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Abstract

In this paper, we consider different score functions in order summarize certain charac-
teristics for one and two sample ranking data sets. Our approach is flexible and is based
on embedding the nonparametric problem in a parametric framework. We make use of
the von Mises-Fisher distribution to approximate the normalizing constant in our model.
In order to gain further insight in the data, we make use of penalized likelihood to narrow
down the number of items where the rankers differ. We applied our method on various
real life data sets and we conclude that our methodology is consistent with the data.

Keywords: rankings, score function, Rao score test, Spearman, Kendall, penalized likelihood,
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1. Introduction

Ranking data occur quite frequently in practice. There are examples in sport competitions
(Deng, Han, Li, and Liu 2014), in the selection of candidates in political elections (Croon
1989; Lee and Philip 2012), in the arrangement of web-pages when using search engines
(Aslam and Montague 2001) and in flagging disease related gene in bioinformatics (DeConde,
Hawley, Falcon, Clegg, Knudsen, and Etzioni 2006) just to name a few. In all cases it is of
interest to present summaries of the data. Some of the methods include the calculation of
the average ranks. Borda counts (Baba 1986) usually sum up the rank as each item’s score
and present transformations such as ordering or averaging. There are also more sophisticated
methods which involve building models to explain the ranking data. For example, Kemeny
rankings (Mallows 1957; Kemeny and Snell 1962) are based on fitting a distance-based model
with Kendall distance and using the modal rank as a summary analogous to the mean for
numerical data. Deng et al. (2014) suggested a Bayesian approach to aggregate the observed
rankings whereas Dwork, Kumar, Naor, and Sivakumar (2001) suggested a model using a
Markov chains approach to have a summary of the word association or the web-page for
example.

Here we first introduce a parametric model for the one sample case which incorporates an
arbitrary score function. Such score functions include both the Spearman and Kendal scores.
The former focuses attention on a single item at a time whereas the latter allows for com-
parisons between pairs of items. In the era of big data, the number of items being ranked
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is usually very large. For this reason, we may apply penalized likelihood methods to focus
on those items that are particularly preferred by the rankers. The parametric model can
be extended to the two sample case whereby we now compare groups of judges. Bootstrap
methods can be particularly useful for constructing a confidence interval for the parameters
in the models.

The article is organized as follows. In Section 2 we formally introduce the parametric model
and indicate how to calculate the maximum likelihood estimates (MLE). We also obtain the
estimates using penalized likelihood (PMLE) . In Section 3, we introduce the Spearman score
function, explain its significance and then apply it to three real data sets. In Section 4 we
consider the Kendall score function, explain its significance and use it on the same data sets.
In Section 5 we consider the two sample problem and illustrate our results on two real life
data sets. We briefly summarize our results in Section 6.

2. The probability models

Neyman (1937) first proposed smooth tests for testing the null hypothesis that data come
from a uniform distribution on the interval (0, 1). The smooth alternative density proposed
by Neyman was given by

p(y, θ) = exp

{
k∑
i=1

θihi(y)−K(θ)

}

where θ
′

= (θ1, θ2, ..., θk) is a set of unknown parameters, K(θ) is the normalizing constant
and hi(y) are the Legendre orthonormal polynomials with respect to the uniform on (0, 1).
Motivated by this model, we can define a similar probability function for ranking data. Assume
there are n judges each of whom ranks t items. Let {ωj} be the set of t! possible rankings
and define the probability that X(ωj) = xj by

πj (θ) = exp
{
θ′xj −K (θ)

} 1

t!
, j = 1, ..., t!

where θ
′

= (θ1, ..., θk) is a k-dimensional vector of parameters, K (θ) is a normalizing constant.
X(ωj) is a k-dimensional vector transformed from the original ranking ωj . The transformation
rule X (ωj) = xj is defined by certain scoring function. The likelihood function is obtained
from the multinomial distribution and is proportional to

L (θ) ∼
∏

[πj (θ)]nj

where nj is the number of judges choosing ωj . Let the total sample size n =
∑t!

j=1 nj . The
log-likelihood function is then given by

l(θ) ∼
t!∑
j=1

nj
[
θ′xj −K(θ)

]
As mentioned in the introduction, when the number of items being ranked is large, the
dimension t! becomes very large. Penalized likelihood is a parametric method which helps to
narrow down the number of items to look at. The main idea is to add a penalty term in the
log likelihood function. In this paper, we consider l2 norm penalized terms and minimize this
function in order to obtain the Maximum Penalized likelihood (MPL) estimates of the vector
parameter θ:

Λ(θ, c) = −θ′
 t!∑
j=1

njxj

+ nK(θ) + λ(

t∑
i=1

θ2i − c)
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for some prescribed values of the constant c. When t is large (say t ≥ 10), the exact compu-
tation of the normalizing constant K(θ) involves a summation of t! items. McCullagh (1993)
suggested using the normalizing constant from the von Mises-Fisher distribution. Following
on this suggestion, we approximate K(θ) with

