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Abstract

Multisample testing problems are among the most important topics in nonparametric
statistics. Various nonparametric tests have been proposed for multisample testing prob-
lems involving location parameters, and the analysis of multivariate data is important
in many scientific fields. One type of multivariate multisample testing problem based on
Jurečková-Kalina-type rank of distance is discussed in this paper. A multivariate Kruskal-
Wallis-type statistic is proposed for testing the location parameter with both equal and
unequal sample sizes. Simulations are used to compare the power of proposed nonpara-
metric statistics with the Wilks’ λ, the Pillai’s trace and the Lawley-Hotelling trace for
various population distributions.

Keywords: Jurečková-Kalina-type ranks of distances, multivariate multisample rank test,
power comparison.

1. Introduction

Testing hypotheses is one of the most important challenges in nonparametric statistics. Var-
ious nonparametric tests have been proposed for one-sample, two-sample and multisample
testing problems involving the location, scale, location-scale and other parameters. Recent
progress in computerized measurement technology has permitted the accumulation of multi-
variate data, increasing the importance of multivariate data in many scientific fields. When
we consider testing a multivariate multisample hypothesis, one of the most important statisti-
cal procedures, we naturally consider vector-valued observations. If only a marginal study of
each component of these vectors is carried out, then outliers, strongly influential points and
useful relationships among variables may not be detected. Thus, a multivariate examination
of the data is necessary. However, in many applications, the underlying distribution is not
adequately understood to assume normality or any other specific distribution, and the non-
parametric test statistic must be used. Because it is important to determine how to represent
ranks for multivariate data in nonparametric statistics, various researchers have proposed the
distances of observation for the rank tests. Jurečková and Kalina (2012) proposed a rank
test based on observation distances for two-sample problems with a discussion about the
unbiasedness of test statistics under the alternatives hypothesis.

Recently, Murakami (2015a) applied the Jurečková-Kalina rank of distance to the Ansari-
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Bradley, Lepage and Baumgartner statistics. In addition, Murakami (2015b) considered the
use of Jurečková-Kalina-type rank of distance with the Wilcoxon-type statistic. We extend
this concept of rank of distance to a multisample setting. In Section 2, we introduce multivari-
ate multisample nonparametric statistics based on Jurečková-Kalina-type rank of distance.
We consider the Kruskal-Wallis test (Gibbons and Chakraborti 2010), the multisample me-
dian test (Hájek et al. 1999), the multisample Lepage-type test (Rubĺık 2007), the Wilks’ λ
(Rencher 1998), the Pillai’s trace (Rencher 1998) and the Lawley-Hotelling trace (Rencher
1998) in this paper. In addition, we propose another type of multivariate Kruskal-Wallis test.
In Section 3, we compare the powers of the proposed test with the multivariate multisample
parametric and nonparametric tests for various distributions by using simulation studies. The
simulations include 100,000 Monte Carlo replications. Conclusions are stated in Section 4.

2. Multivariate multisample nonparametric statistics

In this section, we introduce the multivariate multisample nonparametric statistics for the
vector-valued observations. MANOVA is one of the most important types of statistical pro-
cedures in many scientific fields, especially in biometry. However, in many applications, the
underlying distribution is not adequately understood to assume normality or some other spe-
cific distribution. Additionally, if we carry out only a marginal component of the vector-valued
observation, we may not detect outliers, strongly influential points and useful relationships
among variables. Then, we require to determine how to represent ranks for the vector-valued
observation.

Let {xij ; i = 1, . . . , k, j = 1, . . . , ni} be k independent samples from p-variate populations

having continuous unknown distribution functions F
(p)
i . Under these circumstances, we are

interested in the following hypothesis:

H0 : F
(p)
1 = F

(p)
2 = · · · = F

(p)
i

H1 : not H0.

