(l) + ε(l), l = 1, 2, . . . , D, (9)

where Z
(l)
1 = (Z

(l)
1,1, Z

(l)
2,1, . . . , Z

(l)
n,1)
′ is an observation vector, γ = (γ0, γ1, . . . , γk)

′ is a vector
of regression parameters, and X = (1,x1,x2, . . . ,xk) is n × (k + 1) design matrix. Here 1
is a vector of n ones. When the random errors in the lth model are not correlated with the
same variance σ2e,(l), the best linear unbiased estimator of regression parameters γ(l) by the
LS method is

γ̂(l) = (X′X)−1XZ
(l)
1 , l = 1, 2, . . . , D, (10)

with the estimated variance-covariance matrix

v̂ar(γ̂(l)) = σ̂2e,(l)(X
′X)−1. (11)

The unbiased estimator of σ2e,(l) in model (9) is

σ̂2e,(l) = (Z
(l)
1 −Xγ̂(l))′(Z

(l)
1 −Xγ̂(l))/(n− k − 1). (12)

Again, under assumption of normality of random errors we can test the significance of regres-
sion parameters, or construct confidence intervals for them. In this case, the significance of
the individual regression parameters in the lth model, l = 1, 2, . . . , D, can be tested by the
statistic:

U
(l)
i =

γ̂
(l)
i

σ̂e,(l)

√
{(X′X)−1}i+1,i+1

, i = 0, 1, . . . , k. (13)

Under the null hypothesis that regression parameters are zeros, the statistics U
(l)
i follow a

Student t-distribution with n− k − 1 degrees of freedom.

Finally, within the logratio methodology we can consider also the case of regression among
parts of a composition, in particular, between a part x0 and the rest of compositional parts,
x1, . . . , xD, in a (D+1)-part composition. Following (Buccianti et al. 2014; Hr̊uzová, Todorov,
Hron, and Filzmoser 2016), a natural choice is to consider the case of regression with com-
positional explanatory variables, where the response is formed by coordinate, carrying the
relative information of x0 (with respect to compositional covariates), i.e.,

z0 =

√
D

D + 1
ln

x0
D

√∏D
i=1 xi

.

By construction, z0 is orthonormal to the rest of coordinates, assigned to explanatory parts
as in (1).

4. Orthogonal coordinates for compositional regression

Although the above regression models in orthonormal logratio coordinates are theoretically
well justified, both the normalizing constants to reach orthonormality and the natural loga-
rithm itself result in quite a complex interpretation of the regression parameters. A way out
is to move to orthogonal coordinates, where nothing from the above properties of regression
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modelling in coordinates is lost (in particular, values of T
(l)
i and U

(l)
i statistics, neither the

geometrical features of regression with compositional response (Egozcue et al. 2011)), while,
at the same time, a substantial simplification in parameter interpretation is gained. Following
(1), these considerations lead to orthogonal coordinates

z
(l)∗
i = log2

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1, (14)

for l = 1, . . . , D, where the normalizing constants are omitted and the original natural loga-
rithm is replaced by the binary one. Let’s see the effect of using the orthogonal coordinates
for all regression models introduced above (parameters of their corresponding versions in or-
thogonal coordinates (14) are always marked with an asterisk). Considering regression with
compositional explanatory variables first, from properties of LS estimation and the relation
between logarithms of different bases we get

β∗0 = β0, β
(l)∗
1 = ln(2)

√
D − 1

D
β
(l)
1 ,

generally

β
(l)∗
i = ln(2)

√
D − i

D − i+ 1
β
(l)
i , i = 1, . . . , D − 1,

and similarly for their estimates and the respective standard errors. Analogously, for models
resulting from regression with compositional response we get

γ
(l)∗
i = log2(e)

√
D

D − 1
γ
(l)
i , i = 0, . . . , k.

Finally, in regression within composition both the above effects are combined, i.e., for D
regression models

Zi0 = β0 + β
(l)
1 z

(l)
i,1 + · · ·+ β

(l)
D−1z

(l)
i,D−1 + ε

(l)
i , i = 1, 2, . . . , n, (15)

(l = 1, . . . , D) we obtain

β∗0 = log2(e)

√
D + 1

D
β0, β

(l)∗
i =

√
(D + 1)(D − i)
D(D − i+ 1)

β
(l)
i , i = 1, . . . , D − 1.