K(θ) ≈ 1

t!
(2π)

t
2 I t

2
−1(‖θ‖) ‖θ‖

− t
2
+1

where ‖θ‖ is the norm of θ and Iυ(z) is the modified Bessel function of the first kind given by

Iυ(z) =
∞∑
k=0

1

Γ(k + 1)Γ(υ + k + 1)

(z
2

)2k+ν
We may now find approximately the Maximum Penalized likelihood estimation for θ after
ensuring that ‖x‖ = 1 in our model. There are several ways to minimize the target function
Λ(θ, c). In this paper, we used three methods: the BFGS Quasi-Newton method (Broyden
1970; Fletcher 1970; Goldfarb 1970; Shanno 1970),the Trust-Region-Reflective method (Cole-
man and Li 1994, 1996) and the Interior Point Algorithm (Byrd, Hribar, and Nocedal 1999;
Byrd, Gilbert, and Nocedal 2000; Waltz, Morales, Nocedal, and Orban 2006). As well, we
imposed the constraint: θ ≥ 0 on θ in order to compare the results when there is no constraint.
Differentiating with respect to θ we have

∂Λ(θ, c)

∂θ
= −

t!∑
j=1

njxj + 2λθ +
nθ

‖θ‖
× ∂K(θ)

∂ ‖θ‖

where

∂K(θ)

∂ ‖θ‖
=

1

t!
(2π)

t
2

[
‖θ‖1−

t
2

(
I t

2
(‖θ‖)−

1− t
2

‖θ‖
I t

2
−1(‖θ‖)

)
+ (1− t

2
) ‖θ‖−

t
2 I t

2
−1(‖θ‖)

]
The critical points of the minimization occur at saddle points, rather than at local maxima
(or minima). For the Quasi-Newton method, the target function is the magnitude of the
gradient which is the square root of the sum of the squares of the partial derivatives instead
of the Λ(θ, c) to solve the problem. In the applications that follow, the results from the three
different methods yield the same solutions and the algorithms implemented in MATLAB
converge very fast.

Following the estimation of θ, we proceeded to apply the basic bootstrap method in order
to assess the distribution of θ. The basic idea of the bootstrap is to sample n rankings with
replacement from the data. Then we find the MLE of each bootstrap sample. Repeating this
procedure several times say 104, leads to a distribution of θ. We can draw useful inference
from the distribution θ and determine whether or not the θ′js are significantly different from
zero. Two sided confidence intervals can also be calculated. We illustrate this on real life
data.

3. Using the Spearman score function

3.1. The Spearman score function and its meaning

In this section we restrict our attention to the Spearman score function defined as:

X(ωj) =

(
ωj(1)− t+ 1

2
, ..., ωj(t)−

t+ 1

2

)
, j = 1, ..., t!

where ωj(i) is the rank given to Item i.
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Let TS be the t × t! matrix of possible values of X: TS = (X(ωj)). Taking t = 3 as an
example, let ωj be the possible rankings:

ω1 =

1
2
3

 , ω2 =

1
3
2

 , ω3 =

2
1
3

 , ω4 =

2
3
1

 , ω5 =

3
1
2

 , ω6 =

3
2
1


Then the matrix TS becomes:

TS =

−1 −1 0 0 1 1
0 1 −1 1 −1 0
1 0 1 −1 0 −1


Let πj = nj/n and let π be the column vector of πj . The first part of our likelihood function
Λ(θ, c) becomes:

−nθ′Tsπ = − n

‖x‖
×
[
θ1 θ2 θ3

] π5 + π6 − π1 − π2
π2 + π4 − π3 − π5
π1 + π3 − π4 − π6


We can notice that for θ1,

π5 + π6 = Pr(giving rank 3 to Item 1)

and
π1 + π2 = Pr(giving rank 1 to Item 1).

So here θ1 weights the difference in probability between giving the top rank and the lowest
rank to Item 1 (Pr(giving rank 3 to Item 1)−Pr(giving rank 1 to Item 1)). There is a similar
interpretation for θ2 and θ3. In general, the components of the matrix TS actually focus
on a special characteristic of the data, namely on the difference in weighted average of the
rankings to the t objects. The weights here are i − t+1

2 , i = 1, ..., t. The θi’s here represent
the coefficients attributed to each item.

Similarly, we can also compute the matrix of possible scores for t = 4. It can be seen that
the first row element for TSπ is −1.5 Pr(giving rank 1 to Item 1) − 0.5 Pr(giving rank 2) +
0.5 Pr(giving rank 3) + 1.5 Pr(giving rank 4). This is the weighted average of probability
giving the high rank compare with the low rank to Item 1. Notice that when t is odd, the
weight of the middle item is 0 which means that our comparison is symmetric and balanced.

