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Abstract

The present article aims to point and interval estimation of the parameters of gener-
alised exponential distribution (GED) under progressive interval type-I (PITI) censoring
scheme with random removals. The considered censoring scheme is most useful in those
cases where continuous examination is not possible. Maximum likelihood, expectation-
maximization and Bayesian procedures have been developed for the estimation of parame-
ters of the GED, based on a PITI censored sample. Real datasets have been considered to
illustrate the applicability of the proposed work. Further, we have compared the perfor-
mances of the proposed estimators under PITI censoring to that of the complete sample.

Keywords: statistical computing, Bayesian, maximum likelihood, simulation, progressive in-
terval censoring.

1. Introduction

In Statistical literature several authors have proposed models which are supposed to be com-
peting models (see, Mudholkar and Srivastava (1993), Kondolf and Adhikari (2000), etc.)
to Gamma and Weibull distributions. Similarly, Gupta and Kundu (2001a) introduced the
generalised exponential distribution (GED) as an alternative to Gamma and Weibull distri-
butions. Nowadays, its has gained popularity in the statistical literature due to its simplicity,
and the probability density function (pdf) is very flexible and accommodate wide variety of
shapes. The probability density function of the GED is given as,

f(z]a, 0) = a@e_ex(l — ¢ fmya-t, x>0,a,0 >0, (1)

where « is the shape parameter and 6 is the scale parameter of the considered model. Its
cumulative distribution and survival functions are given by,

F(zla,0) = (1 — 6_933)0‘ (2)

and
S(z|a,8) =1 — (1 — e ) x>0,a,60 >0, (3)
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respectively. It has been extensively studied by Raquab and Madi (2005); Singh, Singh, Singh,
and Prakash (2008) and many others. Gupta and Kundu (2001a); Jaheen (2004); Sarhan
(2007); Zheng (2002) discuss its importance over gamma and Weibull distribution which are
two most popular distribution used in survival analysis. Gupta and Kundu (2001a) noted
that, in many situations, the two-parameter generalised exponential distribution provides a
better fit than the two-parameter Weibull distribution. It may be noted here that the GED
is a special case of a distribution that was used by Gompertz (1825). Gupta and Kundu
(2001b) studied different methods of point estimation for GED parameters which include
maximum likelihood estimation, method of moment estimation and probability plot method
of estimation based on complete samples. Singh, Singh, and Kumar (2011) discussed the
parameter estimation and reliability characteristic of GED under Bayesian paradigm. It is
worthwhile to mention here that little attention has been paid to inferences based on censored
samples from GED under the Bayesian paradigm, although censoring is quite common in
various clinical and life testing experiments.

Situations do arise when the units under study are lost or removed from the experiments
while they are still alive i.e., we get censored data in such cases. If the point at which
the experiment terminate is time dependent, it is called Type-I censoring. On the other
hand, if it is unit dependent, it is called Type-II censoring. Depending on the need and
practical considerations, various modified forms of censoring schemes have been discussed
in the literature. Aggarwala (2001) proposed a combination of interval Type-1 censoring
and progressive censoring called progressive Type-I (PTI) interval censoring which naturally
arises in most clinical experiments. To have a clear visualization of this censoring scheme,
let us consider an experiment with n bladder cancer patients for whom remission times are
to be recorded. The patients are called for regular check-ups at scheduled times, and those
who turn up are checked. At the first visit, scheduled at time T3, only n — R; patients
out of the total n patients report, i.e. R; patients leave the experiment during the time
interval (0,71]. The experimenter examines these n — R; patients and finds that cancer
has reoccurred in D patients. It may be noted here that the exact time of recurrence for
these Dq patients is not known to the experimenter; he only has the information about the
number of recurrences during the time period between the start of the experiment and first
visit. At the second visit, scheduled at time T, n — Ry — D1 — Ry out of the remaining
n — Ry — Dy patients report, i.e. Ry patients leave the experiment at this stage (during
the time interval (77,7%]). The experimenter examines these patients and finds that cancer
has reoccurred in Dy patients out of remaining n — Ry — D1 — Ro patients, and in this
way the experiment continues till the m!* visit. At this stage (m!* visit) all the remaining
R,=n—-Dy—Dy---—D,, — R — Ry--- R,_1 units are removed, i.e. the experiment is
terminated at this stage. Recently Chen and Lio (2010) proposed a methodology to estimate
parameters involve in GED under PTI interval censoring under the assumption that the
proportions (p;) of the patients leaving the experiment during (7;-1,7;] is known in advance,
i.e. they prefixed the proportions py,pa,...,pm and considered that at i** stage, |n; * p;|
patients shall leave the experiment. Here, |n; % p;| denotes the largest integer less than or
equal to n; * p;. The author’s claim that exactly |n; * p;| patients out of |n;| will drop out
of the experiment at the i*" stage (visit), seems unrealistic and hypothetical. In fact, the
number of patients dropping out from the clinical trial at any stage is beyond the control of
the experimenter and cannot be predetermined. It seems more logical and natural to consider
these p; as random variables for the risk of dropping at the i** stage. Perhaps, keeping a
similar thought in mind, Yuen and Tse (1996) and Tse, Yang, and Yuen (2000) discussed
progressive censoring scheme with binomial removal. Ashour and Afify (2007) have used
PITI censoring scheme with binomial removals assuming that the exact value of the lifetimes
of the units are observable. In their studies, they have assumed that the number of removals
R;s at the i'" stage (i = 1,2,...,m) is random and follows the binomial distribution with
probability p;. Thus, Ry ~ Binomial (n, p1) and Ry ~ Binomial (n — D1 — Ry, p2). In
general, the number of units dropping at the i*" stage, R; follows the binomial distribution
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with parameters (n — Z?:l Dy + Ry, p;) for i = 1,2,3,--- ;m — 1. In this paper, we will
consider PITI censored data with binomial removals and develop estimators for the shape
and scale parameter under the situation that the exact value of the lifetimes of the units not
observable, only the number of units lying in the specified interval of times are known. For the
parameter estimation problem, we have considered the most popular loss function, namely the
squared error loss function (SELF) which can be easily justified on the grounds of minimum
variance unbiased estimation (see Berger 2013, Ch.2). We will compare the performance of
the proposed estimators of the parameters obtained under the above stated censoring scheme
with the estimates under the complete sample case.

