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Abstract

The problem of sequential testing of simple hypotheses for time series with a trend
is considered. Analytic expressions and asymptotic expansions for error probabilities
and expected numbers of observations are obtained. Robustness analysis is performed.
Numerical results are given.
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1. Introduction

The sequential approach to test parametric hypotheses proposed by Wald (see Wald (1947))
has been applied in many practical problems of computer data analysis. The sequential prob-
ability ratio test (SPRT) is proved to be optimal in terms of minimizing expected sample size
under the assumption that type I and type II error probabilities do not exceed preassigned
values (see Wald and Wolfowitz (1948)). The problem of sequential test performance charac-
teristics (error probabilities and expected number of observations) evaluation is well studied
for the case of identical distribution of observations (see Govindarajulu (2004), Kharin (2013),
Kharin (2016)). In this paper, the model of non-identical distribution is considered for the
problem of two simple hypotheses testing (see Kharin and Ton (2016)).

In practice, data does not often follow the hypothetical model exactly (see Huber (1981),
Kharin (2005)), and the problem of robustness under distortions (see Kharin (1997), Maevskii
and Kharin (2002)) is important for sequential testing (see Kharin (2011), Kharin and Kishy-
lau (2015)). Here we consider the problem of robustness of sequential tests for time series
with trend.

2. Mathematical model

Let x1, x2, ... be time series with a trend:

xt = θTψ(t) + ξt, t = 1, 2, 3, ..., (1)
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where ψ(t) = (ψ1(t), ψ2(t), ..., ψm(t))T , t ≥ 1, are the vectors of basic functions of trend,
θ = (θ1, θ2, ..., θm)T ∈ Rm is an unknown vector of coefficients, and {ξt, t ≥ 1} is the sequence
of independent identically distributed random variables, ξt ∼ N(0, σ2).

Consider two simple hypotheses (θ0, θ1 ∈ Rm are known vectors):

H0 : θ = θ0, H1 : θ = θ1. (2)

Denote the accumulated log-likelihood ratio statistic:

Λn = Λn(x1, x2, ..., xn) =
∑n

t=1
λt, (3)

where λt = ln

(
pt(xt, θ

1)

pt(xt, θ0)

)
is the log-likelihood ratio calculated on observation xt, and pt(x, θ)

is the probability density function of xt provided the true parameter value is θ. To test
hypotheses (2), after n observations one makes the decision:

d = 1[C+,+∞)(Λn) + 2 · 1(C−,C+)(Λn). (4)

Thresholds C− and C+ are the parameters of the test. Decisions d = 0 and d = 1 mean
stopping of the observation process and acceptance of H0 or H1 correspondently. According
to Wald (1947),

C+ = ln ((1− β0)/α0) , C− = ln (β0/(1− α0)) ,

where α0, β0 are given values for error probabilities of types I and II respectively.

3. Some auxiliary results

Let ζn, n ≥ 1 be a sequence of random variables satisfying the following conditions:

i) ζn ∈ T = {0, 1, 2, ...,K,K + 1}, n ∈ N; (5)

ii) P (ζn = i1|ζk = i1) = 1, i1 ∈ {0, 1}, n > k; (6)

iii) P (ζn = i1|ζk = i2, ζl = i3) = P (ζn = i1|ζk = i2), n > k > l ≥ 1, i1, i2, i3 ∈ T. (7)

Remark 1. A Markov chain with a finite state space T , in which the states 0, 1 are absorbing,
satisfies conditions (5)-(7).

Introduce the notation:

T1 = {0, 1}, T2 = {2, 3, ...,K,K + 1}, T = T1 ∪ T2,

P (k) = {pij(k)}(K+2)×(K+2), P (k, l) = {pij(k, l)}(K+2)×(K+2),

pij(k) = P (ζk = j|ζk−1 = i), pij(k, l) = P (ζk+l = j|ζk = i).

Since (6), matrices P (k) and P (1, k) can be expressed as follows:

P (k) =

(
I2 O2×K
Rk Qk

)
, k ≥ 2; P (1, k) =

(
I2 O2×K
R̄k Q̄k

)
, k ≥ 1, (8)

where Rk, R̄k are some matrices of size K × 2, Ik is the identity matrix of size k, O2×K is the
2×K-matrix with all elements equal to 0, and Qk, Q̄k are some matrices of size K ×K. For
k < n < k + l we have:

pij(k, l) =
∑
t∈T

P (ζn = t|ζk = i)P (ζk+l = j|ζn = t) =
∑
t∈T

pit(k, n− k)ptj(n, k + l − n),

which implies that

P (k, l) = P (k, n− k)P (n, k + l − n), k < n < k + l. (9)
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Therefore,

P (1, k) = P (2)P (3)...P (k + 1), k ≥ 1. (10)

From (8) and (10), we get (Q1 = IK):

Q̄k = Q1Q2...QkQk+1. (11)

Let t be the total number of time moments for which process ζn belongs to T2; nj(j ∈ T2)
be the number of time moments for which ζn = j; ukj be the function that is 1 if the process
ζn = j after k steps, and is 0 otherwise; Ei(·) be the conditional expected value given ζ1 = i.