3.2. Application to real data

Sutton data

For the first example, we consider the Sutton data (t = 3) analyzed by C. Sutton in her 1976
thesis on leisure preferences and attitudes on retirement of the elderly for 14 white and 13
black females in the age group 70- 79 years. Each individual was asked: with which sex do
you wish to spend your leisure? Each female was asked to rank the three responses: male(s),
female(s) or both, assigning rank 1 for the most desired and 3 for the least desired. The first
item in the ranking corresponds to “male”, the second to “female” and the third to “both”. To
illustrate the approach in the one sample case, we combined the data from the two groups as
in Table 1.

We applied our penalized likelihood in this situation and the results are shown in Table 2.

To better illustrate, we rearrange our result (unconstrained θ, c=1) and data in Table 3. It
can be seen that θ1 is the largest coefficient and Item 1 “male” shows the greatest difference
between the number of judges choosing rank 1 or rank 3 which means that the judges dislike
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Table 1: Sutton data on leisure preferences

Rankings (123) (132) (213) (231) (312) (321)

Frequencies 1 1 1 5 7 12

Table 2: Maximum penalized likelihood estimation for Sutton’s data

Choice of c θ ≥ 0 θ1 θ2 θ3 Λ(θ, c)

c=0.5
No 0.53 -0.06 -0.47 50.00

Yes 0.71 0.00 0.00 52.88

c=1
No 0.75 -0.09 -0.66 50.36

Yes 1.00 0.00 0.00 54.44

c=2
No 1.06 -0.12 -0.93 54.62

Yes 1.41 0.00 0.00 60.38

c=10
No 2.36 -0.28 -2.08 159.96

Yes 3.16 0.00 0.00 172.84

MLE
No 0.60 -0.07 -0.53 49.90

Yes 0.61 0.00 0.00 52.79

spending leisure with male the most. For Item 3“both”, the greater value of negative θ3 means
judges prefer to spend leisure with both sex the most. θ2 is close to zero and we deduce the
judges show no strong preference on Female. This is consistent with the hypothesis that
θ close to zero means randomness. To conclude, the results also show that θi weights the
difference in probability giving the top rank and the lower rank to Item i. Negative θi means
the judges prefer Item i more and positive θi means the judges are more likely to give a lower
rank to Item i.

Applying the bootstrap method on the Sutton data we plot the distribution of θ in Figure 1.
The bootstrap sample size is 104 in this case. For H0: θi = 0, we can see that θ1 and θ3 are
significantly different from 0 and θ2 is not significantly different from zero. We can also see
that the distribution of θ1 and θ2 is not completely bell shaped. This is mainly because the
sample size of the data is small. Using a traditional t-test method may be misleading in this
case.

Song data

Our second example is the Song data (t=5) from Critchlow, Fligner, and Verducci (1991).
Ninety-eight students were asked to rank 5 words, (1) score, (2) instrument, (3) solo, (4)
benediction and (5) suit, according to the association with the word “song”. Critchlow et al.
(1991) reported that the average ranks for words (1) to (5) are 2.72, 2.27, 1.60, 3.71 and 4.69
respectively. However, the available data given in Critchlow et al. (1991) is in grouped format
and the ranking of 15 students are unknown and hence discarded, resulting in 83 rankings, as
shown in Table 4.

Table 3: The Sutton data and the estimation of θ

Items Number of

judges

Action Difference θ value

Item 1 (Male):
2 choose to rank 1

-17 θ1 0.75
19 choose to rank 3

Item 2 (Female):
8 choose to rank 1

2 θ2 -0.09
6 choose to rank 3

Item 3 (Both):
17 choose to rank 1

15 θ3 -0.66
2 choose to rank 3
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Figure 1: The distribution of θ for Sutton data by bootstrap method

Table 4: Song data set

Rankings Observed frequency

(32145) 19

(23145) 10

(13245) 9

(42135) 8

(12345) 7

(31245) 6

(32154) 6

(52134) 5

(21345) 4

(24135) 3

(41235) 2

(43125) 2

(52143) 2

others 0
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Table 5: Maximum penalized likelihood estimation for Song’s data

