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Abstract

The usual candidate distributions for modeling compositions, the Dirichlet and the
logistic normal distribution, do not include zero components in their support. Methods
have been developed and refined for dealing with zeros that are rounded, or due to a value
being below a detection level. Methods have also been developed for zeros in compositions
arising from count data. However, essential zeros, cases where a component is truly absent,
in continuous compositions are still a problem.

The most promising approach is based on extending the logistic normal distribution to
model essential zeros using a mixture of additive logistic normal distributions of different
dimension, related by common parameters. We continue this approach, and by imposing
an additional constraint, develop a likelihood, and show ways of estimating parameters
for location and dispersion. The proposed likelihood, conditional on parameters for the
probability of zeros, is a mixture of additive logistic normal distributions of different
dimensions whose location and dispersion parameters are projections of a common location
or dispersion parameter. For some simple special cases, we contrast the relative efficiency
of different location estimators.

Keywords: composition, subcomposition, essential zero, logistic normal, projection.

1. Introduction

An essential zero in compositional data is a zero component which is not caused by rounding
or some other difficulty in measurement, but rather, is genuinely believed to be zero. This is
fundamentally a different problem than that addressed by recent work on rounded zeros, or
below-detection level zeros, such as in Palarea-Albaladejo and Mart́ın-Fernández (2015) and
references therein. Although there are recent workable Bayesian approaches to zeros in compo-
sitions from count data, Mart́ın-Fernández, Hron, Templ, Filzmoser, and Palarea-Albaladejo
(2014) and references therein, essential zeros in continuous compositions still present a prob-
lem.

We develop an approach proposed by Aitchison and Kay (2003) to extend the logistic nor-
mal distribution to accommodate essential zeros. Aitchison (1986) and Aitchison and Kay
(2003) note that a key feature compositional data is that ratios of the components contain all
pertinent information about the composition. Essential zeros complicate this feature in that
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they contain no information about the other components of the composition. In addition, an
observation containing an essential zero is at the boundary of the simplex and is a composition
of smaller dimension.

2. Previous work

In addition to the work mentioned above, there have been other approaches to zeros in com-
positions. Work by Butler and Glasbey (2008) mapped a latent Gaussian variable to a com-
position, but seems only to work for two and three-part compositions. An additional concern
is that it does not preserve ratios of parts in subcompositions. In contrast, Leininger, Gelfand,
Allen, and Silander Jr (2013) have developed a more practical treatment of compositions as
coming from a latent Gaussian random variable where the compositional component is zero
when the latent Gaussian component is less than or equal to zero. They develop a hierarchical
power model with the transformation Xk = (max(0,Zk))

γ

1+
∑d
k′=1(max(0,zk′ ))

γ
where Zk is the kth normal

component and Xk is the corresponding compositional component. D is the number of parts
in the composition, d = D − 1, and XD = (1 +

∑d
k′=1(max(0, Z ′k))

γ)−1. The corresponding
inverse transformation is Zk = (Xk/XD)1/γ if Xk > 0, and Zk ≤ 0 (latent) if Xk = 0, for
k = 1, 2, . . . , d. To estimate parameters they use MCMC. One limitation of their approach is
also a limitation of ours: we require one component of the composition to be strictly positive.

Work by Stewart and Field (2011) uses a multiplicative logistic normal mixture model that al-
lows them to consider the univariate log odds for the ith component to be normally distributed
where the ith component is not zero. It works well for their applications, in particular regres-
sion, but does not capture covariance easily.

Scealy and Welsh (2011) transform compositions into directional data on the hypersphere,
and develop a regression model using the Kent distribution, Kent (1982), which tolerates
zeros, though they write, “When any of the components of u are distributed too close to 0,
boundary issues arise and in this case we need to pursue alternative approaches since the
fitted Kent model (and the von Mises-Fisher model) may have significant support outside the
positive orthant.” A further issue with their approach is that their square root transformation
does not preserve ratios of parts in subcompositions.

Our goal here is to extend the additive logistic normal distribution to handle essential zeros
for continuous data.

3. Motivating example

Suppose we have compositional data on how much Bill spends on rice, lentils, and spices when
he buys food. Suppose he buys in bulk, and occasionally the store is out of either the spices
or lentils, but they always have plenty of rice. Table 1 shows a set of such compositions where
some of the entries, for spices or lentils, are zero. Our goal is to develop a model for data like
these by extending the additive logistic normal distribution.