Denote: N =
∑+∞

k=0 Q̄k; τ = N1K ; 1K is the vector of size K with all elements equal to 1.

Theorem 1. In the above notation, for sequence (5)-(7) the following equations are satisfied:

{Ei(nj)}K×K = N, i, j ∈ T2, {Ei(t)}K×1 = τ, i ∈ T2. (12)

Proof. Consider representation nj =
∑+∞

k=0 u
k
j . Therefore,

{Ei(nj)} = {
+∞∑
k=0

Ei(u
k
j )} =

+∞∑
k=0

{pij(1, k)} =
+∞∑
k=0

Q̄k;

{Ei(t)} = {
∑
j∈T2

Ei(nj)} = N1K = τ.

Let B be a matrix of size K× 2, B = {bij}K×2, where bij is the probability that the sequence
ζn started in i is absorbed in j, i ∈ T2, j ∈ T1.

Theorem 2. If conditions (5)-(7) hold for ζn, then

B =
+∞∑
k=1

Q̄k−1Rk+1. (13)

Proof. Let B(k), k ≥ 1, be matrix of size K × 2, B(k) = {bij(k)}K×2, where bij(k) is the
probability that the process ζn starting in i is absorbed in j after exactly k steps, i ∈ T2, j ∈ T1.
We obtain (13) from the facts that B(k) = Q̄k−1Rk+1 and B =

∑+∞
k=1B(k).

Corollary 1. If π = (π0, π1, ..., πK , πK+1), πi = P (ζ1 = i), i ∈ T and π′ = (π2, ..., πK , πK+1),
then the total expected value E(t) equals:

E(t) = π′τ. (14)

Let U, V, T ∈ R be three independent random variables, U ∼ N(µu, σ
2
u), V ∼ N(µv, σ

2
v), T ∼

N(µt, σ
2
t ). From the properties of multivariate normal distributions (see Bilodeau and Brenner

(1999)), we have:

fU+V |V (x|y) =
fU+V,V (x, y)

fV (y)
= n1(x; y + µu, σ

2
u), (15)

fU+V+T |V+T,T (x|y, z) = fU+V+T |V+T (x|y) = n1(x; y + µu, σ
2
u), (16)

|f ′U (x)| ≤ e−1/2

σ2
u

√
2π
, ∀x, (17)

|f ′U+V |V (x|y)| ≤ e−1/2

σ2
u

√
2π
, ∀x, y. (18)
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Lemma 1. (Gut 2005) If X is a non-negative, integer valued random variable, then

E(X) =
+∞∑
n=1

P (X ≥ n).

Lemma 2. (Gut 2005) Let r > 0, and suppose that X is a non-negative random variable.
Then the following inequalities hold:

+∞∑
n=1

nr−1P (X ≥ n) ≤ E(Xr) ≤ 1 +
+∞∑
n=1

nr−1P (X ≥ n),

and

E(|X|r) <∞ if and only if

+∞∑
n=1

nr−1P (X ≥ n) <∞.

Lemma 3. (Coope 1996) For positive semidefinite matrices A,B of the same order

0 ≤ tr(AB) ≤ tr(A)tr(B).

4. Performance and robustness analysis

4.1. Performance analysis for the hypothetical model

For model (1), (3) we have (t ≥ 1):

xt ∼ N(θTψ(t);σ2), pt(x, θ) =
1

σ
√

2π
exp

{
− 1

2σ2
(x− θTψ(t))2

}
;

λt = λt(xt) = − 1

2σ2
{2xt(θ0 − θ1)Tψ(t) + (θ1)Tψ(t)ψT (t)θ1 − (θ0)Tψ(t)ψT (t)θ0}.

Due to the properties of the normal distribution, λt and Λn have also normal distributions
with the following parameters:

E(λt) = − 1

2σ2
{2(θ0 − θ1)Tψ(t)ψT (t)θ + (θ1)Tψ(t)ψT (t)θ1 − (θ0)Tψ(t)ψT (t)θ0},

D(λt) =
(θ0 − θ1)Tψ(t)ψT (t)(θ0 − θ1)

σ2
;

E(Λn) = − 1

2σ2
{2(θ0 − θ1)THnθ + (θ1)THnθ

1 − (θ0)THnθ
0},

D(Λn) =
(θ0 − θ1)THn(θ0 − θ1)

σ2
,

where Hn =
∑n

t=1 ψ(t)ψT (t).