Choice of c θ ≥ 0? θ1 θ2 θ3 θ4 θ5 Λ(θ, c)

c=0.5
No -0.07 -0.22 -0.41 0.21 0.48 -30.15

Yes 0.00 0.00 0.00 0.29 0.65 -17.81

c=1
No -0.10 -0.31 -0.58 0.30 0.69 -49.60

Yes 0.00 0.00 0.00 0.41 0.91 -32.15

c=2
No -0.15 -0.44 -0.81 0.43 0.97 -76.45

Yes 0.00 0.00 0.00 0.57 1.29 -51.76

c=10
No -0.33 -0.98 -1.82 0.96 2.17 -176.13

Yes 0.00 0.00 0.00 1.28 2.89 -120.94

MLE
No -0.49 -1.46 -2.73 1.44 3.25 -220.60

Yes 0.00 0.00 0.00 1.76 3.97 -141.12

Table 6: The Song data and the estimation of θ

Items number of judges Action Average ranks θ value

Item 1 (Score):
16 choose to rank 1

2.72 θ1 -0.10
7 choose to rank 5

Item 2 (instrument):
10 choose to rank 1

2.27 θ2 -0.31
0 choose to rank 5

Item 3 (solo):
55 choose to rank 1

1.60 θ3 -0.58
0 choose to rank 5

Item 4 (benediction):
0 choose to rank 1

3.71 θ4 0.30
6 choose to rank 5

Item 5 (suit):
0 choose to rank 1

4.69 θ5 0.69
70 choose to rank 5

We applied the penalized likelihood in this situation and the results are shown in Table 5.
We also rearranged the results (unconstrained θ, c=1) and data in Table 6. Note that for
convenience we only show the number of judges who rank the top and the lowest but ranking
2 or 4 also is involved in determining the value of θ. From the results, we can see the value
of θ successfully captures the properties of the data. θ5 is the largest positive value and most
of the judges think word “suit” is not related to the word “song”. θ3 is the largest negative
value and 55 of the 83 judges think that word “solo” is the closest to the word “song”. From
the results, we see that θi successfully weights the difference in probability giving the upper
rank and the lower rank to Item i.

We also applied our bootstrap method on the Song data and plotted the distribution of θ
in Figure 2. The bootstrap sample size is 104 in this case. For H0: θi = 0, we can see that
all the θ’s are significantly different from zero. As well, their distributions of θ are more bell
shaped in view of the larger sample size.
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Figure 2: The distribution of θ for Song data by bootstrap method

Goldberg data

Our final example is due to Goldberg (1976) data (t=10). In the data, 143 graduates were
asked to rank 10 occupations according to the degree of social prestige. These 10 occupations
are: (i) Faculty member in an academic institution (Fac), (ii) Mechanical engineer (ME), (iii)
Operation researcher (OR), (iv) Technician (Tech), (v) Section supervisor in a factory (Sup),
(vi) Owner of a company employing more than 100 workers (Own), (vii) Factory foreman
(For), (viii) Industrial engineer (IE), (ix) Manager of a production department employing
more than 100 workers (Mgr) and (x) Applied scientist (Sci). The data are given in Cohen
and Mallows (1980) and have been analyzed by many researchers.

Feigin and Cohen (1978) analyzed the Goldberg data and found three outliers due to the fact
that the corresponding graduates wrongly presented rankings in reverse order. After reversing
these 3 rankings, the average ranks received by the 10 occupations are 8.57, 4.90, 6.29, 1.90,
4.34, 8.13, 1.47, 6.27, 5.29, 7.85, with the convention that bigger rank means more prestige.
Then the preference of graduates is in the order: Fac � Own �Sci � OR � IE � Mgr � ME
� Sup � Tech � For.

We applied our penalized likelihood method and the results are shown in Table 7.

We also rearranged our results (unconstrained θ, c=1) and data in Table 8. For convenience
we only show the number of judges who rank the top and the lowest but giving other rankings
also involves in determining the value of θ. We can see that the results are consistent with
the average ranks and our preference result from θ is the also consistent with the results from
Feigin and Cohen (1978). For Item 7 “factory foreman”, 93 of 143 graduates give rank 1
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Table 7: Maximum penalized likelihood estimation for Goldberg’s data

Choice of c θ ≥ 0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 Λ(θ, c)

c=0.5
No 0.30 -0.06 0.08 -0.35 -0.11 0.25 -0.39 0.07 -0.02 0.23 -81.89

Yes 0.45 0.00 0.12 0.00 0.00 0.39 0.00 0.11 0.00 0.35 -53.50

c=1
No 0.42 -0.08 0.11 -0.49 -0.16 0.36 -0.55 0.11 -0.03 0.32 -115.80

Yes 0.64 0.00 0.16 0.00 0.00 0.55 0.00 0.16 0.00 0.49 -75.66

c=2
No 0.59 -0.11 0.15 -0.69 -0.22 0.51 -0.78 0.15 -0.04 0.45 -163.77

Yes 0.90 0.00 0.23 0.00 0.00 0.77 0.00 0.23 0.00 0.69 -107.01

c=10
No 1.32 -0.26 0.34 -1.55 -0.50 1.13 -1.73 0.33 -0.09 1.01 -366.21

Yes 2.02 0.00 0.52 0.00 0.00 1.73 0.00 0.51 0.00 1.54 -239.27

MLE
No 8.74 -1.70 2.24 -10.25 -3.31 7.48 -11.46 2.20 -0.61 6.67 -2277.02

Yes 13.03 0.00 3.34 0.00 0.00 11.17 0.00 3.28 0.00 9.95 -1447.59

which means most of them think factory foreman has the lowest social prestige and our θ7
is the lowest (that bigger rank means more prestige). For t=10, it is almost impossible to
calculate the exact value of K(θ). Our results show that the von Mises-Fisher distribution
approximation of K(θ) actually works well and can be easily used when t is large.