Indeed, the interpretation of regression coefficients gets simpler now. For regression with
compositional regressors and non-compositional response, first note that a unit additive in-
crement in a log-transformed coordinate z is equivalent to a two-fold multiplicative increase
in the relative dominance of the original compositional variable x, if the base-2 logarithm is
used, that is,

∆z
(l)∗
1 = log2

x
(l)
1

D−1
√∏D

i=2 x
(l)
i

· 2− log2
x
(l)
1

D−1
√∏D

i=2 x
(l)
i

= 1.

The coefficient β
(l)∗
1 in the regression equation then has the usual meaning of an additive in-

crease in the response y that corresponds to increasing z by one (i.e., increasing the dominance

of x twice), while keeping all else fixed. For example, if β
(l)∗
1 = 3, the value of the response

gets higher by 3 units when the relative dominance of the part xl with respect to the average
of the other parts, see the logratio in (14), is doubled, at constant values of the other involved
covariates (orthogonal coordinates). Next, in case of regression with compositional response

and non-compositional regressors, γ
(l)∗
j is the additive increment of the log-transformed re-

sponse z when adding one to an explanatory variable xj , j = 1, . . . , k, (at constant values of
the other covariates)

γ
(l)∗
j = ∆Z

(l)∗
1 = log2

Y
(l)
1

D−1
√∏D

i=2 Y
(l)
i

δ
(l)
j − log2

Y
(l)
1

D−1
√∏D

i=2 Y
(l)
i

= log2 δ
(l)
j ,
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where δ
(l)
j = 2γ

(l)∗
j is the multiplicative increase in the relative dominance of the original

compositional response y. So, for a unit additive change in xj , the ratio of Y
(l)
1 to the

“mean value” of the other compositional responses grows δ
(l)
j = 2γ

(l)∗
j times. Finally, an

analogous interpretation for regression within composition can be obtained, namely, a two-
fold multiplicative increase in the relative dominance of xl (or equivalently, a unit additive

increment in coordinate z
(l)∗
1 ) brings the increase in the relative dominance of the response

x0 of

δ
(l)
1 = 2β

(l)∗
1 , where ∆Z∗0 = log2 δ

(l)
1 .

Note also that the above expression for the proportionality coefficient δ stays the same ir-
respective of the base to which the logarithm was taken, as factor 2 in the expression now
stands for two-fold increase in dominance, not for the logarithmic base.

5. Time budget analysis

Following the previous developments, the decision to admit that the time budget data are
by their nature compositional invites one to couch analysis in terms of logratios instead of
working with the original observations in percentages; namely, the latter would lead to biased
conclusions due to relative character of compositions. The aim of this section is to demonstrate
on real-world psychometric data that working with logratios in the regression context is as
accessible as dealing with the original observations.

5.1. Data and methods

For this purpose, we employ data from (Vančáková 2013) that were obtained in a large psycho-
metric study, guaranteed and realized by the Department of Psychology, Palacký University
in Olomouc, Czech Republic. A questionnaire called “Leisure Time” was distributed among
students at the above university, reaching a total of N = 414 respondents (347 women, 67
men) who provided complete answers. The items included in the questionnaire tapped three
distinct areas: i) personal characteristics (age, gender, faculty and field of study); ii) leisure
time (its concept, absolute and relative amount, content); iii) personality traits (self-esteem
and attitude to challenges). In terms of current analysis, of particular interest are relationships
among the following variables: Daily Time Budget as expressed in seven compositional vari-
ables (parts, summing up to 100 percent) study/work, commuting, food, hygiene&dressing,
sleep, household duties, and leisure time; personality variables self-esteem (z-score from a
10-item Rosenberg Self-Esteem Scale (Rosenberg 1965) included in the questionnaire) and
challenge (“Are you a person who invites challenges, i.e. opportunities to surpass yourself?”,
originally 4-choice response collapsed into dichotomic and coded as 1 for “always” or “almost
always”, and 0 for “almost never” or “never”); and covariates of age (in years) and gender
(dichotomic, coded as 1 for men and -1 for women). Distribution of the variables age and
self-esteem is visualized in Figure 1 in the form of EDA-plots using the R package StatDA
(Filzmoser 2013).