Introduce the notation: E(k)(·), D(k)(·) are conditional expected value and variance provided
the hypothesis Hk is true (k = 0, 1), Φ(·) is the cumulative distribution function of the
standard normal law,

σ2
n = D(0)(λn) = D(1)(λn) =

(θ0 − θ1)Tψ(n)ψT (n)(θ0 − θ1)

σ2
,

µ(k)
n = E(k)(λn) =

(−1)k+1σ2
n

2
, s2

n =
n∑
t=1

σ2
t , m(k)

n =
n∑
t=1

µ
(k)
t =

(−1)k+1s2
n

2
;

An = {aij}n×n, aij =

{
1, i ≥ j,
0, otherwise,

Xn = (λ1, λ2, ..., λn)T , Tn = (Λ1,Λ2, ...,Λn)T = AnXn;

µ
(k)
Tn

= E(k)(Tn) = AnE
(k)(Xn), ΣTn = Cov(Tn, Tn) = AnCov(Xn, Xn)ATn ;

N = inf{n ∈ N : Λn /∈ (C−, C+)}, Γ = (θ0 − θ1)(θ0 − θ1)T .



Austrian Journal of Statistics 27

Theorem 3. If tr(ΓHn) → +∞ as n → +∞, then test (3)-(4) terminates finitely with
probability 1.

Proof. We have:

s2
n =

n∑
t=1

σ2
t =

1

σ2

n∑
t=1

(θ0 − θ1)Tψ(t)ψT (t)(θ0 − θ1)

=
1

σ2

n∑
t=1

tr{(θ0 − θ1)Tψ(t)ψT (t)(θ0 − θ1)} =
1

σ2
tr(ΓHn).

Under the theorem condition, we get s2
n → +∞ as n → +∞. Furthermore, we also have

Pk(N > n) = Pk(Λi ∈ (C−, C+), i = 1, n), k = 0, 1, and

Pk(Λi ∈ (C−, C+), i = 1, n) ≤ Pk(Λn ∈ (C−, C+)) =

= Φ

(
C+ − µ(k)

n

sn

)
− Φ

(
C− − µ(k)

n

sn

)

= Φ

(
2C+ − (−1)k+1s2

n

2sn

)
− Φ

(
2C− − (−1)k+1s2

n

2sn

)
,

which implies that lim
n→+∞

Pk(Λi ∈ (C−, C+), i = 1, n) = 0 or lim
n→+∞

Pk(N > n) = 0.

Therefore, Pk(N < +∞) = 1− Pk(N = +∞) = 1− lim
n→+∞

Pk(N > n) = 1.

Corollary 2. Under the conditions of Theorem 3 we get:

n∑
i=1

m∑
j=1

ψ2
j (i)→ +∞ as n→ +∞. (19)

Additionally, if (θ1
i − θ0

i )
Tψi(t), i = 1,m, are simultaneously nonnegative (or nonpositive)

functions at t, then the result of Theorem 3 still holds if
∑n

i=1 ψ
2
k(i)→ +∞, where k is such

an index that θ1
k 6= θ0

k.

Proof. Note that Γ and Hn are positive semi-definite matrices. The proof is derived directly
from Lemma 3 and the facts that:

tr(Hn) =

n∑
i=1

m∑
j=1

ψ2
j (i), tr(ΓHn) =

n∑
i=1

(

m∑
k=1

(θ0
k − θ1

k)ψk(i))
2.

Remark 2. If
∑n

i=1

∑m
j=1 ψ

2
j (i) is bounded, then there exists a positive constant L such that

s2
n → L as n → +∞. In this case, we get σn → 0 and µ

(k)
n → 0, k = 0, 1. It means λn

P−→ 0
as n→ +∞ under hypothesis H0 or H1. In addition, we also have:

lim
n→+∞

Pk(Λn ∈ (C−, C+)) = Φ

(
2C+ − (−1)k+1L

2
√
L

)
− Φ

(
2C− − (−1)k+1L

2
√
L

)
> 0.

Theorem 4. Under the conditions of Theorem 3 the following expressions are valid for the
characteristics of test (3), (4):

E(k)(N) = 1 +
+∞∑
i=1

∫ C+

C−

dsi

∫ C+

C−

dsi−1...

∫ C+

C−

ni(s;µ
(i)
Ti
,ΣTi)ds1, k = 0, 1, (20)

α =

∫ +∞

C+

n1(s1;µ
(0)
1 , σ2

1)ds1 +
+∞∑
i=2

∫ +∞

C+

dsi

∫ C+

C−

dsi−1...