To test this hypothesis, we utilize the multivariate multisample nonparametric statistics. For
multivariate data in nonparametric statistics, it is important to determine how to represent
a rank of the vectored-value observation. Jurečková and Kalina (2012) proposed a distance
of observation for k = 2, and the proposed rank of distance was found to be invariant for a
shifted location parameter. To introduce their rank of distance, let

ζ = (ζ1, . . . , ζn1+n2
) = (x11, . . . ,x1n1 ,x21, . . . ,x2n2)

denote the pooled sample. For every fixed j and under fixed x1j , 1 ≤ j ≤ n1, they considered
the distances {`∗jt = L(x1j ,ζt); t = 1, . . . , n1 + n2, j 6= t}, where L(·, ·) denotes Euclidean
distance. Then, conditionally given x1j , the vector {`∗jt = L(x1j ,ζt); t = 1, . . . , n1, j 6= t} is a

random sample from a first population G
(p)
1 , while {`∗jt = L(x1j ,ζt); t = n1 + 1, . . . , n1 + n2}

is a random sample from a second population G
(p)
2 . Jurečková and Kalina (2012) decided to

work with the ranks of `∗jt, t = 1, . . . , n1 + n2, j 6= t.

Herein, we extend this concept of rank of distance to a multisample setting. Let

Z = (Z1, . . . ,ZN ) = (x11, . . . ,x1n1 ,x21, . . . ,x2n2 , . . . ,xk1, . . . ,xknk
)

denote the pooled sample with N = n1 + · · · + nk. We consider Jurečková-Kalina-type of
distances such that {`st = L(Zs,Zt); s, t = 1, . . . , N, s 6= t} for every fixed s. Conditionally
given as xij , the vector {`u(i,j)v(i); u(i, j) =

∑i−1
q=1 nq + j,v(i) =

∑i−1
q=1 nq + r, r = 1, . . . , ni,

r 6= j} is then a random sample based on the distribution function F
(p)
i (z|xij) = G

(p)
i , where

we define nq = 0 for i = 1. Assuming that the distribution functions G
(p)
i are continuous, the

rank of `st is denoted as

Rst = (Rs1, . . . , Rs,t−1, Rs,t+1, . . . , RsN ),
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where s, t = 1, . . . , N and t 6= s for fixed s. We then consider the following rank statistics:

• The Kruskal-Wallis statistic T1 (Gibbons and Chakraborti 2010):

T1 := T (p)
s =

12

N(N + 1)

k∑
i=1

ni

(
Wsi −

N + 1

2

)2

,

where

Wsi =
1

ni

ni∑
j=1

Rsu(i,j).

Exact probabilities for the Kruskal-Wallis statistic are listed in Gibbons and Chakraborti
(2010) for small sample sizes. The limiting distribution for the Kruskal-Wallis statistic
is the chi-square distribution with k − 1 degrees of freedom.

• The multisample median statistic T2 (Hájek et al. 1999):

T2 := T (p)
s = 4

k∑
i=1

1

ni

(
Asi −

ni
2

)2
,

where

Asi =

ni∑
j=1

1

2

sign

 ni∑
j=1

Rsu(i,j) −
N + 1

2

+ 1

 .

Exact probabilities for the multisample median statistic are listed in Jorn and Klotz
(2002) for small sample sizes. The limiting distribution for the multisample median
statistic is the chi-square distribution with k − 1 degrees of freedom.

• The multisample Lepage-type statistic T3 (Rubĺık 2007):

T3 := T (p)
s = T1 + T4,

where

T4 := T (p)
s =

180

N(N + 1)(N2 − 4)

k∑
i=1

ni

(
Msi −

N2 − 1

12

)2

and

Msi =
1

ni

ni∑
j=1

(
Rsu(i,j) −

N + 1

2

)2

.

Exact probabilities for the multisample Lepage-type statistic are listed in Murakami
(2008) for small sample sizes. The limiting distribution for the multisample Lepage-
type statistic is the chi-square distribution with 2(k − 1) degrees of freedom.

Note that in a one-dimensional setting, the multisample median test uses less information than
the Kruskal-Wallis test does, and may therefore be less powerful. The asymptotic relative
efficiency of the multisample median test is 2/3 with respect to the Kruskal-Wallis test for
a normal distribution (e.g. Gibbons and Chakraborti 2010). The multisample version of
the Lepage statistic is preferable for location, scale and location-scale parameters. However,
Rubĺık (2007) showed that the multisample version of a combination of the Kruskal-Wallis
and multisample Mood statistics is more efficient than the multisample Lepage statistic for
shifted location, scale and location-scale parameters with various distributions.
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The statistic T
(p)
s is equally distributed for s = 1, . . . , N under the null hypothesis. Random-

ization of T
(p)
1 , . . . , T

(p)
N maintains the simple structure of the test. Thus, we obtain

Pr(T (p) = T (p)
s ) =

1

N
, s = 1, . . . , N, (1)

where the randomization in (1) is independent of the observations. For any C,

Pr(T (p) > C) =
1

N

N∑
s=1

Pr(T (p)
s > C),

and the statistic rejects H0 if T (p) > C.