The rest of the paper is organized in the following sections. In Section 2, Classical and Bayes
procedures for the estimation of the model parameters based on PITI with binomial removal
samples have been developed. Two real datasets has been considered, the first one is related
to the survival time of patients with plasma cell myeloma and the second one regarding the
number of revolutions in million before failure of groove ball bearings, have been considered
for the illustration of the proposed methodology in Section 3. Comparison of the estimators
based on simulation study has been provided in Section 4. Finally, conclusions have been
summarized in Section 5.

2. Parameter estimation

2.1. Maximum likelihood estimation

In this section, we provide the MLEs of « and #, the parameters of the lifetime distribution
given in equation (1). Let us consider that n units are put on test initially at time Ty = 0, and
we record the number of droppings and number of failures during pre-specified time intervals

(T;-1,T;) (i =1,2,...,m) amongst the available units; i.e. we get the data consisting of the
number of failures D = (dy,da, ..., dy,) and number of droppings R = (71,72, ..., 7y) during
the time intervals (0,74], (11, 73], ..., (Tm—1, D] through the censoring scheme described in

the previous section. It may be noted here that the individual units dropping from the test at

Experiment termina
all remaining
Number of droppings R, Ro R units removed

| | |
| |

Time 0 t1 to tm—1 tm

Number of recurrence 2

Figure 1: Progressive interval type-I censoring scheme

the 7*" stage (during the time interval (T;_1, T3] ), s = 1,2, - - - m are random and independent
of each other with certain probability, say p;, for i = 1,2, --m. Therefore, the number r; of
units dropping at the 1%¢ stage follows a binomial distribution with parameters (n,p;) and

rq; 1= 2,3,---m follows a binomial distribution with parameters (n — Zf;i(dl + rl),pz-); i.e.

n T n—r
P(rilp1) = <r1>p11(1—p1) !

— d _
P(r2|r17d17p2) == (n 1 T1>p£2(1 _pQ)TL*dl*T‘l*TQ

T2
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and in general

i—1 i—1 i
n— > (dj+r;) . n=3 dji= 37
P(rir,...oricn,dys o dicr, ) = < =1 > pi(L—mpi) =t =
T
m
for i =2,3,---m and rpp1 =n— > (dj —rj). Now the complete likelihood for the observed
j=1

data can easily be written as

L(a,0|R, D, T) [F(T;) — F(T;_1)]% x [1 — F(T;_1)]"

e

X
o)

(ri|r1, ey Tie, dl, e, di,pifl) [1 — F(Tm)]“”Jrl

(0= = =) b () T

i—1

X [1 — (1 — e*QTm)Q]TW+1 <n — J;(dj + rj)>

Ti

s
Il
=

Il
.ES

i—1 i
n—>Y dij— > r;
pi(1-p) ==

Above expression bifurcates as
L(a,0|R,D,T) x Ly(,0|R, D, T)Ly(P|R, D, T), (5)

where

m+1

S (R R N S S N

i: 1=

Note that La(-) is free from « and 6. Thus, to compute ML estimate of a and 6, we require
only Li(:). The corresponding log likelihood function can be written as

logLy(T, a,0) = idiln[@_e—en)a_ <1_€—9Ti71)a]
=1

m+1

riln |1 — — e 0T ¢ .
+; nf1- (1 )] (7)

Hence, the likelihood equations can be obtained as;

legL _ id [(1 _ e—@Ti)aln(l _ e—@Ti) _ (1 _ e—@Ti—l)aln(l _ e—@Ti—l)]

da i [(1—em0T)% — (1 — e~ fTim1)"]

mtl (1 — e*QTFl)a In(e=9Ti-1)

2 B (8)

dlogL (1= e T AT, — (1 - et e TeaT, |
[(1— e 0Ty — (1 - e0Ti1)]
et (1- e*QTFl)Oﬁl e Ti-1aT; 4

2 [1—(1— e ¥Ti1)7] =0 9)

=1

The MLEs of o and 0 can be obtained by solving (8) and (9) simultaneously. But it may
be noted here that explicit solutions cannot be obtained from the above equations. Thus, we
propose the use of a suitable numerical technique to solve these two non-linear equations. One
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may use Newton-Raphson or simulated annealing of their variants to solve these equations.
This can be routinely done using R or other packages. We have also obtained the observed
information matrix,

(10)

I(a, 0|data) = [Lo‘a La0:|

—Lgo —Logg

where, all the second partial derivatives of the log-likelihood function Lo, Lag, Lgo and Lgg
are provided in the Appendix-A. Based on it, the asymptotic confidence (AC) interval and
standard errors of the parameter estimates can be obtained in the usual way. While using the
Newton-Raphson algorithm (the details are provided in the simulation section) to compute the
MLEsS for the parameters, it is observed that the iterations converge approximately 85% —90%
of the time.