∫ C+

C−

ni(s;µ
(0)
Ti
,ΣTi)ds1, (21)

β =

∫ C−

−∞
n1(s1;µ

(1)
1 , σ2

1)ds1 +

+∞∑
i=2

∫ C−

−∞
dsi

∫ C+

C−

dsi−1...

∫ C+

C−

ni(s;µ
(1)
Ti
,ΣTi)ds1. (22)
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Proof. Under the condition of Theorem 4 the test terminates finitely with probability 1. From
Lemma 1, we have:

E(k)(N) = 1 +

+∞∑
i=1

Pk(N > i) = 1 +

+∞∑
i=1

∫ C+

C−

dsi

∫ C+

C−

dsi−1...

∫ C+

C−

ni(s;µ
(k)
Ti
,ΣTi)ds1.

For the error type I probability we get:

α = P0(ΛN ≥ C+) =

+∞∑
i=1

P0(N = i,ΛN ≥ C+)

= P0(Λ1 ≥ C+) +
+∞∑
i=2

P0(Λi ≥ C+,Λj ∈ (C−, C+), j = 1, i− 1). (23)

From (23) we get (21). The expression of β in (22) is proved analogously.

In practice, it is difficult to use formulae (20)-(22) for computing the characteristics of the
test: using numerical methods for approximating the multiple integration in the right hand
sides of these equalities is unfeasible. To get upper bounds for these test characteristics, we
can use the following estimate:

P (Λ1 ∈ (a1, b1), ...,Λn ∈ (an, bn)) ≤ P (Λi ∈ (ai, bi), ...,Λn ∈ (an, bn)), (24)

where i is a fixed value in {1, 2, ..., n}.
It is obvious that the smaller value i, the stricter the inequality (24). In particular, when
tr(ΓHn) tends to +∞ slowly, we should select the value i smaller to get better estimates.

Corollary 3. Under the Theorem 4 condition, the following inequalities hold:

E(k)(N) ≤ Φ

(
C+ − µ(k)

1

σ1

)
+ Φ

(
µ

(k)
1 − C−
σ1

)

+
+∞∑
i=2

∫ C+

C−

∫ C+

C−

n1(x;m
(k)
i−1, s

2
i−1)n1(y;x+ µ

(k)
i , σ2

i )dxdy, k ∈ {0, 1},

α ≤ 1− Φ

(
C+ − µ(0)

1

σ1

)
+

+∞∑
i=2

∫ +∞

C+

∫ C+

C−

n1(x;m
(0)
i−1, s

2
i−1)n1(y;x+ µ

(0)
i , σ2

i )dxdy,

β ≤ Φ

(
C− − µ(1)

1

σ1

)
+

+∞∑
i=2

∫ C−

−∞

∫ C+

C−

n1(x;m
(1)
i−1, s

2
i−1)n1(y;x+ µ

(1)
i , σ2

i )dxdy.

Proof. The inequalities are resulting from (24), (15) with i = n− 1.

Time series data is usually collected at certain intervals. Sometimes, there are patterns that
can repeat over fixed periods of time within the data set. Such patterns are known as periodic
fluctuations or seasonality. In this case, the function of trend g(t) = θTψ(t) will be periodic
with some period T > 0. In particular, function h(t) = (θ0 − θ1)Tψ(t) will also be periodic.

Theorem 5. If there exists an integer T ≥ 1 such that h(t+ T ) = h(t), ∀t = 1, 2, ..., then the
stopping time N has finite moments of any order.

Proof. Without loss of generality, assume that hypothesis H0 is true. Due to the Theorem
conditions, λt and λt+kT have the same distribution for all t, k ∈ N.

On event {N > kT}, k ≥ 1, ΛkT = λ1 + ... + λkT ∈ (C−, C+), which implies that Λ2
kT ≤

(C+−C−)2. Since D(ΛkT ) =
∑kT

i=1D(λi) = kD(ΛT ) = k
σ2 tr(ΓHT )→ +∞ as k → +∞, there

exists k0 ≥ 1 such that on {N > k0T}:

P0(Λ2
k0T < (C+ − C−)2) = q ∈ (0, 1).
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Put n0 = hk0T, h ≥ 1. Note that from the fact N > n0, we have

|Λrk0T − Λ(r−1)k0T | < C+ − C−,∀r = 1, h.