Herein we suggest another multivariate Kruskal-Wallis-type test, namely V (p), as follows:

V (p) = max
1≤s≤N

T1.

3. Simulation study

We employed R software to investigate the behavior of the T1, T2 and T3 statistics in simulation
studies. Additionally, we used the Wilks’ λ, namely Wλ, the Pillai’s trace, specifically PT ,
and the Lawley-Hotelling trace, specifically LH, as a classical MANOVA test (Rencher 1998).
The simulations included 100,000 replications, and the significance level was 5%. To compare
the power of the classical MANOVA test and tests based on the multivariate nonparametric
statistics, we carried out a simulation study of different populations with various distributions.
In this paper, we have focused on the cases (n1, n2, n3) = (5, 5, 5), (15, 10, 5) and (20, 20, 20)
for p = 2 and 3 and the following distributions:

• N(µi,Σi): the multivariate normal distribution.

• t(µi,Σi, δi): the multivariate t distribution with δ degrees of freedom.

• LN(µi,Σi): the multivariate lognormal distribution.

To generate random numbers, we used the packages ”mvrnorm,” ”rmt,” and ”rlnorm.rplus” for
the multivariate normal, multivariate t and multivariate lognormal distributions, respectively.
We define a p-dimensional matrix as follows:

I(2) =

(
1 0
0 1

)
, ρ

(2)
2 =

(
1 0.2

0.2 1

)
, ρ

(2)
3 =

(
1 0.4

0.4 1

)
,

I(3) =

1 0 0
0 1 0
0 0 1

 , ρ
(3)
2 =

 1 0.4 0.2
0.4 1 0.3
0.2 0.3 1

 , ρ
(3)
3 =

 1 0.5 0.3
0.5 1 0.4
0.3 0.4 1

 .

In this paper, we assume µ1 = 0 and Σ1 = I(p), and we consider the following cases for the
multivariate normal, multivariate t and multivariate lognormal distributions.
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Case 1 Case 2
µ2 = 0 µ3 = 0 µ2 = 0 µ3 = 0

Σ2 = I(p) Σ3 = I(p) Σ2 = ρ
(p)
2 Σ3 = ρ

(p)
3

Case 3 Case 4
µ2 = 1.0 µ3 = 1.0 µ2 = 1.0 µ3 = 1.0

Σ2 = I(p) Σ3 = I(p) Σ2 = ρ
(p)
2 Σ3 = ρ

(p)
3

Case 5 Case 6
µ2 = 1.0 µ3 = 2.0 µ2 = 1.0 µ3 = 2.0

Σ2 = I(p) Σ3 = I(p) Σ2 = ρ
(p)
2 Σ3 = ρ

(p)
3

In the case of (n1, n2, n3) = (5, 5, 5), we used the exact critical value of the T1, T2 and T3
statistics by Gibbons and Chakraborti (2010), Jorn and Klotz (2002) and Murakami (2008),
respectively. Since it is difficult to evaluate the exact critical value of the statistic for the large
sample sizes, we estimated the critical value via a permutation approach for (n1, n2, n3) =
(15, 10, 5) and (20, 20, 20). Additionally, we apply the following method to the V (p) statistic.
Our method for estimating the critical value is as follows:

1. Construct a dataset Z by generating N integers from 1 to N (without ties) for each
dimension.

2. Calculate the statistics T1, T2, T3 and V (p).

3. Construct a permutation dataset Z∗.

4. Calculate the T1, T2, T3 and V (p) statistics from the dataset Z∗.

5. Independently repeat steps 3 and 4 B times.

6. Sort the statistics Tm(1), . . . , Tm(B) , m = 1, 2, 3 and V
(p)
(1) , . . . , V

(p)
(B).