2.2. Bayesian estimation

In this section, we provide the Bayesian inferences for o and 6, when we have the progressive
interval type-I censored data as explained in Figure 1. We have also obtained the highest
posterior density (HPD) intervals for both the parameters. Before proceeding further, we
make selections for the prior distributions of the parameters. Following Berger and Sun
(1993); Raquab and Madi (2005); Singh, Singh, and Kumar (2014), it is assumed that both
« and 0 are independent gamma variates, having pdfs

g1(a) = A e~ M) g (n—1)
I

0<a<oo, A1 >0,y >0 (11)
Vl)

e MY —(hab) plra—1)
— —(A2 2— .
92(0) = () 0 ;
Here, all the hyperparameters A1, 11, A2 and v are assumed to be known and can be evaluated
following the method suggested by Singh, Singh, and Kumar (2013). We compute the Bayes
estimate of the unknown parameters under the squared error loss function. Using the priors
given in (11) and (12) and the likelihood function (4), the joint posterior density of « and 6
for the given data can be written as

0<f<oo, Ao>0,19 >0, (12)

L(a> G‘Ra D7 T) gl(a) 92(9)

™ OZ,GR,D,T > 00
(0 ) Jo o JoT L(e,0|R, D, T) g1 () g2(0) da db
T TP Tdadd’ 13
1) Jdade (13)
where
k .
JZJ(O[,@) — 67(A1a+>\29) (v1— 1 (r2—1) H|: 79T (1_6*9Tz‘71)a:| i
=1

Ti

x [1 (1- e*(’Tz’)a}

Let h(-) be a function of a and 6. Then, the Bayes estimator of h(-) under the squared error
loss function is given by

hp(a,0) = Ex(h(,0))

B [[5° b, 8) J docd
B Offo"ojdade ' (14)

It is clear from the expression (13) that there is no closed form for the estimators, so we
suggest using an MCMC procedure to compute the Bayes estimates. After getting MCMC

37
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samples from the posterior distribution, we can find the Bayes estimate for the parameters in
the following way
N

[E(©|data)] = N—lNOZ O;l,

where Ny is burn-in period of the Markov chain and ©; = [ai,Gi]/. For computation of
the highest posterior density (HPD) interval of ©, order the MCMC sample of © as O,
O2), O@3), **+, On)- Then construct all the 100(1-y)% credible intervals of © say (©(y),
®(N|_1—’YJ+1))’ (@(2),@(1\/[1_,”_,_2)) ce ’(G(LN’YJ)’ G(N)) Finally, the HPD credible interval of
a and f is that interval which has the shortest length.

In order to obtain the MCMC samples from the joint posterior density of a and 6, we use
the Metropolis-Hastings (M-H) algorithm. We consider a bivariate normal distribution as the
proposal density i.e. Na(u,Y) where X is the variance-covariance matrix. It may be noted
here that if we generate observations from the bivariate normal distribution, we may get
negative values also, which are not possible as the parameters under consideration are positive
valued. Therefore, we take the absolute value of the generated observations. Following this,
the Metropolis-Hastings algorithm associated with the target density m(-) and the proposal
density No(p, ) produces a Markov chain ©7 through the following steps.

’

(D Set initial values ©¢ = [ay, bp]
@ Cenerate new candidate parameter values O, = [a, 0,] from No(u, ¥).

@ Calculate the ratio

p(6:,0:1) = min { £ 1}
@ Draw u from uniform(0,1);

Accept ©, as 0; if u < p(04,0;_1),
If ©, is not accepted, then ©; = ©;_1.

In using the above algorithm, the problem arises as to how to choose the initial guess. Here,
we propose the use of the MLEs of (a, #), obtained by using the method described in Section
2.1, as initial values for the MCMC process. The choice of covariance matrix X is also an
important issue; see Natzoufras (2009) for details. One choice for ¥ would be the asymptotic
variance-covariance matrix I~1(a, é) While generating M-H samples by taking ¥ = I~!(4, é),
we noted that the acceptance rate for such a choice of ¥ is about 15%. By acceptance rate, we
mean the proportion of times a new set of values is generated at the iteration stages. It is well
known that if the acceptance rate is low, a good strategy is to run a small pilot run using a
diagonal Y as a rough estimate of the correlation structure for the target posterior distribution
and then re-run the algorithm using the corresponding estimated variance-covariance matrix;
for more details see Gelmen, Carlin, Stern, and Rubin (1995, pp. 334-335). Therefore, we
have also used the latter described strategy for the calculations in the following sections.

3. Real data application

In this section, we illustrate our proposed methodology with the real examples. The first
dataset considered by us represents the survival times for patients with plasma cell myeloma,
already reported in Carbone, Kellerhouse, and Gehan (1967). The data contains the response
time to therapy of 112 patients with plasma cell myeloma (a tumour of the bone marrow
composed of cells normally found in bone marrow) treated at the National Cancer Institute,
Bethesda, Maryland. Figure 2 represents the contour plot of negative log-likelihood for the
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Figure 2: Contour plot for plasma cell myeloma data

considered dataset. The ellipses are obtained by joining those points which have equal values
of the negative log-likelihood. Every inner ellipse has a smaller value than that of the outer
ellipse. Thus, the innermost ellipse has the minimum value. In other words, the minimum of
the minus log-likelihood (maximum of the likelihood) will correspond to the innermost ellipse.
We used an arbitrary point (1,0.05) from this innermost ellipse as an initial guess. The MLEs
for the dataset are then calculated, using the procedure explained in Section 2.1. Finally,
these are obtained as ajs;, = 1.4325, Orrz, = 0.0571. Similarly, a 95% asymptotic confidence
intervals for « is obtained as (0.9706, 1.8944) and for 3 as (0.0420, 0.0727).

To compute the Bayes estimates for the considered dataset, we used the MCMC technique
discussed in Section 2.2. Following Robert (2015), we ran three MCMC chains with initial
values selected as MLE, MLE - (asymptotic standard deviation) and MLE + (asymptotic
standard deviation), respectively. Figure 3 shows the iterations and density plot of samples
generated from the posterior distribution using the MCMC technique. From this figure, we
see that all the three chains have converged and are well mixed. It is further noted that the
posterior of « is approximately symmetric, but the posterior of # is left skewed. Utilizing these
MCMC samples, we computed the Bayes estimates, following the method discussed in Section
2.2, and got ap = 1.4301, 6 = 0.0581 under non-informative independent priors. The 95%
highest posterior density (HPD) interval estimate for « is obtained as (1.0001,1.6109) and for
0 as (0.0424, 0.0719).