Although the respondents were asked to enter data on Daily Time Budget in percentages,
the obtained range of the sum of parts was 〈7, 520〉 due to misunderstanding the units to use
and their prescribed constant sum constraint (of course, most of the row sums were exactly
or close to 100). Nevertheless, the important information on relative contributions of parts to
the overall time budget was unaffected by using whatever units, which thus emphasizes even
further the necessity to apply the logratio methodology in statistical processing. Note once
again that for the logratio methodology the constant sum representation of compositional
data is not a necessary requirement. However, for the purpose of easier comparisons, in the
following the percentage representation was taken for all time budget observations.

Besides paying attention to differences, as well as agreement, in logratio vs. “standard”
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Figure 1: EDA-plots for variables age (left) and self-esteem (right).

methodologies, we will keep our thoughts focused on some tentative conjectures about inter-
connections among variables. This data set allows for exploring possible influences among
several prominent psychological factors. On the one hand, we have the pair of personality
traits of self-esteem and openness to challenge which we expect to be bundled close together
and even boost each other if challenges are being tackled successfully, or else restrain each
other in a downward spiral. On the other hand, the necessity of time allocation brings about
an inevitable interplay of work, active relaxation, and sleep (passive relaxation). And then,
of course, these two broad areas come into mutual contact in complex ways.

These considerations lead us, at the outset, to postulate a firm and positive relationship
between personality traits of challenge and self-esteem. Next, within compositional variables,
we deem as highly probable a negative relationship between work/study and leisure time, and
between work/study and sleep on the premise that working/studying takes away time from
both these forms of relaxation. Sleep is considered loosely associated with leisure time on the
grounds that the time left after deducting all duties is being distributed between both. If there
is more time available, it will add up to both sleep and leisure. If any at all, the relationship
between sleep and challenge is expected to be negative, as the person who is busy taking
challenges might have less time for sleep. The association between sleep and self-esteem is
less clear-cut but it can be conceived along the lines that a self-assured person participates in
numerous activities and thus sleeps less, while, on the other hand, an insecure person may seek
sleep as a welcome escape from reality. As a consequence, work/study should be positively
related with both challenge and self-esteem, and leisure time negatively related with both.
Any effects of gender may be obscured in this dataset as men are seriously underrepresented
among respondents.

In the following, the relationships among variables are determined through regression anal-
ysis. A logratio approach (which is deemed appropriate whenever a compositional variable
out of Daily Time Budget is present) is compared to a standard non-compositional approach,
e.g. Linear Model (LM) or Generalized Linear Model (GLM). In the statistical analysis we
focused on those relations that are primarily not gender related. Moreover, preliminary ex-
ploratory analysis using variation matrix (Aitchison 1986) and compositional biplot (Aitchi-
son and Greenacre 2002), see Figure 2, revealed strong relationship between food and hy-
giene&dressing components; because of their rather marginal importance for psychological
interpretation, these parts will be excluded from further consideration (but kept as parts of
the initial composition). On the other hand, there seems to be no relation between commuting
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Figure 2: Compositional biplot for time budget data. Number codes correspond to single
activities (1 − study/work, 2 − commuting, 3 − food, 4 − hygiene&dressing, 5 − sleep, 6 −
household duties, 7 − leisure time)

and leisure time, or study/work and household duties, respectively. Interestingly, there is some
nearly constant ratio also between study/work and sleep throughout the sampled population,
which goes against the hypothesized association.

5.2. Regression analysis

From the essence of the data set, interconnections among variables (compositional and non-
compositional, or even within the time budget composition) are of primary interest. For
this purpose, several regression models were applied to data. Accordingly, in addition to
Daily Time Budget, non-compositional variables of challenge, self-esteem, age, and gender
were taken into consideration here. In order to enable direct interpretation of regression
output, orthogonal coordinates (as described in Section 4), instead of orthonormal ones, were
employed for the compositional variables within logratio approach.