Tm(CV ) and V
(p)
(CV ) are then the estimated critical value of the statistics, where CV = B×α%.

We simulated B = 100, 000 replications in this study.

Table 1 lists the simulation results for the multivariate normal distribution.

Table 1 shows that the classical MANOVA tests were more powerful than the multivariate
multisample nonparametric statistics. Compared with nonparametric statistics, the proposed
statistic was more efficient than the randomized nonparametric statistics were. Therefore,
the V (p) statistic was more effective than the other nonparametric statistics for parameters
associated with the multivariate normal distribution.

For a non-normal distribution, we used the multivariate t distribution with 2 degrees of
freedom, and the results are listed in Table 2.

Table 2 shows that the classical MANOVA tests did not maintain 5% significance levels
(not conservative) under the null hypothesis for unequal sample sizes. The non-conservative
test is meaningless for testing the hypothesis. Moreover, the suggested statistic was more
powerful than the parametric and nonparametric statistics. Therefore, the V (p) statistic was
more effective than the other statistics were for parameters associated with the multivariate
t distribution.

We used the multivariate lognormal distribution to simulate an asymmetrical distribution;
the results are listed in Table 3.

The results presented in Table 3 reveal the following facts: The classical MANOVA tests did
not maintain 5% significance levels (not conservative) under the null hypothesis for unequal
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Table 1: Simulated power for the multivariate normal distributions
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case of n1 = n2 = n3 = 5 for p = 2
Wλ 0.050 0.052 0.363 0.306 0.845 0.767
PT 0.050 0.053 0.352 0.294 0.820 0.740
LH 0.050 0.052 0.366 0.311 0.853 0.778
T1 0.049 0.049 0.176 0.178 0.458 0.440
T2 0.039 0.039 0.120 0.128 0.325 0.310
T3 0.050 0.051 0.133 0.134 0.354 0.338

V (2) 0.048 0.049 0.217 0.215 0.640 0.582

Case of n1 = 15, n2 = 10 and n3 = 5 for p = 2
Wλ 0.047 0.047 0.814 0.771 0.994 0.986
PT 0.047 0.048 0.815 0.772 0.994 0.986
LH 0.048 0.049 0.820 0.778 0.994 0.987
T1 0.050 0.051 0.390 0.387 0.668 0.649
T2 0.040 0.041 0.283 0.278 0.525 0.501
T3 0.050 0.052 0.307 0.307 0.604 0.591

V (2) 0.050 0.051 0.700 0.668 0.964 0.938

Case of n1 = n2 = n3 = 20 for p = 2
Wλ 0.049 0.050 0.988 0.973 1.000 1.000
PT 0.049 0.050 0.987 0.972 1.000 1.000
LH 0.049 0.050 0.988 0.973 1.000 1.000
T1 0.050 0.051 0.552 0.564 0.876 0.866
T2 0.049 0.051 0.460 0.472 0.808 0.794
T3 0.050 0.054 0.494 0.509 0.835 0.831

V (2) 0.051 0.051 0.955 0.940 1.000 1.000

sample sizes. The V (p) statistic was the most powerful statistic for the shifted location param-
eters when the sample sizes were equal and unequal. Therefore, the V (p) statistic was more
effective than the other parametric and nonparametric statistics for parameters associated
with the multivariate lognormal distribution.

4. Concluding remarks

In this paper, we considered multivariate multisample nonparametric statistics by applying
Jurečková-Kalina-type rank of distance. Simulation studies showed that the multivariate
Kruskal-Wallis-type statistic, named V (p), was more powerful than the Kruskal-Wallis, multi-
variate multisample median and Lepage-type statistics for shifted location parameters under
the multivariate normal, t and lognormal distributions. Additionally, the proposed statistic
was more efficient than the classical MANOVA test for equal and unequal sample sizes with
non-normal distributions. As ties occur frequently in practice, in future research we should in-
vestigate the powers of multivariate multisample nonparametric statistics under multivariate
discrete distributions.
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Table 1: Continued for the multivariate normal distributions