The second dataset, considered here, arose in the tests on the endurance of deep groove ball
bearings. This data contains the number of million revolutions before failure for each of the
23 ball bearings in the life test and has been reported by (Lawless 2002, pp.228). The data
points are exact observations. For the illustration of our methodology, we have generated
censored data for a prefixed number of inspections by specifying the inspection times and
dropping probabilities.

We fixed the experimentation time as 140 units of time and decided to have 7 inspections
during this period. We have considered four different inspection plans. The first plan
consists of equally spaced inspection times i.e. at 20, 40, ..., 140 units of time. The
next inspection plan is designed under the motivation that if the probability of failure is
high during some time interval, an early inspection should be scheduled. Thus, the sec-
ond inspection plan is based on such a notion. The third inspection plan is designed on
the basis of estimated cdf; although such a plan is not feasible in practice we have in-
cluded it for theoretical interest. First, we calculate u = F(140, apr,0n1), then inspec-
tion times are obtained as Ty = F~Y(u/7,anr,0mL), To = F71(2u/7, anmp,0mL), -- -,
Ts = F~Y(6u/7,anr,00) and Ty = 140. The fourth inspection plan is chosen so as to
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Figure 3: Iteration trace and density plot of MCMC samples for plasma cell myeloma data

have approximately equal probability of failure in each interval of inspection and are approx-
imated to the nearest multiple of 10. The dropping schemes, are selected in the following
manner: the first scheme considers the risk of dropping at all the intermediate stages to be
zero i.e. p1 = p2 =p3 = ps = ps = pg = p7r = 0,ps = 1. In the second scheme, the risk at all
stages is equal but not to zero i.e. p1 = p2 = p3 = ps = ps = ps = p7 = 0.2, pg = 1. The third
scheme is constructed so that the risk of dropping is low in the earlier stages and high in later
stages. Contrary to it, in the fourth scheme, the risk of dropping is high in earlier stages and
low in the later stages. Lastly, we consider the case when the risk is high at the first stage,
but there is no risk at all other stages. These inspection schemes and dropping schemes are
summarized in Table 1b and Table 1a, respectively. Under dropping scheme 1 and inspection
scheme A, we obtained the number of failures at seven stagesas 1, 2, 8 4, 3, 2, 2
respectively and one dropping at last stage. Following the same procedure, as followed in the
previous example, we calculated the ML estimates and Bayes estimates with corresponding
interval estimates for the dataset as mentioned above. This result is summarized in the
first row of Table 2. The last row of the table provides the ML and Bayes estimates with
corresponding interval estimates for complete dataset.

It may be worthwhile to mention here that the number of droppings are random and we
are generating the progressive interval type-1 censored data from the complete sample data,
therefore we can study the average performance of the estimators. For this purpose, we
generated 2000 censored datasets of r;’s for given p;’s and accordingly the d;’s from the
considered complete dataset. Table 2 provides the average ML and Bayes estimates, along
with the AC and HPD interval estimates of the parameters based on the generated censored
datasets. It may be seen from this table that the width of the interval estimates under
dropping scheme 1, when risk of dropping at all stages is zero, is least of all the estimators
under other schemes. It may further be seen that width of the interval estimates under
dropping scheme 2 is more than the others. Further, under the 4" scheme the interval width
is lesser than those under the 37% scheme. While studying the effect of inspection time on the
performance of the estimators, we noted that the average estimate under inspection scheme
A and dropping scheme 1 is close to the estimate obtained for the complete sample case. For
other inspection and dropping schemes the average estimates are larger than that obtained for
the complete sample case. Similarly, the average width of the interval estimates under scheme
A is least among all considered inspections schemes. The width of the interval estimates under
scheme B is more than those under scheme A but less than those under scheme C. The width
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of the interval estimates under scheme D is largest. It is also noted that as the proportion of
droppings increases, the width of the interval estimates increase.

Table 1: Censoring scheme

(a) Dropping Scheme (b) Inspection Scheme
Name Dropping Probabilities Name Inspection times
1 0,0,0,0,0,0,0,1 A 20, 40, 60, 80, 100, 120, 140
2 0.2,0.2,02,0.2,02,02,02, 1 C 33.00, 45.60, 51.96, 67.80, 68.88, 98.64, 140
3 0.2,0.2,0.2,0.1,0.1,0.1, 0.1, 1 B 36.96, 46.85, 55.88, 65.55, 77.31, 94.54, 140
4 0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 1 D 40 50, 65, 70, 100, 120, 140
5 0.25,0,0,0,0,0,0, 1

Table 2: Average ML and Bayes estimates of « and 6 along with their AC and HPD intervals
for different censoring scheme related to the ball bearing dataset

Inspection Dropping AC Interval of o N HPD Interval of @ AC Interval of 0 A HPD Interval of 6