Table 8: The Goldberg data and the estimation of θ

Items number of judges Action Average ranks θ value

Item 1 (Fac)
0 choose to rank 1

8.57 0.42
49 choose to rank 10

Item 2 (ME)
0 choose to rank 1

4.90 -0.08
0 choose to rank 10

Item 3 (OR)
3 choose to rank 1

6.29 0.11
1 choose to rank 10

Item 4 (Tech)
45 choose to rank 1

1.90 -0.49
0 choose to rank 10

Item 5 (Sup)
0 choose to rank 1

4.34 -0.16
0 choose to rank 10

Item 6 (Own)
0 choose to rank 1

8.13 0.36
54 choose to rank 10

Item 7 (For)
93 choose to rank 1

1.47 -0.55
0 choose to rank 10

Item 8 (IE)
0 choose to rank 1

6.27 0.11
1 choose to rank 10

Item 9 (Mgr)
1 choose to rank 1

5.29 -0.03
3 choose to rank 10

Item 10 (Sci)
1 choose to rank 1

7.85 0.32
35 choose to rank 10

The bootstrap distribution of θ is exhibited in Figure 3. The bootstrap sample size is 104 in
this case. For H0: θi = 0, we see that all the θi except θ9 are significantly different from zero.
We can also see that the distribution of the θ’s are all bell shaped because the sample size is
large.
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Figure 3: The distribution of θ for Goldberg data by bootstrap method

4. Pair comparison using the Kendall score function

4.1. Kendall score function and its meaning

In this section, we re-consider the previous data sets through the lens of the Kendall score
statistic. Specifically, for the Kendall score function, theX(ωj) vector takes values(tK (ωj))qwhere

the qth element is the pair comparison between jth rank given to item m and n denoted by

(tK (ωj))q = sgn [ωj (m)− ωj (n)]

for q = (n− 1)
(
t− n

2

)
+ (m− n) , 1 ≤ n < m ≤ t . The matrix of possible values of X

becomes

TK = (tK(ω1), ..., tK(ωt!))
′

which is of dimension

(
t
2

)
× t!. And θq from 1 to

(
t
2

)
weights the pair m and n. In the case

of the Kendall score function, the θ′s focus on the comparison between pairs of items ranked
by the judges. As an example, consider once again the case t = 3. Then,

X(ω) =

sgn(ω(2)− ω(1))
sgn(ω(3)− ω(1))
sgn(ω(3)− ω(2))


where θ1 weights the comparison between Items 1 and 2, θ2 weights Items 1, 3 and θ3 Items
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2, 3. As well,

TK =

1 1 −1 1 −1 −1
1 1 1 −1 −1 −1
1 −1 1 −1 1 −1


When θq < 0 (for say Item i and Item j), it means that the judges prefer Item j over Item i
(µ(i) > µ(j)). When θq is close to zero, the judges have no special preference between this
pair. In the next section we apply the Kendall score function to the previous data sets.

4.2. Application to real data

Sutton data

For the first example, we consider the Sutton data (t = 3). We applied our penalized likelihood
with Kendall score function in this situation and the results are shown in Table 9.

Table 9: MPLE using Kendall score function for Sutton data

Pair Compare choice of c

Item i Item j θ c=0.5 c=1 c=2 c=10 MLE

1 2 θ1 -0.35 -0.49 -0.70 -1.56 -0.60

1 3 θ2 -0.56 -0.80 -1.13 -2.53 -0.97

2 3 θ3 -0.24 -0.34 -0.48 -1.08 -0.41

Λ(θ, c) 42.79 40.17 40.20 127.76 39.59

Table 10: Pair comparison from the Sutton data and the estimation of θ

Item i Item j number of judges Pair comparison θ

1 2
7 more prefer 1

-0.49
20 more prefer 2

1 3
3 more prefer 1

-0.80
24 more prefer 3

2 3
9 more prefer 2

-0.34
18 more prefer 3

We rearrange the Sutton data focusing on pair comparison and our results (c=1) in Table
10. First, from our estimated θ, we can find that all θ′is are negative. This is consistent
with our interpretation of θ. The judges strongly prefer Males to Both and Males to Females.
They least prefer Females to Both. We can conclude that our θ′s well represent the paired
comparisons among the judges.