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case of n1 = n2 = n3 = 5 for p = 3
Wλ 0.049 0.053 0.347 0.228 0.849 0.671
PT 0.049 0.053 0.338 0.228 0.778 0.608
LH 0.049 0.053 0.416 0.287 0.906 0.755
T1 0.049 0.049 0.201 0.208 0.536 0.505
T2 0.039 0.039 0.136 0.156 0.399 0.375
T3 0.050 0.051 0.151 0.152 0.428 0.392

V (3) 0.050 0.050 0.282 0.276 0.803 0.700

Case of n1 = 15, n2 = 10 and n3 = 5 for p = 3
Wλ 0.050 0.047 0.908 0.821 0.999 0.994
PT 0.050 0.047 0.907 0.821 0.999 0.993
LH 0.050 0.048 0.909 0.823 0.999 0.994
T1 0.050 0.052 0.434 0.428 0.732 0.705
T2 0.040 0.042 0.324 0.316 0.592 0.554
T3 0.050 0.057 0.350 0.353 0.673 0.660

V (3) 0.049 0.050 0.835 0.770 0.995 0.975

Case of n1 = n2 = n3 = 20 for p = 3
Wλ 0.050 0.052 0.999 0.985 1.000 1.000
PT 0.050 0.052 0.999 0.983 1.000 1.000
LH 0.050 0.052 0.999 0.986 1.000 1.000
T1 0.049 0.053 0.585 0.600 0.917 0.907
T2 0.049 0.053 0.498 0.519 0.857 0.844
T3 0.050 0.061 0.529 0.547 0.882 0.880

V (3) 0.050 0.051 0.992 0.981 1.000 1.000
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Table 2: Simulated power for the multivariate t distribution
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case of n1 = n2 = n3 = 5 for p = 2
Wλ 0.031 0.031 0.153 0.129 0.409 0.350
PT 0.032 0.033 0.153 0.128 0.400 0.341
LH 0.031 0.031 0.152 0.129 0.413 0.352
T1 0.048 0.049 0.110 0.113 0.239 0.236
T2 0.038 0.039 0.087 0.092 0.198 0.193
T3 0.050 0.051 0.097 0.097 0.204 0.199

V (2) 0.046 0.047 0.137 0.138 0.364 0.347

Case of n1 = 15, n2 = 10 and n3 = 5 for p = 2
Wλ 0.076 0.074 0.344 0.314 0.594 0.556
PT 0.077 0.074 0.345 0.315 0.595 0.556
LH 0.079 0.077 0.351 0.321 0.600 0.562
T1 0.050 0.050 0.223 0.224 0.402 0.393
T2 0.040 0.040 0.181 0.180 0.349 0.335
T3 0.050 0.051 0.200 0.198 0.362 0.354

V (2) 0.047 0.048 0.429 0.417 0.727 0.698

Case of n1 = n2 = n3 = 20 for p = 2
Wλ 0.034 0.034 0.470 0.406 0.854 0.805
PT 0.034 0.035 0.469 0.405 0.853 0.804
LH 0.034 0.034 0.472 0.408 0.855 0.806
T1 0.049 0.050 0.360 0.376 0.695 0.695
T2 0.049 0.050 0.333 0.353 0.674 0.673
T3 0.049 0.053 0.340 0.348 0.676 0.669

V (2) 0.050 0.050 0.758 0.730 0.996 0.992
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Table 2: Continued the multivariate t distribution

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case of n1 = n2 = n3 = 5 for p = 3
Wλ 0.027 0.028 0.149 0.097 0.435 0.304
PT 0.031 0.032 0.160 0.107 0.417 0.301
LH 0.030 0.031 0.184 0.125 0.499 0.364
T1 0.048 0.049 0.114 0.121 0.257 0.258
T2 0.038 0.039 0.090 0.103 0.225 0.223
T3 0.050 0.051 0.103 0.103 0.226 0.218

V (3) 0.048 0.047 0.150 0.155 0.414 0.394

Case of n1 = 15, n2 = 10 and n3 = 5 for p = 3
Wλ 0.082 0.078 0.446 0.370 0.728 0.638
PT 0.082 0.079 0.446 0.370 0.728 0.638
LH 0.083 0.079 0.448 0.372 0.729 0.640
T1 0.050 0.052 0.229 0.238 0.421 0.413
T2 0.041 0.041 0.179 0.187 0.373 0.353
T3 0.050 0.054 0.222 0.225 0.396 0.386