As a first step, let us explore the manner how seeking challenges is determined by Daily Time
Budget and other explanatory variables. That is, the response now is non-compositional
(binomial), while some of the regressors are compositional and others not. For this purpose,
binomial regression (a special case of logistic regression) was applied, first with compositional
regressors in logratio coordinates, second with the original variables in percentages; note that
any representation of the orthogonal logratio coordinates would lead to the same parameter
estimates for the non-compositional covariates. From the time budget variables just those
of potential psychological influence were included (study/work, commuting, sleep, household
duties, and leisure time); of course, due to construction of the regression model in coordinates,
all parts of the original composition were taken into account for the estimation purposes under
logratio approach. On the other hand, perfect collinearity among compositional variables
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makes it impossible to include all of them simultaneously as regressors in a standard linear
model. Following (Hron et al. 2012), common regression output like parameter estimates,
their standard errors, values of corresponding statistics and their P-values (using function
glm from R-package MASS, see (Venables and Ripley 2002) for further details) are collected
in Table 1 (all tables with detailed results are included as supplementary material), where
names of the original parts stand as notation for the corresponding orthogonal coordinates
(14). It can be seen that both the study/work coordinate and the self-esteem variable are
contributing the most (in the positive direction, due to positive sign of their coefficients) in
explaining the challenge response. The interpretation of coefficients is such that if the relative
dominance of study/work in time budget doubles (with respect to average contribution of the
other parts), the odds for seeking challenges increases exp(0.422) = 1.53-fold (other covariates
staying fixed); similarly, a unit increase in self-esteem z-score brings increase of the odds for
seeking challenges exp(0.452) = 1.57-fold. Note that, in line with the methodology described
in the previous section, five regression models were employed to obtain the estimates for the
compositional coordinates. By applying orthogonal coordinates (14), the interpretation of
regression coefficients gets much easier than with original orthonormal coordinates (1). The
tight link between challenge and self-esteem is thus established. On the other hand, we don’t
see significance of either sleep or leisure time, though the direction (sign of coefficient) is as
expected.

For all binomial regression models the usual model diagnostics can be done, being the same ir-
respective which ilr coordinate system for representation of compositional predictors is taken.
Specifically, jackknife deviance residuals against linear predictor, normal scores plots of stan-
dardized deviance residuals, plot of approximate Cook statistics against leverage/(1-leverage),
and case plot of Cook statistic as listed, e.g. in function glm.diag.plots from the package
boot can be obtained. In our case normality of residuals is rather limited, though plots of the
Cook statistics do not show a significant amount of influential/leverage points that supports
reliability of the results.

Finally, note that it would be also possible to add interactions between single compositional
parts (represented by the respective ilr variables) and non-compositional predictors. An
example of that would be possible interaction between variable study/work changing with
age, i.e. fresh students and students shortly before finishing the study might have different
values on study/work than others. Nevertheless, in order to keep simplified level of the
modelling, interactions were not allowed; moreover, even when such a promising interaction
was added to the model, the resulting parameter was not significant.

Table 1: Logratio approach: Results from regression of challenge on orthogonal coordinates
of the explanatory composition and further covariates. For explanations see text.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.69708 1.24154 -0.561 0.57448

study/work 0.42200 0.14164 2.979 0.00289

commuting -0.06723 0.10961 -0.613 0.53959

sleep -0.20460 0.17476 -1.171 0.24168

household duties -0.02904 0.11187 -0.260 0.79519

leisure time -0.13142 0.12714 -1.034 0.30129

self-esteem 0.45187 0.11105 4.069 4.72e-05

age 0.04298 0.05516 0.779 0.43586

gender 0.19698 0.15494 1.271 0.20360

Null deviance: 552.4 on 413 degrees of freedom

Residual deviance: 521.4 on 404 degrees of freedom

AIC: 541.4

Number of Fisher Scoring iterations: 4
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The output of binomial regression with the original compositional variables is shown in Ta-
ble 2. The interpretation of regression parameters is analogous to standard multiple regres-
sion. The exponential function exp(·) of the estimate of regression parameter corresponding to
given covariate (either in percentages or in other units) represents amount by which the odds
of challenge would increase/decrease if that covariate were one unit higher by constant values
of the other covariates. By taking this interpretation into account, there is not much differ-
ence from the logratio approach above (also the model fit, expressed by AIC criterion, stays
almost the same), which would indicate that the distortion of covariance structure among
percentage covariates (see, e.g., (Aitchison 1986) for details) didn’t have dramatic influence
on regression output. The strength of association between openness to challenge and self-
esteem remains unchanged. Nevertheless, the interesting influence of study/work coordinate,
which was clearly visible using the logratio coordinates, is now lost.