Song data

As to the Song data (t=5) the results are shown in Table 11.

Since the Song data is about how much 5 words are close to the word “song”. We can
summarize the results in Table 12. We note that θ7, θ8 and θ9 all have the same value 0.29.
For these, all of the judges think Item i is closer to Item j. Once again, we conclude that θ
well represents the paired preferences among judges.

Goldberg data

For the Goldberg (1976) data (t=10) we note that a large rank means more prestige, so our
interpretation is reversed. We applied penalized likelihood with the Kendall score function in
this situation and part of the results are shown in Table 13.
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Table 11: MPLE using Kendall score function for Song data

Pair Compare choice of c

Item i Item j θ c=0.5 c=1 c=2 c=10 MLE

1 2 θ1 -0.09 -0.12 -0.17 -0.39 -0.76

1 3 θ2 -0.15 -0.21 -0.30 -0.67 -1.30

1 4 θ3 0.16 0.22 0.31 0.70 1.36

1 5 θ4 0.24 0.34 0.48 1.07 2.09

2 3 θ5 -0.16 -0.22 -0.31 -0.70 -1.36

2 4 θ6 0.25 0.36 0.51 1.13 2.21

2 5 θ7 0.29 0.41 0.57 1.28 2.51

3 4 θ8 0.29 0.41 0.57 1.28 2.51

3 5 θ9 0.29 0.41 0.57 1.28 2.51

4 5 θ10 0.23 0.33 0.46 1.04 2.03

Λ(θ, c) -125.39 -184.29 -266.92 -602.04 -973.61

Table 12: Interpretation of θ in song data. A�B means A is preferred to B, that is A is closer
to the word “Song”.

Behavior of θ Interpretation of θ

θ1, θ2 < 0 score≺instrument, solo

θ3 > 0 score�benediction, suit

θ5 < 0 instrument≺solo

θ6, θ7 > 0 instrument�benediction, suit

θ8, θ9 > 0 solo�benediction, suit

θ10 > 0 benediction�suit

Table 13: MPLE using Kendall score function for Goldberg data

Pair Compare choice of c

Item i Item j θ c=0.5 c=1 c=2 c=10 MLE

1 2 θ1 -0.13 -0.18 -0.25 -0.56 -4.09

1 3 θ2 -0.09 -0.13 -0.18 -0.40 -2.89

1 4 θ3 -0.15 -0.21 -0.29 -0.65 -4.76

1 5 θ4 -0.12 -0.17 -0.25 -0.55 -4.02

1 6 θ5 -0.02 -0.02 -0.03 -0.07 -0.50

1 7 θ6 -0.15 -0.21 -0.29 -0.65 -4.76

1 8 θ7 -0.11 -0.15 -0.21 -0.48 -3.49

1 9 θ8 -0.12 -0.17 -0.24 -0.53 -3.89

1 10 θ9 -0.03 -0.04 -0.05 -0.11 -0.83

2 3 θ10 0.06 0.09 0.12 0.28 2.03

2 4 θ11 -0.14 -0.20 -0.28 -0.63 -4.62

... ... ... ... ... ... ... ...

9 10 θ45 0.09 0.13 0.19 0.42 3.09

Λ(θ, c) -490.79 -694.06 -981.55 -2194.80 -15177.07
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Table 14: Interpretation of θ in Goldberg data. A�B means A has more prestige than B.
Underlined θi in left column means that its absolute value is bigger than 0.1. The underlined
occupation in right column means that the preference is very strong for this comparison.

Behavior of θ Interpretation of θ

θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9 < 0 Fac�ME, OR, Tech, Sup, Own, For, IE, Mgr, Sci

θ11, θ12, θ14 < 0 ME�Tech, Sup, For

θ10, θ13, θ15, θ16, θ17 > 0 ME≺OR, Own, IE, Mgr, Sci

θ18, θ19, θ21, θ22, θ23 < 0 OR�Tech, Sup, For, IE, Mgr

θ20, θ24 > 0 OR≺Own, Sci

θ27 < 0 Tech�For

θ25, θ26, θ28, θ29, θ30 > 0 Tech�Sup, Own, IE, Mgr, Sci

θ32 < 0 Sup�For

θ31, θ33, θ34, θ35 > 0 Sup≺Own, IE, Mgr, Sci

θ36, θ37, θ38, θ39 < 0 Own�For, IE, Mgr, Sci

θ40, θ41, θ42 > 0 For≺IE, Mgr, Sci

θ43 < 0 IE �Mgr

θ42 > 0 IE≺Sci

θ45 > 0 Mgr≺Sci

The Goldberg data compares occupations with more social prestige. We can also interpret the
estimated θ to get the pair comparison results. We arrange the behavior and interpretation
of θ in Table 14. In the table, the underlined θi in the left column means that its absolute
value is larger than 0.1. The underlined occupation in the column on the right means that
the preference is very strong. From the interpretation of θ, we find that the pair comparisons
make sense. To conclude, the Kendall score function provides a nice way to look at the data
by pair preference.