4. Definitions (from Aitchison, 1986)

Definition: The d-dimensional simplex embedded in D-dimensional real space is the set of
compositions, x, defined by

Sd = {x = (x1, . . . , xd, xD) : x1 > 0, . . . , xD > 0;

D∑
i=1

xi = 1},

where d = D − 1. If x = (x1, x2, . . . , xd, xD)T , then x−D = (x1, x2, . . . , xd)
T . The additive

logratio transformation, alr, is defined as follows:

alr : Sd → Rd
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Table 1: Composition of food expense

spices lentils rice

1 0.16 0.00 0.84
2 0.17 0.00 0.83
3 0.16 0.00 0.84
4 0.00 0.37 0.63
5 0.00 0.37 0.63
6 0.00 0.37 0.63
7 0.12 0.33 0.55
8 0.11 0.34 0.56
9 0.12 0.32 0.56

10 0.10 0.34 0.56
11 0.10 0.33 0.57
12 0.11 0.33 0.55

x 7→ y =(log(x1/xD), log(x2/xD), . . . , log(xd/xD))T . (1)

We define the shorthand log(x−D/xD) = (log(x1/xD), log(x2/xD), . . . , log(xd/xD))T . Since
alr is one-to-one, its inverse exists. It is called the logistic transformation, alr−1, defined as

alr−1 : Rd → Sd (2)

y 7→ x = (x1, x2, . . . , xd, xD)T , where for (i = 1, . . . , d),

xi = exp(yi)/{exp(y1) + · · ·+ exp(yd) + 1}
xD = 1/{exp(y1) + · · ·+ exp(yd) + 1}.

5. Simplifying assumption

In this section we outline our method for building a mixture distribution for dealing with
compositions containing essential zeros, but leave most of the details about the weights for
later. A key simplifying assumption we make throughout is that one of the parts of the
composition, the Dth component, is never zero. We allow zeros anywhere else but not in the
last component.

In a set of logistic normal data without zeros, the likelihood has been shown to be permutation
invariant (Aitchison 1986). In our extension which allows zeros, if some parts are never zero,
the likelihood is invariant to the choice of which one of those nonzero parts is chosen as the
reference provided the same reference part is used throughout the data set.

Let x = (x1, x2, . . . , xd, xD)T be a composition with xi < 1 for all i ∈ {1, 2, . . . , d,D} and
xD > 0. For i ∈ {1, 2, . . . , d}, consider two possibilities. Either xi = 0 or xi > 0. Let
W = {i : i ∈ {1, 2, . . . , d}, xi > 0}. That is, W is the set of indices for the parts of x (other
than xD) which are nonzero (positive). For any given composition x, W is the set of all the
indices of the nonzero components of x. There are 2d − 1 possible sets W . There are 2d − 1
and not 2d because W cannot be empty. If W were empty that would require that xD = 1
in order for x to be a composition, but we have already said we require all xi < 1 including
xD. Each pattern of zeros corresponds to a different set W . We index them as W` with
` ∈ {1, 2, . . . , 2d − 1}. They are elements of the power set, W` ∈ P({1, 2, . . . , d}). Sometimes
we refer to these sets with incidence vectors where the ith component VW` i = 1 ⇐⇒ xi > 0
and VW` i = 0 ⇐⇒ xi = 0.

Each W` has some probability of occurrence, P (W`). Although some pattern can be not
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present P (W`) = 0, the probabilities must sum to one,

2d−1∑
`=1

P (W`) = 1.

We use the probabilities P (W`) as the weights in a mixture distribution. For the other distri-
butions making up our mixture, we use logistic normal distributions L(x;µW`

,ΩW`
) derived

from a single parent logistic normal distribution L(x;µ,Ω) . They are in fact projections from
the parent. We will call the distributions derived from the parent distribution subdistributions
once we define them. So the mixture distribution will be denoted as follows, once we define
a few more terms,

g(x;µ,Ω) =
2d−1∑
`=1

P (W`)L(x;µW`
,ΩW`

).

In the parent distribution, L(x;µ,Ω), µ is a d-part location parameter vector, µ ∈ Rd, and Ω
is a d× d positive definite dispersion matrix. To ease the discussion we will refer to µ and Ω
as mean vector and variance-covariance matrix respectively, although they are not moments
of the distribution. For the distributions derived from the logistic normal parent distribution,
the parameters µW`

and ΩW`
are defined in terms of the parameters µ, and Ω, and the set

of indices of nonzero components of x, W`, and a selection matrix BW`
.

Let W` ⊂ {1, 2, 3, . . . , d} be a nonempty set of indices (of the nonzero components of x);
without loss of generality we can order the indices from least to greatest

W` = {j1, j2, . . . , jJ} where 0 < j1 < j2 < . . . < jJ ≤ d.