Table 2: GLM approach: Results from binomial regression of challenge on original explanatory
composition (in percentages) and further covariates. For explanations see text.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.44332 1.90962 -0.232 0.816

study/work 0.02123 0.01853 1.146 0.252

commuting -0.00242 0.03916 -0.062 0.951

sleep -0.00467 0.02077 -0.225 0.822

household duties 0.00073 0.03098 0.024 0.981

leisure time -0.01892 0.02253 -0.840 0.401

self-esteem 0.44518 0.11046 4.030 5.57e-05

age 0.03610 0.05418 0.666 0.505

gender 0.16862 0.15198 1.110 0.267

Null deviance: 552.40 on 413 degrees of freedom

Residual deviance: 524.04 on 405 degrees of freedom

AIC: 542.04

Number of Fisher Scoring iterations: 4

As a second step, let us look the other way around and search for possible significant co-
variates of Daily Time Budget. For this purpose regression with compositional response was
employed, the response variables now being the five chosen Daily Time Budget variables. The
logratio approach leads to five univariate regression models (with orthogonal coordinates cor-
responding to individual compositional parts) and the results are displayed in Table 3 (to save
space, just regression estimates and possible significance at the usual level α = 0.05, marked
by asterisk, are provided). The effects of particular covariates on response coordinates are
evident. For example, by increasing the value of self-esteem by one, the relative dominance
of leisure time in the composition (with respect to average of parts) increases approximately
by 6 percent (20.088 = 1.06). Similarly, taking challenges brings the relative dominance of
study/work 18 percent higher (20.237 = 1.18), and one more year of age 2.9 percent higher.
The positive association between study/work and taking challenges is in accordance with our
anticipations, but with self-esteem and leisure time a contrary direction was expected. The
connection between sleep and both challenge and self-esteem remained below significance.
It is interesting to see also some gender influence on both sleep and leisure time. Due to
coding used (1 for male and −1 for female) it can be concluded that for males sleep and
leisure time play a more important role in the overall time budget than for females. More

precisely, the part sleep is explained only by gender. Hence, ẑ
(sleep)∗
1 = 1.644 is the fitted

value of the coordinate z
(sleep)∗
1 for males, while ẑ

(sleep)∗
1 = 1.357 for females. It means that

the relative dominance of sleep in the composition to the “mean value” of the other composi-
tional responses is 21.644 = 3.125 for males (3.125 times higher relative contribution of sleep
than for the averaged rest of components), and 21.357 = 2.562 for females. Further, it can
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be concluded that the relative dominance of sleep for males is 2
2γ̂∗

(sleep) = 1.22 times greater
than for females. Although results for food and hygiene&dressing variables are in general not
discussed in this section, it is worth to note that for hygiene&dressing a significant role of
gender (in the negative sense) was revealed; accordingly, this compositional part plays a more
important role in time budget of females than for males.

Table 3: Logratio approach: Results from regression with compositional response. Significant
regression parameters (at α = 0.05) marked by asterisk.

study/work commuting sleep household leisure time

(Intercept) 0.60673 -1.17704 1.50068* -1.27186* 0.96194*

challenge 0.23723* -0.02216 -0.01922 -0.07174 -0.13237

self-esteem -0.02201 0.02367 0.03083 -0.01959 0.08817*

age 0.04117* -0.00789 0.00186 0.02723 -0.01801

gender -0.03217 -0.05116 0.14381* -0.04412 0.22449*

By way of comparison, the same regression model was analysed under the assumption of
Dirichlet distribution for the compositional response that is popular also in psychometric
context (Georguieva, Rosenheck, and Zelterman 2008) and, although rather inconsistent with
logratio methodology, is still frequently recommended for modelling compositional data. For
this purpose function DirichReg from the package DirichletReg (Maier 2014) was applied
by expressing the input compositions in proportional representation; regression output is
collected in Table 4. The interpretation of regression parameters is analogous to standard
multiple regression by considering proportional representation of the response and the fact
that parameters of the Dirichlet distribution, being not scale invariant, are predicted. Apart
from apparent computational complexity of the model, Dirichlet regression does not seem
to shed new light into the problem; moreover, some of the potential relationships that have
emerged with the logratio approach are lost again.