Scheme scheme ML Tower Upper B Lower Upper Onir Lower  Upper Os Lower Upper
A 1 5.7260 1.0579 9.3029 57261 1.2590  8.2029  0.0198 0.0449 0.0331 0.0326 0.0246  0.0411
A 2 5.6573 0.0000 10.1799 5.6579 0.3648  9.0797  0.0178 0.0454 0.0325 0.0329 0.0241  0.0413
A 3 5.6133 0.0000 9.5056  5.6139 0.0673  8.4048  0.0184 0.0456 0.0322 0.0320 0.0240  0.0417
A 4 5.7297 0.0000 9.4267  5.7302 0.0791  8.3263  0.0184 0.0457 0.0322 0.0323 0.0240  0.0412
A 5 5.6271 0.2748 9.3500  5.6275 0.4651  8.2488  0.0194 0.0452 0.0324 0.0318 0.0245  0.0410
B 1 5.6181 0.0000 9.1913  5.6189 0.0000  8.0901  0.0185 0.0458 0.0331 0.0330 0.0252  0.0417
B 2 7.8164 0.0000 33.0905 7.8160 0.0000 31.9902 0.0170 0.0480 0.0329 0.0332 0.0230  0.0429
B 3 7.9880 0.0000 28.4871 7.9892 0.0000 27.3877 0.0165 0.0472 0.0329 0.0323 0.0236  0.0427
B 4 7.4395 0.0000 17.7741 7.4402 0.0000 16.6733 0.0178 0.0466 0.0328 0.0325 0.0240  0.0423
B 5 6.6683 0.0000 11.3200 6.6683 0.0000  9.0184  0.0192 0.0461 0.0337 0.0324 0.0246  0.0424
C 1 5.8681 0.0000 9.4332  5.8698 0.0000  8.3330  0.0188 0.0456 0.0332 0.0328 0.0250  0.0420
C 2 8.6784 0.0000 46.1006 8.6785 0.0000  44.9996  0.0167 0.0486 0.0340 0.0338 0.0231  0.0440
C 3 7.4340 0.0000 38.6957 7.4343 0.0000 37.5957 0.0164 0.0486 0.0347 0.0333 0.0232  0.0437
C 4 7.0231 0.0000 22.1019 7.0241 0.0000 21.0007 0.0174 0.0476 0.0349 0.0337 0.0240  0.0426
C 5 6.4037 0.0000 12.6525 6.4052 0.0000  9.5506  0.0185 0.0468 0.0347 0.0339 0.0242  0.0424
D 1 7.0398 0.0000 21.8711 7.0412 0.0000 20.7705 0.0178 0.0469 0.0330 0.0327 0.0246  0.0424
D 2 10.794 0.0000 64.2911 10.7940 0.0000  63.1905 0.0161 0.0509 0.0347 0.0336 0.0227  0.0441
D 3 13.624 0.0000 47.2659 13.6252 0.0000 46.1648 0.0162 0.0506 0.0330 0.0325 0.0229  0.0436
D 4 9.4267 0.0000 23.0812 9.4280 0.0000 19.9801  0.0169 0.0487 0.0324 0.0331 0.0236  0.0432
D 5 8.4054 0.0000 13.7967 8.4067 0.0000 12.6970  0.0182 0.0477 0.0328 0.0330 0.0245  0.0427
Complete 52525 1.2716  9.2933 — 1.572 9.3819  0.0322 0.0449 — 0.0319 0.0256  0.0427

4. Simulation study

In this section, we have compared the performances of the various estimators on the basis of
their bias and mean square error (MSE). It may be mentioned here that the exact expressions
for the bias and mean square errors cannot be obtained, because the estimators are not
in closed form. Therefore, biases and MSEs are estimated on the basis of a Monte-Carlo
simulation study of 2000 samples. For this purpose we generated a specified number of
observations from the distribution given in equation (1) for arbitrarily fixed values of the
parameters under the specified censoring schemes and calculated different estimates of «
and 0 following the procedure described in the previous sections. This process was repeated
2000 times to obtain the simulated biases and MSEs. We have computed the MLEs by
using the Newton-Raphson algorithm. The estimates of («, €) obtained through the Newton-
Raphson algorithm are denoted as (a1, Oarr), respectively. It is noted that Newton-Raphson
algorithm has a convergence rate of 85%-90%. We have reported the results omitting the cases
where the algorithms do not converge. To simulate a progressive interval type-I censored
sample from the considered distribution, we have used the algorithm given by Balakrishnan
and Cramer (2014, pp.200) after modifying step @ as : Determine the number of droppings
at the j stage by generating r; from Bin(n — Z;;ll(dj +175),05)-

It may be noted here that the MSE and bias of these estimators will depend on the sample size
n, values of o,  and hyperparameters A;, A2, v1 and 2. We considered a number of values
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for the sample size n; namely n = 20, 30, 40 and 50. For the choice of the hyper-parameters
of the prior distribution, we have considered one set of values as Ay = Ao = 11 = 1v» = 0 which
reduces the prior to a non-informative prior. For an informative prior, the hyperparameters
are chosen on the basis of the information possessed by the experimenter. In most cases,
the experimenter can have a notion of what are the expected value of the parameter and
can always associate a degree of belief to this value. In other words, the experimenter can
specify the prior mean and prior variance for the parameters. The prior mean reflects the
experimenter’s belief about the parameter in the form of its expected value, and the prior
variance reflects his confidence in this expected value. Keeping this point in mind, we have
chosen the hyper-parameters in such a way that the prior mean is equal to the true value of
the parameter, and the belief in the prior mean is either strong or weak, i.e. the prior variance
is small or large, respectively; for details see Singh et al. (2011). The bias of the estimates of
parameters, reliability and hazard rate with corresponding MSEs have been calculated, and
the results are summarized in Table 3, 4 and 5.

Table 3 provides the absolute bias and MSE of estimates of the parameters along with
the reliability and hazard rate at time ¢t = 1 for @ = 2.5, §# = 2 and inspection times
0.2, 0.4 ,0.6, 0.8, 1.0, 1.2, 1.4, 1.6. It can be seen from the table that in general the bias
and MSEs decrease as n increases in all the considered cases. It can also be seen that the
MSE of the MLE is more than that of the corresponding Bayes estimate in all cases, but the
difference between the MSEs of the Bayes and ML estimates decreases for increases in the
value of n. It is noted here that bias of the estimates and MSEs under censoring scheme 1
are approximately equal to that of complete sample case (denoted as scheme 0) and smaller
than those under other schemes. In most cases it is observed that the bias and MSE under
dropping scheme 1 are smallest followed by scheme 5, 4, 3 and 2 sequentially. Bias and MSE
of the reliability estimate show a similar trend as observed for the parameter estimates.