Because {Λrk0T − Λ(r−1)k0T , r = 1, h} is a sequence of independent identically distributed

random variables and {N > n0} ⊂ {|Λrk0T − Λ(r−1)k0T | < C+ − C−,∀r = 1, h}, we have

P0(N > n0) ≤ P0(|Λrk0T − Λ(r−1)k0T | < C+ − C−,∀r = 1, h) = qh = q
n0
k0T .

Therefore, for any n > k0T

P0(N > n) ≤ q
[

n
k0T

]
≤ q

n
k0T
−1
,

which implies P0(N > n) = o(n−r) as n→ +∞ for any finite r.
The rest part of proof is derived from Lemma 2.

Corollary 4. If the basic vector function of trend ψ(t) is periodic on the set N, then the
stopping time N has finite moments of any order.

4.2. Special case

Assume that there exists a constant a 6= 0 such that h(t) = a,∀t ≥ 1, and H0 is the true
hypothesis.

In this case, {λt, t ≥ 1} becomes the sequence of independent and identically distributed
random variables from N(µ, σ2

0), where

µ =
−a2

2σ2
, σ2

0 =
a2

σ2
.

Let x be a fixed value and put Λxn = x + Λn. The new test based on Λxn is equivalent to
the original SPRT whose region of indifference is the interval (C− − x,C+ − x). Let βθ(x)
and Nθ(x) be the operating characteristic and average sample size functions of this SPRT
respectively. From the Markov property of log-likelihood ratio statistic Λn and when H0 is
true, βθ0(x) and Nθ0(x) are known to satisfy the Fredholm integral equations (see Basseville
and Nikiforov (1993), Cox and Miller (1965)):

βθ0(x) = Fθ0(C− − x) +

∫ C+

C−

Kθ0(x, y)βθ0(y)dy,

Nθ0(x) = 1 +

∫ C+

C−

Kθ0(x, y)Nθ0(y)dy,

where Fθ0(x) = Pθ0(λ1 < x) = Φ
(
x−µ
σ0

)
andKθ0(x, y) = ∂

∂yFθ0(y−x) = 1
σ0
ϕ
(
y−x−µ
σ0

)
;ϕ(z) =

n1(z; 0, 1), z ∈ R.
A numerical method is used for solving these equations. Let m0 be a positive integer and
{yi, i = 1,m0}, C− = y1 < y2 < ... < ym0 = C+, be a partition of the interval [C−, C+], in
which yi having the smallest absolute value is set to be 0. Note that α = 1 − βθ0(0) and
E(N |H0) = Nθ0(0). Let β̃θ0(yi) be approximations of βθ0(y) at y = yi, i = 1,m0. Using the
trapezoid formula (see Hoffman (2001)) we have:∫ C+

C−

Kθ0(x, y)βθ0(y)dy ≈
m0−1∑
i=1

yi+1 − yi
2σ0

(
ϕ

(
yi − x− µ

σ0

)
β̃θ0(yi)+

+ ϕ

(
yi+1 − x− µ

σ0

)
β̃θ0(yi+1)

)
≈

m0∑
i=1

ρiϕ

(
yi − x− µ

σ0

)
β̃θ0(yi),
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where

ρi =


y2−y1

2σ0
, i = 1,

ym0−ym0−1

2σ0
, i = m0,

yi+1−yi−1

2σ0
, i ∈ {2, 3, ...,m0 − 1}.

In the case of uniform partition, the error of this approximation is O(h2), where h = yi+1−yi
(see Hoffman (2001)). From the approximation above we get the following system of linear
equations: 

β̃θ0(y1) = Φ
(
C−−y1−µ

σ0

)
+
∑m

i=1 ρiϕ
(
yi−y1−µ

σ0

)
β̃θ0(yi),

...
...

...
...

β̃θ0(ym0) = Φ
(
C−−ym0−µ

σ0

)
+
∑m0

i=1 ρiϕ
(
yi−ym0−µ

σ0

)
β̃θ0(yi).

(25)

This system can be represented in the matrix form:

(Im0 −A) · β̃θ0 = B,

where

A = {aij}m0×m0 , aij = ρjϕ

(
yj − yi − µ

σ0

)
,

β̃θ0 = (β̃θ0(y1), ..., β̃θ0(ym0))T ,

B =

(
Φ

(
C− − y1 − µ

σ0

)
, ...,Φ

(
C− − ym0 − µ

σ0

))
.

Similarly, we also have the system of linear equations for the approximations Ñθ0(yi) of Nθ0(y)
at y = yi, i = 1,m0: 

Ñθ0(y1) = 1 +
∑m0

i=1 ρiϕ
(
yi−y1−µ

σ0

)
Ñθ0(yi),

...
...

...
...

Ñθ0(ym0) = 1 +
∑m0

i=1 ρiϕ
(
yi−ym0−µ

σ0

)
Ñθ0(yi).