5. Extension to the two-sample ranking problem

5.1. Extension to two-sample ranking problems and its meaning

We may extend the approach to the two sample case. Let X1, .X2 be two independent random
variables under our model whose distributions are given respectively by:

πj (θl) = exp
{
θ′lxj −K (θl)

}
plj , j = 1, ..., t!, l = 1, 2

where θl = (θl1, ..., θlt)
′ represents the vector of parameters for population l and xj is as in

the one-sample case, a t-dimensional vector of scores. We shall use the Spearman scores here
throughout the two-sample case. Set γ = θ1 − θ2 and write

θl = µ+ blγ

for l = 1, 2 where

µ =
n1θ1 + n2θ2
n1 + n2

, b1 =
n2,

n1 + n2
, b2 = − n1

n1 + n2
.

Suppose that the observed vector of frequencies for the lth population is

nl = (nl1, ..., nlt!)
′

The logarithm of the likelihood L as a function of (µ, γ) is proportional to

log L (µ, γ) ∼
2∑
l=1

t!∑
j=1

nlj
{

(µ+ blγ)′ xj −K (θl)
}
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We may now consider penalized likelihood to determine significant components of γ which
most separate the populations. Hence, we consider minimizing with respect to the parameters
µ and γ the function:

Λ(µ, γ) = −
2∑
l=1

(µ+ blγ)
t!∑
j=1

nljxlj +
2∑
l=1

nlK(µ+ blγ) + λ(
t∑
i=1

γ2i − c)

for some prescribed values of the constant c and λ. We may continue to use the normalizing
constant from the von Mises-Fisher distribution to approximate K(θ). Differentiating we get

∂Λ(µ, γ)

∂γ
= −

2∑
l=1

bl

t!∑
j=1

nljxlj + 2λγ +

2∑
l=1

nlbl ×
∂K(θl)

∂θl

∂Λ(µ, γ)

∂µ
= −

2∑
l=1

t!∑
j=1

nljxlj +
2∑
l=1

nl ×
∂K(θl)

∂θl

where

∂K(θ)

∂θ
=

1

t!

θ

‖θ‖
(2π)

t
2

[
‖θ‖1−

t
2

(
I t

2
(‖θ‖)−

1− t
2

‖θ‖
I t

2
−1(‖θ‖)

)
+ (1− t

2
) ‖θ‖−

t
2 I t

2
−1(‖θ‖)

]
Here γi shows the difference between the two groups with respect to their preference on Item
i. A negative value of γi means that group 1 shows more preference for Item i compared to
population 2. A positive value of γi means that group 2 shows more preference on Item i
compared to population 1. For γi close to zero, there is no difference between the two groups
on that item. As we shall see, this interpretation is consistent with the results in the real data
applications. From the definition, we know that µ is the common part of θ1 and θ2. More
specifically, µ is the weight average of θ1 and θ2 taking into account the sample sizes of the
populations.

5.2. Application to real data

Two-sample Sutton data

For the first example, we consider the Sutton data (t = 3) found in Table 15.

Table 15: Sutton data on leisure preferences (two-sample problem)

rankings (123) (132) (213) (231) (312) (321)

Frequencies for white females 0 0 1 0 7 6

Frequencies for black females 1 1 0 5 0 6

We applied penalized likelihood and the results are shown in Table 16.

Table 16: Maximum penalized likelihood estimation for the two-sample Sutton data

Choice of c γ1 γ2 γ3 µ1 µ2 µ3 Λ(µ, γ)

c=0.5 0.34 -0.57 0.24 0.59 -0.07 -0.52 46.88

c=1 0.48 -0.81 0.34 0.58 -0.06 -0.52 46.38

c=2 0.67 -1.15 0.48 0.57 -0.06 -0.51 46.46

c=10 1.50 -2.57 1.07 0.47 -0.04 -0.43 58.73

MLE 0.56 -0.95 0.40 0.58 -0.06 -0.52 46.30
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Table 17: Two-Sample Sutton data and the estimation of µ, γ

Item: No.

white

female

Diff..

for

white

No.

black

female

Diff.