Table 4: GLM approach: Results from Dirichlet regression with compositional response.
Significant regression parameters (at α = 0.05) marked by asterisk.

study/work commuting sleep household leisure time

(Intercept) 2.05549* 0.94065* 2.59815* 0.98208 2.21778*

challenge 0.08550 -0.05467 -0.06799 -0.08346 -0.14143

self-esteem 0.03210 0.04770 0.06618 0.02641 0.09649*

age 0.00825 -0.01401 -0.01578 -0.00027 -0.02443

gender -0.03630 -0.03837 0.06755 -0.03792 0.11748*

From the previous analysis, leisure time seems to be strongly linked with the non-compositional
variables. A natural question thus arises whether regression could reveal also some relations
within parts of the time budget composition. Thus, as the third step, the corresponding
logratio model from Section 2 was applied, by expressing both the response and regressors in
orthogonal logratio coordinates (and with additional non-compositional covariates). Similarly
as before, Table 5 collects results from four regression models, each highlighting the role of
one of compositional explanatory variables (without influence on the non-compositional co-
variates). Though the R2 statistic gives rather low value (as is usual in social science), some
patterns stand out. In particular, relative dominance of leisure time is positively influenced
by sleep (increasing the dominance of sleep twice enlarges the dominance of leisure time by 27
percent, as 20.34 = 1.27) and marginally by self-esteem (unit increase in self-esteem increases
the dominance of leisure time by 6 percent); negative effects on leisure time are formed by
study/work (10 percent decrease in dominance, 2−0.16 = 0.90) and commuting (decrease in
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dominance by 13 percent). Consistency with the previous logratio model (Table 3, regression
with compositional response) is underlined by the roles of self-esteem and gender covariates.
Again, a psychological interpretation can be easily derived. Here we are able to pinpoint the
significant positive association of sleep and leisure time, as well as negative association of
work/study and leisure time. Marginally significant is the connection between leisure time
and self-esteem which appeared significant in previous regression (Table 3).

Table 5: Logratio approach: Results from regression of leisure time coordinate on orthogonal
coordinates of the explanatory composition and further covariates. For explanations see text.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.47988 0.45492 1.055 0.29211

study/work -0.15646 0.05576 -2.806 0.00526

commuting -0.20414 0.04377 -4.664 4.22e-06

sleep 0.33976 0.06374 5.330 1.64e-07

household duties 0.05734 0.04304 1.332 0.18351

challenge -0.09358 0.08937 -1.047 0.29568

self-esteem 0.08353 0.04330 1.929 0.05442

age -0.01908 0.01991 -0.958 0.33852

gender 0.16760 0.05951 2.817 0.00509

Residual standard error: 0.8544 on 404 degrees of freedom

Multiple R-squared: 0.1619, Adjusted R-squared: 0.1433

F-statistic: 8.674 on 9 and 404 DF, p-value: 6.21e-12

For the final comparison we consider the standard linear regression model where the original
parts in percentages are involved (except for food and hygiene&dressing), see Table 6 for
the regression summary. Although conclusions from this model as regards non-compositional
covariates would be pretty similar as with logratio methodology, the situation is different in
other respects. By comparing R2 for these two models and P-values at respective composi-
tional covariates it is easy to see that for the standard regression model these values are very
strongly driven by the constant-sum constraint of the original composition. In particular, note
that by including all the compositional parts, R2 would be brought up to 1, i.e., relations
between the response and covariates would be completely driven by constant sum constraint
of the input data. Of course, as statistical processing of the original compositions violates
both scale invariance and relative scale properties of observations, it cannot be concluded that
by considering compositional data without a constant sum constraint, the resulting regression
model would be relevant. Nevertheless, in percentage representation, which is the case here,
the irrelevance of the standard approach is clearly observable.