(26)

This system is also represented in the matrix form:

(Im0 −A) · Ñθ0 = B̄,

where Ñθ0 = (Ñθ0(y1), ..., Ñθ0(ym0))T and B̄ is a column vector of size m0 whose all elements
are equal to one.

4.3. Approximation of the random sequence Λn

Let us split the state space of Λn on K + 2 cells:

A0 = (−∞, C−), Ai = [Ci−1, Ci), i = 1,K, AK+1 = [C+,+∞),

C− = C0 < C1 < C2 < ... < CK = C+, Ci = C− + ih, h =
C+ − C−

K
, i = 1,K.

Denote SK = {A1, A2, ..., AK}.

Lemma 4. If infn tr(Γψ(n)ψT (n)) ≥ C,C = const > 0, then for all i, j, k, i < j < k the
following asymptotic expansions are valid:

P (Λk ∈ A1|Λj ∈ A2,Λi ∈ A3) = P (Λk ∈ A1|Λj ∈ A2) +R(h), (27)

where A1, A2, A3 ∈ {A0, A1, ..., AK , AK+1}, and R(h) =

{
O(h), A1 ∈ {A0, AK+1},
O(h2), A1 ∈ SK .
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Proof. From the Lemma condition and (17)-(18), there exist two positive constants C1, C2

such that:
|f ′Λn

(x)| ≤ C1, ∀n ≥ 1, |f ′Λn|Λk
(x|y)| ≤ C2, ∀k < n, ∀x, y ∈ R.

The rest part of proof is similar to the proof of Theorem 1 in Kharin (2008).

Denote f
C+

C−
(x) =

([
x−C−
h

]
+ 1
)
· 1(C−,C+)(x) + (K + 1) · 1[C+,+∞)(x).

For the random sequence Λn introduce the discrete random sequence Zn with the finite state
space V = {0, 1, ...,K + 1}. Put Z1 = f

C+

C−
(Λ1). For n ≥ 2:

Zn =


0, if Zn−1 = 0,

K + 1, if Zn−1 = K + 1,

f
C+

C−
(Λn), otherwise.

To simplify the notation, let us renumerate the states space of Zn:

V = {{0}, {K + 1}, {1}, ..., {K}}.

Denote:

P (n)(θk) =

(
I2 O2×K

Rn(θk) Qn(θk)

)
, k ∈ {0, 1},

Qn(θk) = {q(n)
ij (θk)}K×K , Rn(θk) = {r(n)

ij (θk)}K×2,

q
(n)
ij (θk) =

∫
Ai
n1(y;m

(i)
n−1, s

2
n−1)

∫
Aj
n1(x; y + µ

(k)
n , σ2

n)dxdy∫
Ai
n1(y;m

(k)
n−1, s

2
n−1)dy

, 1 ≤ i, j ≤ K,

r
(n)
i1 (θk) =

∫
Ai
n1(y;m

(k)
n−1, s

2
n−1)

∫
A0
n1(x; y + µ

(k)
n , σ2

n)dxdy∫
Ai
n1(y;m

(k)
n−1, s

2
n−1)dy

, 1 ≤ i ≤ K,

r
(n)
i2 (θk) =

∫
Ai
n1(y;m

(k)
n−1, s

2
n−1)

∫
AK+1

n1(x; y + µ
(k)
n , σ2

n)dxdy∫
Ai
n1(y;m

(k)
n−1, s

2
n−1)dy

, 1 ≤ i ≤ K,

S(θk) = IK +
+∞∑
i=1

i+1∏
j=1

Qj(θ
k), B(θk) = R2(θk) +

+∞∑
i=2

i∏
j=1

Qj(θ
k)Ri+1(θk),

B(j)(·) is the jth column of matrix B(·), π(θk) is the probability distribution of Z1, k ∈ {0, 1}.

Theorem 6. If ∃C = const > 0, infn tr(Γψ(n)ψT (n)) ≥ C, then the characteristics of the
test (3),(4) satisfy the following expansions:

E(k)(N) = 1 + (π(θk))
′
S(θk) · 1K +O(h), k ∈ {0, 1}, (28)

α = (π(θ0))
′
B(2)(θ

0) + πK+1(θ0) +O(h), (29)

β = (π(θ1))
′
B(1)(θ

1) + π0(θ1) +O(h), (30)

where (π(θk))
′

= (π1(θk), ..., πK(θk)).

Proof. Under the conditions of Theorem 6 sequence Zn satisfies the conditions (5)-(7) asymp-
totically as h → 0. The results of this theorem are derived from the Lemma 4, Theorems 1
and 2.