for

black

Sum Action γ µ

Male
0

-13
2

-4
2 give rank 1

0.48 0.58
13 6 19 give rank 3

Female
8

8
0

-6
8 give rank 1

-0.81 -0.06
0 6 6 give rank 3

Both
6

5
11

10
17 give rank 1

0.34 -0.52
1 1 2 give rank 3

Table 18: Average rank for the game data

Average Rank Xbox PlayStation PSPortable GameCube GameBoy PC

Frequent player 2.59 2.59 3.94 4.69 5.04 2.14

Seldom player 2.86 3.17 3.64 3.88 4.24 3.21

We rearranged one of our estimation results (c=1) and the original data in Table 17. First,
it is easy to see that µ is just like the θ’s in the one-sample problem. For example, µ3 is
the smallest value and the whole population prefers Item “both” best. µ3 is largest and the
whole population mostly dislikes Item “male”. This is not surprising since we know that µ
is the common part of θ1 and θ2. For the parameter γ, we first consider Item “female”. We
see that white females prefer to spend leisure time with females (8 assign rank 1) whereas
black females do not (6 give rank 3). We find that γ2 is negative and is largest in absolute
value. There is a significant difference between the opinions with respect to Item 2 “female”.
For Item “male” and “both”, we find black females prefer them more than white females. To
conclude, the results are consistent with the interpretation of µ and γ.

Game data

For the second example, we consider the Game data (t = 6) (Fok, Paap, and Van Dijk
2012). In this data, 91 Dutch students were asked to consider buying a new platform to play
computer games. They had to rank 6 different platforms suitable to play computer games.
The 6 platforms are the X-box (360), the PlayStation (2 or 3), the Gamecube (or Wii), the
PlayStation Portable, the Gameboy or regular PC. In addition, we know the average number
of hours that each student spends on gaming each week. We separate the students into two
groups: frequent player (49 students) and seldom player (42 students). We classify a student
as a frequent player if the average number of hours that he spends on gaming each week is
larger than two. Otherwise he is classified as a seldom player

The game data is too large to exhibit here. Instead. we present the average ranks for the two
groups in Table 18.

We applied penalized likelihood in this situation and the results are shown in Table 19.

To better illustrate the estimation results and the data, we calculate the weighted average
of the observed probability of giving the high rank compared with the low rank for each
item. The weight for each rank is i − t+1

2 , i = 1, ..., t (-2.5,-1.5,-0.5,0.5,1.5,2.5) here. The
observations giving ranks close to the top and the bottom will get higher weight. A negative
weighted average means preference in this case. We summary the results in table 20. First,
for the parameter µ, there is a strong relationship with the weighted average of the total
population. For the total population, GameBoy receives the most low ranks and µ5 is the
largest, which is consistent with our interpretation of µ. Then, it can be found that the
results for γ are consistent with the trend of the difference of weighted average between two
samples. For example, for the Item “PC”, frequent players exhibits the largest difference of
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Table 19: Maximum penalized likelihood estimation for the game data

Choice of c Xbox PlayStation PSPortable GameCube GameBoy PC Λ(µ, γ)

c=0.5 γ 0.00 -0.23 0.12 0.34 0.26 -0.50 -228.28

µ -2.66 -2.16 1.01 2.74 3.94 -2.88

c=1 γ 0.09 -0.31 0.17 0.48 0.31 -0.74 -229.52

µ -2.67 -2.15 1.01 2.72 3.94 -2.84

c=2 γ 0.27 -0.41 0.24 0.66 0.32 -1.08 -230.74

µ -2.70 -2.13 0.99 2.69 3.93 -2.78

c=10 γ 1.24 -0.73 0.47 1.32 0.14 -2.44 -231.87

µ -2.84 -2.04 0.94 2.53 3.91 -2.50

MLE γ 0.96 -0.64 0.40 1.14 0.20 -2.06 -232.06

µ -2.81 -2.07 0.96 2.58 3.92 -2.58

Table 20: Weighted average of observed probability and the estimation for the game data

Weighted average of observed probability
giving the high rank compare to the low

rank

parameter

Item: Frequent
players

Seldom
players

Difference Total pop-
ulations

γ µ

Xbox -0.91 -0.64 -0.27 -0.79 0.09 -2.67

PlayStation -0.91 -0.33 -0.57 -0.64 -0.31 -2.15

PSPortable 0.44 0.14 0.30 0.30 0.17 1.01

GameCube 1.19 0.38 0.81 0.82 0.48 2.72

GameBoy 1.54 0.74 0.80 1.17 0.31 3.94

PC -1.36 -0.29 -1.07 -0.86 -0.74 -2.84

opinion with seldom players and the γ5 has the largest absolute value among γ. To conclude,
our application on Game data also shows that our methodology is consistent with the data.

6. Conclusion

In this paper, we considered both the Spearman and Kendall score functions in the one or
two sample problems as a way to summarize ranking data. A parametric model was formu-
lated and then we applied penalized likelihood on the original parametric model to narrow
down the items being ranked. We used the von Mises-Fisher distribution to approximate
the normalizing constant and then determined the MLE estimates in several examples. This
estimation procedure is fast and simple. In all cases, the estimation is shown to be consistent
with the data. Our methodology was applied on various popular ranking data sets.
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