Now we define our J × d selection matrix, BW`
= [Bi,m]. For i ∈ {1, 2, . . . , J}, and m ∈

{1, 2, . . . , d}, with W` = {j1, j2, . . . , jJ}, we define the elements of [Bi,m] to be Bi,ji = 1 and
Bi,m 6=ji = 0. For example, let x = (.2, 0, .3, 0, .25, .25), a 6-part composition, with x6 > 0.
The set of nonzero indices is W` = {1, 3, 5}, and the selection matrix is

BW`
= B{1,3,5} =

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

 .

Now it is easy to define µW`
and ΩW`

. We define:

µW`
= (BW`

)(µ).

ΩW`
= (BW`

)(Ω)(BT
W`

).

With this structure, the mixture distribution can be more fully specified.

g(x;µ,Ω) =
2d−1∑
`=1

P (W`)L||W`||(x;µW`
,ΩW`

) where

• ||W`|| refers to the cardinality of the set W`.

•
∑
P (W`) = 1.

• µ is a d-part vector in Rd.

• µW`
is a subvector of µ corresponding to the W` pattern of zeros.

• ΩW`
is a submatrix of a d× d positive definite covariance matrix corresponding to the

W` pattern of zeros.
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5.1. Multivariate normal foundation

Now we extend the notation for the inverse of the additive logratio transformation, alr−1, from

Aitchison (1986). We use the new symbols, ãlr and ãlr
−1

. We define them in terms of W and
D, the maximum index. Let W ⊂ {1, 2, . . . , d} be a pattern of zeros, i.e., a set of indices of
nonzero components of x and denote them: W = {i1, i2, . . . , ir}, and let j ∈ {1, 2, . . . , d,D}.
In our approach there is a tight correspondence between the yi variables of a multivariate
normal vector and the xi parts of a composition, possibly one containing essential zeros.

yi = log(xi/xD) for i = 1, 2, 3, . . . , d.

Composition: x = (x1, x2, x3, . . . , xd, xD )T

| | | |
alr transformed vector: y = log(x−D/xD) = (y1, y2, y3, . . . , yd, � )T .

When there is an essential zero in the composition in one of the xi parts, e.g., in x2, we use
� as a placeholder so things line up, for example:

Composition: x = (x1, 0, x3, . . . , xd, xD )T

| | |
ãlr transformed subvector: y = log(x−{2,D}/xD) = (y1, �, y3, . . . , yd, � )T .

(3)

When we have an essential zero in the ith part of the composition, we have a selected subvector
of the y’s which does not contain an element corresponding to yi. The requirement that xD > 0
is what allows us to maintain this strict correspondence between xi and yi.

Now we define ãlr
−1

ãlr
−1

(y,W,D) = (x1, . . . , xd, xD)T where, (4)

xj =


exp(yj)/{exp(yi1) + exp(yi2) + . . .+ exp(yir) + 1} if j ∈W
0 if j /∈W & j ∈ {1, . . . , d}
1/{exp(yi1) + exp(yi2) + . . .+ exp(yir) + 1} if j = D.

Next we turn to defining an extension to the logistic normal distribution. Let x = (x1, x2, x3, . . . ,
xd, xD)T be a composition, and let y = log(x−D/xD) = (y1, y2, y3, . . . , yd)

T . Then x is defined
to have a logistic normal distribution with location µ and dispersion Ω, written x∼L(µ,Ω), if
y∼N (µ,Ω). Note also that if y∼N (µ,Ω), and B is a selection matrix as mentioned in Section
5, then By is also multivariate normal with distribution:

By∼N (Bµ,BΩBT ).

And finally, recall that also in Section 5 we used W` to represent the set of indices of the
nonzero components of x. BW`

is the selection matrix that selects those components when
we perform these matrix multiplications:

µW`
= (BW`

)(µ),

ΩW`
= (BW`

)(Ω)(BT
W`

).

With all these definitions in place we are now in a position to define a logistic normal distri-
bution with essential zeros.
Definition:

Let x = (x1, x2, x3, . . . , xd, xD)T be a composition with xD > 0.

Let W` = {i1, i2, . . . , ir} ⊂ {1, 2, . . . , d} be a nonempty set of indices of nonzero

components of x.
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Let BW`
be the corresponding selection matrix.

Let y = log(BW`
x−D/xD) = (yi1 , yi2 , . . . , yir)

T = ãlr(x,W`, D) be the logratios of the nonzero

components of x.