4.4. Robustness evaluation

In practice the observed data can often come from more complicated sources than hypothetical
ones because of the distortion. Some contamination models (see Huber (1981)) can be used
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to analyze the robustness of statistical procedures. However, in this paper we consider only
the case where the noise components ξt in model (1) are distorted by another noises in the
Gaussian distribution family.

Suppose that the observed data come from the following mixed model:

x̄t = θTψ(t) + (1− ε)ξt + εξ̃t, (31)

where {ξ̃t, t ≥ 1} is a sequence of independent identically distributed random variables, ξ̃t ∼
N(0, σ̃2), σ̃ is a given positive constant, ξt and ξ̃t are independent for all t, and ε ∈ [0, 1/2) is
a level of distortion.

Introduce the notation: λ̄t = λt(x̄t), µ̄
(k)
t = E(k)(λ̄t), σ̄

2
t = D(λ̄t), m̄

(k)
n =

∑n
i=1 µ̄

(k)
i , s̄2

n =∑n
i=1 σ̄

2
i , and P̄ (n)(θk), R̄n(θk), Q̄n(θk), π̄(θk), ᾱ, β̄, t̄(θk) are calculated analogously by replac-

ing xt with x̄t.

For t, n ≥ 1, k ∈ {0, 1}, we get:

µ̄
(k)
t = µ

(k)
t , m̄(k)

n = m(k)
n , σ̄2

t =
σ2
t

σ2
[(1− ε)2σ2 + ε2σ̃2], s̄2

n =
s2
n

σ2
[(1− ε)2σ2 + ε2σ̃2]. (32)

Theorem 7. For the contaminated model (31), under the conditions of Theorem 6 the fol-
lowing asymptotic expansions hold as ε→ 0 and h→ 0:

ᾱ = α+O(ε) +O(h), (33)

β̄ = β +O(ε) +O(h), (34)

t̄(θk) = t(θk) +O(ε) +O(h), k ∈ {0, 1}. (35)

Proof. From (32), as ε→ 0 we have:

1

σ̄2
t

=
1

σ2
t

(1 +O(ε)),
1

s̄2
n

=
1

s2
n

(1 +O(ε)),

n1(x; µ̄
(k)
1 , σ̄2

1) =
1 +O(ε)

σ1

√
2π

exp

[
−(x− µ(k)

1 )2

2σ2
1

(1 +O(ε))

]
= (1 +O(ε))n1(x;µ

(k)
1 , σ2

1),∀x ∈ R,

which implies that

π̄i(θ
k) = πi(θ

k) +O(ε), i = 0,K + 1, k ∈ {0, 1}. (36)

Similarly, we also have as ε→ 0

n1(y; m̄
(k)
n−1, s̄

2
n−1)n1(x; y + µ̄(k)

n , σ̄2
n) = (1 +O(ε))2n1(y;m

(k)
n−1, s

2
n−1)n1(x; y + µ(k)

n , σ2
n),

and obtain

r̄
(n)
ij (θk) = r

(n)
ij (θk) +O(ε), 1 ≤ i ≤ K, j = 1, 2, (37)

q̄
(n)
ij (θk) = q

(n)
ij (θk) +O(ε), 1 ≤ i, j ≤ K. (38)

Combining (36)-(38) and using Theorem 6 we get (33)-(35).

5. Numerical examples

First consider the probability model (1) for the special case from Section 4.2 with the fol-
lowing parameters values: m = 4, σ = 10, ψ(t) = (1 + 1/t, 4 − t/10, t/10, t2/10)T , θ0 =
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(1, 2, 2, 1)T , θ1 = (1, 1, 1, 1)T ; hypotheses (2) were tested. Denote the sample estimate of
a characteristic γ with Monte-Carlo method by γ̂. The number of simulation runs used in
this method was 100 000. Denote tk = E(k)(N), k = 0, 1.

(a) (b)

Figure 1: Trend functions

Suppose that hypothesis H0 is true. Then we have a = (θ0 − θ1)Tψ(t) = 4,∀t. This means
that the lengths of segments AB and CD are always the same in all positions such that
they are parallel to the vertical axis (figure 1a). In addition, λt, t ≥ 1, are independent
identically distributed random variables, λt ∼ N(µ, σ2

0), where µ = −50, σ0 = 0.4. Monte-
Carlo estimates (α̂ and t̂0) and approximate values (α̃ = 1−βθ0(0) and t̃0 = Ñθ0(0)) calculated
according to Section 4.2 for Type I error probability α and conditional average number of
observations t0 respectively are presented in Table 1. When the value of m0 increases, the
approximate values of test characteristics tend to their corresponding Monte-Carlo estimates.