Table 4 provides the absolute bias and MSE of the various estimators for different choices
of model parameters. Above we noted that as the sample size increases the Bias and MSE
decrease, therefore we have reported the results for n=30 only. Similarly, we noted above
that under dropping scheme 1 the performance of the estimates are as good as the complete
sample case and better than all other schemes. Therefore, we have reported the results for
the complete sample case and scheme 1 and scheme 4 only. It may be seen from the table
that the bias and MSE of all the considered estimates of «, 6, reliability Sy/r(t = 1) and
hazard rate Hysr(t = 1) increase as « increases and/or as 6 increases. It is interesting to note
that the bias and MSE of all the estimates are smaller when the proportion of droppings are
smaller. All the estimates under scheme 1 have, more or less, a similar bias and MSE as that
obtained for the complete case; but the bias and MSE of the estimates under scheme 4 are
a little larger. The bias and MSE of the Bayes estimates obtained using various priors are
presented in Table 5, and we see that as prior confidence in the guessed value increases the
MSE decreases.

5. Conclusions

In the present piece of work, we have considered both Classical and Bayesian analysis for
the progressive interval type-I censored data when the lifetime of the items follows gener-
alised exponential distribution. The ML estimates do not have explicit forms. Therefore, the
Newton-Raphson algorithm has been proposed to compute the MLEs. The Bayes estimates
under the squared error loss function also do not exist in explicit form, but, Bayes estimates
can be routinely obtained through the use of MCMC technique considering the shape and
scale parameters having independent gamma priors. On the basis of this study, we may
conclude that the proposed estimation procedures under progressive interval type-I censoring
with specific choices of the scheme can be easily implemented. It is also seen that the in-
spection scheme and dropping schemes have an effect on the performance of the estimators.
Thus, if it is possible, it is better to choose a scheme resulting in a fewer number of droppings.



Table 3: Simulated bias (MSE) of estimates of parameters, reliability and hazard rate for
fixed @ = 2.5, # = 2 and inspection time 0.2(0.2)1.6.
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Dropping

b

Sch anmr O ap 0B Sur(t=1) Hyr(t=1)

cheme

20 0°  0.5718(1.1600) 0.2025(0.5122) 0.4856(0.7593) 0.0691(0.2791) 0.0056(0.0070) 0.3079(0.1870)
1 0.5932(1.3333)  0.1842(0.5699) 0.5863(0.9271) 0.0385(0.3443) 0.0057(0.0069) 0.3085(0.1757)
2 2.0746(4.2198) 0.3975(0.8522) 2.0922(3.7516) 0.2707(0.6738) 0.0065(0.0089) 0.4007(0.3911)
3 1.7536(3.1505)  0.3920(0.8764) 1.6912(2.6920) 0.2597(0.5979) 0.0059(0.0077) 0.3093(0.3838)
4 1.7491(3.1034)  0.3861(0.8202) 1.4365(2.6664) 0.1939(0.5585) 0.0058(0.0073) 0.3091(0.3769)
5 1.0191(1.8213)  0.2074(0.7259) 0.8832(1.4055) 0.1025(0.4666) 0.0057(0.0072) 0.3094(0.2854)
0 0.3437(0.8028)  0.1147(0.4058) 0.0998(0.5197) 0.0152(0.2521) 0.0048(0.0047) 0.3079(0.1020)
1 0.3427(0.8692) 0.1003(0.4130) 0.1557(0.6105) 0.0091(0.2262) 0.0048(0.0046) 0.3082(0.1022)

%0 2 0.5693(1.3154) 0.2069(0.6577) 0.3680(1.0635) 0 0814(0.4828)  0.0059(0.0059) 0.4008(0.1036)
3 0.5596(1.2533)  0.1696(0.6206) 0.3012(1.0403) 0.0552(0.4668) 0.0054(0.0054) 0.3088(0.1031)
4 0.5194(1.2118)  0.1619(0.5703) 0.3989(0.9591) 0.0301(0.4670) 0.0052(0.0053) 0.3091(0.1027)
5 0.4322(1.0940)  0.1379(0.5208) 0.2671(0.8896) 0.0015(0.3743) 0.0050(0.0050) 0.3084(0.1026)
0 0.2522(0.7110)  0.0957(0.3491) 0.0910(0.5352) 0.0047(0.2438) 0.0043(0.0034) 0.3071(0.0960)
1 0.2536(0.8036) 0.0977(0.3891) 0.0882(0.6733) 0.0198(0.2541) 0.0044(0.0035) 0.3074(0.0958)

10 2 0.4758(1.0459)  0.1165(0.7106) 0.2164(0.9158) 0.0761(0.6127) 0.0056(0.0047) 0.3996(0.0975)
3 0.4140(1.0447)  0.1552(0.7056) 0.3396(0.8940) 0.0386(0.3859) 0.0053(0.0040) 0.3085(0.0965)
4 0.3450(0.9457)  0.1797(0.5425) 0.1757(0.8136) 0.0327(0.3185) 0.0049(0.0039) 0.3083(0.0969)
5 0.3318(0.8901) 0.1106(0.4865) 0.1575(0.6956) 0.0316(0.5886) 0.0049(0.0037) 0.3080(0.0961)
0 0.2477(0.7118)  0.0949(0.3488) 0.0332(0.6452) 0.0339(0.1837) 0.0040(0.0029) 0.3065(0.0853)
1 0.2537(0.8043)  0.0971(0.3895) 0.0078(0.7000) 0.0161(0.2413) 0.0041(0.0030) 0.3068(0.0862)

50 2 0.3322(0.9056)  0.1096(0.6144) 0.0955(0.7610) 0.0465(0.4660) 0.0048(0.0043) 0.3069(0.0866)
3 0.3148(0.8990)  0.1198(0.4954) 0.0349(0.8323) 0.0123(0.4802) 0.0046(0.0037) 0.3066(0.0859)
4 0.3011(0.8619) 0.1015(0.4742) 0.0879(0.7333) 0.0022(0.4111) 0.0043(0.0034) 0.3066(0.0860)
5 0.2499(0.8065)  0.0885(0.4326)  0.0247(0.7547) 0.0109(0.3040) 0.0041(0.0030) 0.3068(0.0860)

® Here, true value of reliability at time 1 is S(1) = 0.3048
¥ True value of hazard rate at time 1 is H(1) = 1.7851
¢ 0 means complete case, when no dropping and data points collected continuously
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Table 4: Simulated bias (MSE) of estimates of parameters, reliability and hazard rate for
various choice of parameters and fixed n = 30