If for every set W` of indices of nonzero components of x, we have y∼N (µW`
,ΩW`

), then x
has a logistic normal distribution with essential zeros, written x∼L(µ,Ω), with probability
density function

g(x;µ,Ω) =

2d−1∑
`=1

P (W`)L||W`||(x;µW`
,ΩW`

),

where ∑
P (W`) = 1.

µ is a d -part vector in Rd.

µW`
is a subvector of µ corresponding to the W` pattern of zeros.

Ω is a d× d positive definite covariance matrix.

ΩW`
is a square submatrix of Ω, corresponding to the W` pattern of zeros.

For the case where W = {1, 2, . . . , d} the composition x = (x1, x2, . . . , xD)T has the additive
logistic normal distribution, Ld(µ,Ω).

5.2. Common expectations and variances

The definition of ãlr
−1

enables compositions from different subdistributions to be used to
estimate parameters of their shared parent distribution. Let x1 = (x11, x21, . . . , xD1)

T , and
let x2 = (x12, x22, . . . , xD2)

T with

x1∼L||W1||(µW1
,ΩW1), and (5)

x2∼L||W2||(µW2
,ΩW2). (6)

The two sets of nonzero indices, W1,W2 need not have any elements in common, nor do they
need to have the same number of elements, though x1 and x2 both have D elements. Suppose
they have an index, m, in common: m ∈ W1 ∩ W2. By properties of the logistic normal

distribution (Aitchison 1986, p. 116), and the definition of ãlr
−1

in Equation 4 we have:

E log(xm1/xD1) = Eym = µm = Eym = E log(xm2/xD2). (7)

And similarly,

Var[log(xm1/xD1)] = Var[ym] = σ2m = Var[ym] = Var[log(xm2/xD2)]. (8)

Thus, compositions from different subdistributions of the same logistic normal distribution
can be used to estimate the parameters of their shared parent distribution.

6. Data blocks

Now that we have a correspondence between multivariate normal variables and compositions
with zeros, we could derive a density function using the standard formula for transformed
variables, analogous to Aitchison (1986, chapter 6). However, for estimating parameters it
is more convenient to work in the space of the transformed variables (multivariate normal
projections).

Here we apply the techniques and notation of block matrices and matrix calculus to do some
preparation in order to build a likelihood and attack the problem of finding estimators for the
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parameters. We discuss two sets of estimators, a general maximum likelihood estimator, and
a simpler pair of estimators reminiscent of method of moments estimators.

6.1. Block matrices of compositions

We write a collection of compositional data with zeros, X, as a column of blocks of compo-
sitions where each block, X`, has a particular pattern of zeros throughout. That is, for a
particular block, X`, and i ∈ {1, 2, . . . , d}, the ith column of X` is either all positive, or all
zero. Let

X
n×D

=


X1

X2
...

Xb

 . (9)

The dimensions of the blocks are: X1
r1×D

, X2
r2×D

, . . . , Xb
rb×D

and the sum of their vertical dimensions

is r1 + r2 + . . .+ rb = n, where n is the number of data points.

We use ` to indicate a block, and t to indicate a composition (row) in that block. Next
we define the patterns of zeros in each block. Here i ∈ {1, 2, . . . , D}. For ` ∈ {1, 2, . . . , b},
let W` ⊂ {1, 2, . . . , d} be the set of indices of strictly positive components of X`. For ` ∈
{1, 2, . . . , b},

X` = [xti], where


xti > 0 if i = D,

xti > 0 if i ∈W`,

xti = 0 if i /∈W` and i 6= D.

(10)

6.2. Transformations - ratios and logratios

We have already defined the alr transformation for the case where there are no zeros in
(1). Next we extend alr to ãlr for a block matrix of compositions, X

r`×D
which may contain

zeros. We do this by defining a selection matrix BW`
corresponding to set W`. We still have

W` ⊂ {1, 2, 3, . . . , d} being a nonempty set of indices of the nonzero components of x, and
without loss of generality we can order the indices from least to greatest:

W` = {j1, j2, . . . , jJ} where 0 < j1 < j2 < . . . < jJ < D. (11)

Now we define our (J + 1)×D selection matrix, BW`
= [Bp,m]. We use J + 1 here because

we construct the selection matrix so that the final, Dth, component of the data is always
selected. This is slightly different than before. Previously we constructed B to conform to
the parameters µ(d× 1) and Ω(d× d).

For p ∈ {1, 2, . . . , J + 1}, and m ∈ {1, 2, . . . , D}, with W` = {j1, j2, . . . , jJ}, (12)

we define the elements of [Bp,m] to be Bp,jp = 1 and Bp,m 6=jp = 0. (13)

X`B
T
W`

is a matrix where each row vector is a composition without zeros.