5.3. Results

The logratio approach to regression analysis supports our hypothesis of strong negative asso-
ciation between work/study and leisure time, as well as of strong positive association between
challenge and self-esteem. Next, leisure time is significantly tied to self-esteem but the di-
rection here appeared positive, rather than negative as expected. The reason could be that
self-assured people don’t feel the urge to work that much and rather take things easy, allowing
themselves more leisure. Also, an explanation in keeping with (Š́ıpek 2001) says that people
with higher self-esteem may be better prepared to use their free time and it may be easier for
them to admit their needs (for rest and reward). The connection between leisure time and
challenge was not born out (remained below significance, though direction was negative as
anticipated). The above regression results were agreed on by both logratio and standard lin-
ear model approaches. Both approaches also showed a relationship between sleep and leisure
time. However, here the directions differed: logratio showed it to be positive (as hypothe-
sized), linear model negative. On top of that, logratio approach was capable of revealing a
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Table 6: Standard LM approach: Results from regression of leisure time on other composi-
tional parts (in percentages) and further covariates. For explanations see text.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.88605 2.96589 19.180 < 2e-16

work/study -0.60560 0.02698 -22.446 < 2e-16

commuting -0.94166 0.07235 -13.016 < 2e-16

sleep -0.51838 0.03738 -13.869 < 2e-16

household duties -0.63007 0.06094 -10.339 < 2e-16

challenge -0.41193 0.48376 -0.852 0.39498

self-esteem 0.46017 0.23468 1.961 0.05058

age 0.05062 0.10826 0.468 0.64032

gender 1.00488 0.31835 3.157 0.00172

Residual standard error: 4.636 on 405 degrees of freedom

Multiple R-squared: 0.6014, Adjusted R-squared: 0.5935

F-statistic: 76.37 on 8 and 405 DF, p-value: < 2.2e-16

significant positive connection between challenge and work/study.

The psychologically relevant variables seem to form a well-defined cluster of challenge, self-
esteem, and work/study. Somewhat in opposition stands the pair of leisure time and sleep.
However, their position with respect to the main cluster is less clearly marked, as leisure time
is negatively linked to work/study but positively (perhaps only marginally) to self-esteem.
Nevertheless it seems reasonable to assume that working/studying does take time away from
both leisure and sleep simultaneously.

Finally, it is also worth noting that standard regression models were presented mostly for the
sake of comparison of the logratio approach with alternatives that would be most possibly
used instead. While in some cases their output might seem meaningful, it can also happen
that by ignoring the relative structure of Daily Time Budget some interesting features are lost,
as was the case in Table 2 and Table 4. For some cases, like when percentage representation
of the relative contributions is analysed, it is very easy to demonstrate that scale invariance
of compositional data leads to clear failure of the standard approach (Table 6).

6. Discussion

Specific habits of time allocation reveal a lot about an individual, a community, a society, or
a culture. In each society, options available to individuals for earning their living determine
the amount of time they will spend working, or preparing themselves for any such productive
activity through study or apprenticeship. In modern times, we have witnessed a continuous
reduction in working hours, at least in industrialized countries. At the same time, due to
constant total time budget, this development leaves more space for other activities, both
necessary (self- and home-maintenance like sleep, eating, hygiene, care for family and house)
and discretionary (leisure activities like socializing, culture, sports, reading, idling, etc.). As
the time budget data are usually accompanied with other psychometric variables, regression
modelling is the first and intuitive choice for a relevant statistical analysis.

Due to relative character of time budget allocation, it seems natural to work with (log-)ratios
rather than with observations in the original scale (i.e. represented usually in proportions
or percentages). It turned out that logratios meet the scale invariance and relative scale
requirements (among others that are important for reasonable processing of compositional
data) commonly raised in connection with any observations carrying primarily relative infor-
mation. The main problem is then how to construct logratio coordinates, both meaningful
from the mathematical point of view (guaranteed in particular by orthonormality of coor-
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dinates) and at the same time providing easy interpretation. The aim of the paper was to
enhance interpretability of regression analysis output by employing orthogonal coordinates
in place of the mathematically preferred orthonormal ones, demonstrated for the particular
case of time budget data. The reason for the choice of alternative coordinates is that all the
beneficial properties of the orthonormal coordinates are maintained also by the orthogonal
ones, but the latter enable (by avoiding the scaling constants and changing the logarithmic
base) a more straightforward interpretation. We are convinced that better interpretability
of the regression models, discussed in the paper, can help with applicability of the logratio
methodology in psychological research, and also in general.
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