Dropping

a Sch ayr O ap 0p Sur(t=1) Hyp(t=1)
cheme
05 0 0.0320(0.0145) _ 0.0324(0.0105) _ 0.0275(0.0130) _ 0.0210(0.0101) _ 0.0003(0.0007) _ 0.0487(0.0219)
0.5 1 0.0366(0.0143) 0.0330(0 0125)  0.0313(0.0141)  0.0245(0.0111)  0.0060(0.0008) 0.0501(0.0215)
0.5 4 0.0452(0.0152)  0.0336(0.0132)  0.0399(0.0149)  0.0310(0.0131)  0.0063(0.0009)  0.0541(0.0224)
1.5 0 0.0345(0.0143) 0.0903(0.0964) 0.0318(0.0130) 0.0743(0.0904)  0.0029(0.0024)  0.1577(0.2474)
0.5 1.5 1 0.0413(0.0155) 0.0913(0.0964) 0.0403(0.0142) 0.0755(0.0948)  0.0082(0.0026)  0.1627(0.2476)
15 4 0.0471(0.0148)  0.0976(0.0968)  0.0448(0.0152)  0.0776(0.0958)  0.0095(0.0027)  0.1574(0.2482)
2.5 0 0.0449(0.0149)  0.1452(0.2642)  0.0429(0.0152)  0.1301(0.2527) 0.0036(0.0045)  0.2797(0.7334)
2.5 1 0.0455(0.0156)  0.1451(0.2652)  0.0427(0.0156)  0.1330(0.2558)  0.0042(0.0046)  0.2765(0.7330)
2.5 4 0.0481(0.0166)  0.1454(0.2666)  0.0454(0.0154)  0.1337(0.2565) 0.0077(0.0048)  0.2728(0.7333)
05 0 0.1641(0.2270)  0.0360(0.0133)  0.1302(0.2242) _ 0.0312(0.0081) _0.0024(0.0021) _ 0.0083(0.0074)
0.5 1 0.1712(0.2273) 0.0435(0.0140) 0.1343(0.2253) 0.0324(0.0092)  0.0038(0.0024)  0.0114(0.0076)
0.5 4 0.1808(0.2311) 0.0440(0.0141) 0.1385(0.2282) 0.0410(0.0122)  0.0074(0.0026)  0.0042(0.0075)
15 0 0.1878(0.2309)  0.1037(0.1193)  0.1416(0.2243)  0.0866(0.1121)  0.0020(0.0043)  0.0869(0.1132)
15 15 1 0.1912(0.2324)  0.1068(0.1197)  0.1455(0.2241)  0.0873(0.1135)  0.0167(0.0044)  0.0851(0.1141)
15 4 0.1956(0.2388)  0.1097(0.1202)  0.1516(0.2318)  0.0883(0.1194)  0.0182(0.0045)  0.0891(0.1139)
2.5 0 0.1892(0.2349) 0.1875(0.3345) 0.1453(0.2340) 0.1543(0.3241)  0.0013(0.0048)  0.1850(0.3636)
2.5 1 0.1923(0.2362)  0.1918(0.3346)  0.1470(0.2358)  0.1582(0.3241)  0.0026(0.0050)  0.1833(0.3637)
2.5 4 0.1994(0.2382)  0.1986(0.3352)  0.1485(0.2375)  0.1584(0.3248)  0.0039(0.0052)  0.1904(0.3635)
05 0 0.3222(0.8562) _ 0.0642(0.0285)  0.2822(0.8474) _ 0.0368(0.0270) _ 0.0049(0.0017) _ 0.0090(0.0040)
0.5 1 0.3285(0.8576)  0.0719(0.0287)  0.2823(0.8474)  0.0383(0.0268)  0.0203(0.0018)  0.0094(0.0036)
0.5 4 0.3351(0.8579)  0.0786(0.0207)  0.2863(0.8473)  0.0406(0.0277)  0.0224(0.0021)  0.0117(0.0042)
1.5 0 0.3476(0.8634) 0.1682(0.2517) 0.2916(0.8413) 0.1263(0.2469)  0.0003(0.0038)  0.0687(0.0739)
25 15 1 0.3499(0.8644)  0.1698(0.2525)  0.3017(0.8455)  0.1318(0.2482)  0.0019(0.0039)  0.0502(0.0744)
15 4 0.3527(0.8645)  0.1706(0.2532)  0.3082(0.8453)  0.1354(0.2496)  0.0026(0.0043)  0.0612(0.0737)
2.5 0 0.3909(0.9115)  0.2839(0.6999)  0.3150(0.9071)  0.2353(0.6930)  0.0045(0.0051)  0.1421(0.3133)
2.5 1 0.3910(0.9125)  0.2826(0.7000)  0.3226(0.9110)  0.2393(0.6969)  0.0062(0.0053)  0.1357(0.3136)
2.5 4 0.3995(0.9204) 0.2854(0.7008) 0.3310(0.9149) 0.2420(0.6970)  0.0114(0.0054)  0.1262(0.3146)
3.0 0 0.5388(0.2176) 0.5116(0.1683) 0.4087(0.2304) 0.3261(0.1829)  0.0396(0.0202)  0.7741(0.3364)
3.0 1 0.5844(0.2234) 0.5090(0.2120) 0.4815(0.2212) 0.3829(0.2117)  0.1274(0.0478)  0.8046(0.3540)
3.0 4 0.6898(0.2692) 0.5463(0.2120) 0.6183(0.2369) 0.4740(0.2294)  0.1364(0.0286)  0.8580(0.3517)
40 0 0.5530(0.2303)  1.3648(1.4693)  0.4819(0.2352)  1.1533(1.3866) 0.0560(0.0566) 2.3702(3.7346)
3.0 4.0 1 0.6703(0.2267) 1.4112(1.4771) 0.6596(0.2532) 1.1435(1.4505)  0.1490(0.0812)  2.4594(3.7510)
4.0 4 0.7226(0.2649)  1.4730(1.4784)  0.7047(0.2760)  1.1856(1.4579) 0.1750(0.0492) 2.3688(3.7659)
5.0 0 0.7038(0.2371) 2.1954(4.0110) 0.6798(0.2532) 2.0040(3.8336)  0.0736(0.0736) 4.2306(11.0138)
5.0 1 0.6992(0.2392)  2.1816(3.9871)  0.6577(0.2589)  1.9941(3.8587) 0.0733(0.1028) 4.1922(11.0185)
5.0 4 0.7512(0.2888) 2.2243(4.0108) 0.7009(0.2402) 2.0491(3.8652)  0.1312(0.0979) 4.1031(11.0093)
3.0 0 2.4743(3.4426) 0.5779(0.2462) 1.9738(3.3973) 0.4890(0.1667)  0.0522(0.0520)  0.1438(0.1548)
3.0 1 2.5733(3.4655)  0.6817(0.2338)  2.0302(3.3062)  0.4975(0.1861) 0.0636(0.0411)  0.2144(0.1460)
3.0 4 2.7376(3.4884)  0.6648(0.2113)  2.1179(3.4287)  0.6501(0.2158) 0.1137(0.0763)  0.1135(0.1639)
4.0 0 2.8501(3.4821) 1.5624(1.8098) 2.1362(3.3767) 1.3086(1.7272)  0.0418(0.0946)  1.3455(1.7215)
40 4.0 1 2.8971(3.4904)  1.6341(1.8392)  2.2153(3.3794)  1.3131(1.7141)  0.2563(0.0930) 1.3069(1.7546)
4.0 4 2.9686(3.5936) 1.6931(1.8472) 2.2918(3.4908) 1.3620(1.7989)  0.2984(0.0876)  1.3602(1.7181)
5.0 0 2.8733(3.5557)  2.8320(5.0180)  2.2141(3.5167)  2.3504(4.8665) 0.0381(0.1063) 2.7912(5.4545)
5.0 1 2.9381(3.5388) 2.8915(5.0673) 2.2219(3.5526) 2.3802(4.8844)  0.0744(0.1164)  2.7914(5.4672)
5.0 4 3.0215(3.5968) 3.0140(5.0419) 2.2480(3.5922) 2.4060(4.9194)  0.0857(0.0869)  2.8584(5.4640)
3.0 0 4.8491(12.8567)  0.9865(0.4531)  4.2426(12.7171)  0.5767(0.4308)  0.0875(0.0392)  0.1381(0.0866)
3.0 1 4.9642(12.8929)  1.1139(0.4607) 4.2362(12.7365)  0.5975(0.4206)  0.3245(0.0346)  0.1655(0.0980)
3.0 4 5.0702(12.8907)  1.2088(0.4734)  4.3373(12.7514)  0.6192(0.4602)  0.3430(0.0472)  0.1805(0.0961)
4.0 0 5. 2182(12 9806)  2.5490(3.7884)  4.4249(12.6350)  1.9183(3.7509) 0.0387(0.1010)  1.0399(1.1152)
5.0 4.0 1 5.2887(13.064)  2.5670(3.8373) 4.5390(12.7071)  1.9886(3.7638) 0.0765(0.0882) 0.7663(1.1307)
4.0 4 5.2959(12.9793)  2.5738(3.8091)  4.6375(12.7009) 2.0625(3.7921)  0.0876(0.0708)  0.9403(1.1580)
5.0 0 5.8731(13.7266) 4.2612(10.5378) 4.7567(13.6204) 3.5345(10.4273) 0.0885(0.0966) 2.1410(4.7334)
5.0 1 5.9029(13.6974) 4.2759(10.5085) 4.8633(13.6841) 3.6289(10.4968) 0.1249(0.1087)  2.0771(4.7301)
5.0 4 6.0106(13.8543)  4.3315(10.5531) 4.9905(13.7422) 3.6310(10.4785) 0.2096(0.0827)  1.9228(4.7278)