Table 1: Performance characteristics estimates

α0 β0 α̂ t̂0 m0 α̃ t̃0

0.1 0.1 0.08034 25.73666
200 0.08236 25.70478
500 0.08076 25.72103

0.05 0.1 0.04072 28.46724
200 0.04128 28.46644
500 0.04080 28.47073

0.05 0.05 0.03990 36.83060
200 0.03816 36.83469
500 0.03974 36.80202

The dependence of the operating characteristic and the average sample size functions on the
initial value x in the modified test is presented in figure 2 for the case of m0 = 200, α0 =
0.05, β0 = 0.1. Under hypothesis H0, βθ0(x) is a decreasing function with respect to x (figure
2a). This fact is easily understood because when x increases, the probability that x + Λn
comes out of the interval (C−−x,C+−x) through the upper boundary C+−x also increases.
However, function Nθ0(x) increases to the maximum value in the interval (C−, C+) before
dropping (figure 2b).
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(a) (b)

Figure 2: Plots of functions 1− βθ0(x) and Nθ0(x)

In the next examples, the following values of parameters are used for calculating: m =
4, σ = 10, ψ(t) = (1, t/10, t2/100, 10/t)T , θ0 = (1, 2, 2, 2)T , θ1 = (1, 1, 1, 1)T . In this case,
Pk(Λ50 ∈ (C−, C+)) ≤ 10−6, k ∈ {0, 1}. All infinite sums were replaced by the sums of the
first 50 summands, this provides the accuracy of the order 0.00001. Figure 1b shows the plots
of trend functions. The upper bounds for the test performance characteristics constructed in
Corollary 3 are given in Tables 2 and 3.

Table 2: The upper bounds for error probabilities

α0 β0 α̂ α ≤ β̂ β ≤
0.1 0.1 0.07166 0.12155 0.07244 0.12155

0.05 0.1 0.03392 0.05307 0.07006 0.11402

0.01 0.05 0.00534 0.00761 0.03216 0.04734

Table 3: The upper bounds for the average number of observations

α0 β0 t̂0 E(0)(N) ≤ t̂1 E(1)(N) ≤
0.1 0.1 16.07760 18.09357 16.03320 18.09357

0.05 0.1 17.03316 18.68805 19.70408 21.30107

0.01 0.05 21.13740 22.13213 25.61644 26.41215

Denote the main terms of asymptotic expansions of α, β,E(k)(N) respectively by ᾱASYM ,

β̄ASYM , Ē
(k)
ASYM (N). The numerical results for these main terms are presented in Table 4.

Table 4: The main terms of asymptotic expansions of the test characteristics

α0 β0 K ᾱASYM β̄ASYM Ē
(0)
ASYM (N) Ē

(1)
ASYM (N)

10 0.07449 0.07449 15.85942 15.85942
0.1 0.1 20 0.07273 0.07273 16.03470 16.03470

40 0.07225 0.07225 16.08029 16.08029

10 0.03501 0.07367 16.76240 19.49727
0.05 0.1 20 0.03433 0.07104 16.97260 19.65483

40 0.03414 0.07033 17.02777 19.69613

10 0.00586 0.03466 20.83295 25.57559
0.01 0.05 20 0.00579 0.03291 21.06344 25.65018

40 0.00576 0.0324 21.12768 25.67067
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(a) (b)

Figure 3: Dependence of performance characteristics on probability of contamination ε

Due to symmetric property, we have ᾱASYM = β̄ASYM , Ē
(0)
ASYM (N) = Ē

(1)
ASYM (N) provided

α0 = β0. When the value K increases, the main terms of asymptotic expansions of the test
characteristics become closer to their corresponding Monte-Carlo estimates (see Tables 2 and
3). The orders of approximation in (28)-(30) are only O(h). Therefore, if we want to make the
main terms of asymptotic expansions better, the value K must be larger. However, with the
large value K the computation on infinite sums (in practice, they can be reasonably replaced
with finite ones because of the termination of the test) of matrices with high dimensions S(θi)
and B(θi) will cost much time.

Figure 3 shows the dependence of the error probabilities and average number of observations
on the probability of contamination ε in the model (31), when σ̃2 = 50σ2, α0 = 0.001, β0 =
0.005. When the contamination probability ε increases, both error probabilities increase. For
both conditional average numbers of observations, there are opposite pictures.

6. Conclusion

The problem of sequential testing for time series with trend is studied. The sufficient condition
of termination of the test is given. Beside the explicit (but not useful for further analysis)
formulae for the test characteristics, an approach to approximate test characteristics is also
constructed. This approach allows us not only to estimate the test characteristics, but also
to analyze the robustness of the test.
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