V (3) 0.041 0.044 0.480 0.459 0.786 0.741

Case of n1 = n2 = n3 = 20 for p = 3
Wλ 0.034 0.034 0.603 0.449 0.931 0.858
PT 0.035 0.035 0.599 0.444 0.930 0.855
LH 0.034 0.034 0.607 0.454 0.932 0.860
T1 0.049 0.051 0.364 0.400 0.715 0.723
T2 0.049 0.050 0.332 0.371 0.694 0.701
T3 0.050 0.056 0.370 0.390 0.716 0.713

V (3) 0.043 0.044 0.832 0.801 0.999 0.996
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Table 3: Simulated power for the multivariate lognormal distribution
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case of n1 = n2 = n3 = 5 for p = 2
Wλ 0.031 0.031 0.159 0.125 0.522 0.400
PT 0.034 0.033 0.169 0.134 0.491 0.378
LH 0.031 0.031 0.153 0.120 0.535 0.410
T1 0.048 0.049 0.160 0.146 0.443 0.399
T2 0.038 0.040 0.115 0.110 0.345 0.301
T3 0.050 0.051 0.143 0.128 0.445 0.390

V (2) 0.044 0.045 0.188 0.170 0.580 0.504

Case of n1 = 15, n2 = 10 and n3 = 5 for p = 2
Wλ 0.080 0.075 0.773 0.727 0.989 0.979
PT 0.081 0.075 0.773 0.728 0.989 0.979
LH 0.083 0.077 0.778 0.733 0.989 0.980
T1 0.045 0.046 0.401 0.368 0.698 0.656
T2 0.040 0.042 0.323 0.284 0.573 0.523
T3 0.050 0.051 0.461 0.407 0.850 0.797

V (2) 0.045 0.047 0.624 0.553 0.937 0.886

Case of n1 = n2 = n3 = 20 for p = 2
Wλ 0.035 0.036 0.812 0.713 0.999 0.994
PT 0.035 0.037 0.811 0.711 0.999 0.993
LH 0.035 0.036 0.814 0.715 0.999 0.994
T1 0.048 0.051 0.509 0.502 0.820 0.809
T2 0.046 0.049 0.495 0.466 0.805 0.783
T3 0.045 0.050 0.631 0.578 0.987 0.976

V (2) 0.050 0.053 0.913 0.853 1.000 1.000
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Table 3: Continued for the multivariate lognormal distribution
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Case of n1 = n2 = n3 = 5 for p = 3
Wλ 0.028 0.028 0.158 0.091 0.538 0.323
PT 0.031 0.031 0.194 0.115 0.469 0.288
LH 0.033 0.033 0.187 0.113 0.633 0.405
T1 0.049 0.050 0.182 0.152 0.509 0.436
T2 0.038 0.040 0.125 0.115 0.413 0.336
T3 0.050 0.053 0.167 0.133 0.528 0.430

V (2) 0.046 0.048 0.223 0.180 0.695 0.562

Case of n1 = 15, n2 = 10 and n3 = 5 for p = 3
Wλ 0.088 0.080 0.879 0.772 0.999 0.990
PT 0.088 0.080 0.879 0.772 0.999 0.990
LH 0.088 0.080 0.880 0.773 0.999 0.990
T1 0.050 0.053 0.471 0.402 0.761 0.708
T2 0.040 0.044 0.382 0.299 0.642 0.563
T3 0.050 0.055 0.548 0.438 0.909 0.844

V (3) 0.041 0.047 0.721 0.570 0.977 0.910

Case of n1 = n2 = n3 = 20 for p = 3
Wλ 0.036 0.038 0.919 0.733 1.000 0.996
PT 0.036 0.038 0.916 0.727 1.000 0.996
LH 0.036 0.038 0.922 0.738 1.000 0.997
T1 0.048 0.057 0.530 0.521 0.846 0.833
T2 0.046 0.055 0.535 0.489 0.839 0.812
T3 0.045 0.057 0.718 0.618 0.995 0.988

V (3) 0.043 0.049 0.958 0.823 1.000 1.000
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