Table 5: Average Bayes estimates (MSE) and 95% HPD intervals based on data simulated
under dropping scheme 1 for different choices of prior parameters

g1(@) g2(0) ap HPD Interval 05 HPD Interval

G421 G(4.2) 0.0849(0.8064) (3.6262, 2.1042) 0.0111(0.2759) (1.3450, 2.6745)
G(4,2) G(1,0.5) 0.0971(0.8342)  (2.0054, 3.7263) 0.0275(0.3157) (1.3070, 2.7325)
G(4,2) G(0.4,0.2) 0.1139(0.9135) (1.8692, 3.7963) 0.0412(0.3564) (1.0127, 2.9745)
G(1,0.5) G(4,2) 0.1135(0.9075)  (1.9507, 3.7702) 0.0198(0.3022) (1.2016, 2.8618)
G(1,0.5)  G(1,0.5)  0.1330(0.9275) (1.8068, 3.9263) 0.0390(0.3440) (1.1129, 2.9044)
G(L,05)  G(0.4,0.2) 0.1459(0.9324) (1.7864, 3.9292) 0.0501(0.3674) (0.9977, 3.0199)
G(0.4,0.2) G(0.4,0.2) 0.1460(0.9454) (1.7001, 4.5137) 0.0566(0.3624) (0.9901, 3.1198)
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However, in most practical situations the dropping scheme is not controllable. Therefore, in
such situations, the inspection plan should be designed as to result in the least number of
droppings. However, under any scheme, the proposed method can be used to obtain the
estimates.

We have not considered any covariates in this paper, but in practice often the covariates may
be present. It will be interesting to develop statistical procedures for the estimation of the
unknown parameters in the presence of covariates. Further, we have considered dropping
probabilities at each stage to be fixed, but in real life, these may be random, and a suitable
model to capture this randomness can be developed. The work in this direction is under
progress.
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