X`B
T
W`

=


xT1
xT2
...

xrT`

BT
W`

=


x11 x12 . . . x1(J+1)

x21 x22 . . . x2(J+1)
...

...
...

xr`1 xr`2 . . . xr`(J+1)

 . (14)
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We define ãlr(X`,W`, D) = alr(X`B
T
W`

) =


alr(xT1 )
alr(xT2 )

...
alr(xTr`)


r`×(J+1)

=


yT1
yT2
...

yTr`


r`×J

. (15)

Let Y`
r`×J

= ãlr(X`,W`, D) (16)

Each row vector in Y` is a vector of reals, all potentially from the multivariate normal dis-
tribution corresponding to the `th pattern of zeros. Note that we cannot form a single block
matrix, Y, from the collection of Y` because they can have different numbers of columns.

6.3. Illustration - spices, lentils, and rice

In our example about compositions of spending on spices, lentils, and rice (Table 1), there
are three patterns of zeros. Tables 2-4 show the result of applying the ãlr transformation.

X1 corresponds to rows 1-3 and its set of indices is W1 = {1}.
X2 corresponds to rows 4-6 and its set of indices is W2 = {2}.
X3 corresponds to rows 7-12 and its set of indices is W3 = {1, 2}.

Table 2: Y1 = ãlr(X1, {1}, 3)

log(spices/rice)

1 -1.66
2 -1.59
3 -1.68

Table 3: Y2 = ãlr(X2, {2}, 3)

log(lentils/rice)

4 -0.52
5 -0.52
6 -0.51

Table 4: Y3 = ãlr(X3, {1, 2}, 3)

log(spices/rice) log(lentils/rice)

7 -1.56 -0.52
8 -1.64 -0.51
9 -1.52 -0.57

10 -1.72 -0.51
11 -1.77 -0.53
12 -1.58 -0.51

6.4. Means

The matrix Y` contains rows of compositions with the same pattern of zeros. We refer to the
tth row vector of Y` as yT`t. We refer to the mean as the vector ȳ`, and define it as:

ȳ`
J×1

=
1

r`
(1Tr`Y`)

T . (17)
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Here we are using 1r` to represent an r`×1 column vector of ones. ȳ` is a column vector. We
define it this way because of how we intend to use it in quadratic forms from the multivariate
normal density.

7. Simple estimators

7.1. Mean

It is also possible to construct simpler estimators relying on properties of the normal distri-
bution. For the location, if X

n×D
= [xti] is a collection of n compositional data points with

zeros, and the Dth component always strictly positive, we can define a simple estimator of

the mean,
∗
µ = (

∗
µ1,

∗
µ2, . . . ,

∗
µd)

T . Let ni be the number of elements of the ith column of X
that are nonzero. For i ∈ {1, 2, . . . , d}, and t ∈ {1, 2, . . . , n}, define

∗
µi =

1

ni

∑
{t:xti 6=0}

log(xti/xtD). (18)

By the assumption of normality of the logratios, the estimator
∗
µ is unbiased.

In the spices-lentils-rice example,
∗
µ = (log(spices/rice): -1.635 , log(lentils/rice): -0.523 ).

For ease of interpretation, we convert the estimator back to a composition with the alr−1

transformation giving: (spices: 0.109 , lentils: 0.332, rice: 0.559 ). That is, our estimate of
Bill’s mean expenditure is 10.9% on spices , 33.2% on lentils, and 55.9% on rice.

7.2. Variance

Here we show how to find estimators for variances and covariances using maximum likeli-
hood estimators for normal random variables. For a single random composition, x, with
components x1, x2, . . . , xD, we substitute log(xi/xD) into the MLE for variances of normal

random variables. We use
∗
σ
2

ii for the estimator of the variances of the logratios log(xi/xD),
for i ∈ {1, 2, . . . , d}, and t ∈ {1, 2, . . . , ni}.

∗
σ
2

ii =
1

ni

∑
{t:xti 6=0}

(
log(xti/xtD)− ∗µi

)2
. (19)

If we want an unbiased estimator, we can divide by (ni − 1) instead of ni. As with means,

the different
∗
σii are based on different numbers of observations, ni.

7.3. Covariance

It only makes sense to talk about estimating the covariance of the variables log(xi/xD) and
log(xj/xD) when both xti and xtj are not 0 so we define nij = ||{t : xti 6= 0 & xtj 6= 0}||. That
is, nij is the number of data points where both xti and xtj are not 0. As we did with variance,
we can start with the canonical maximum likelihood formula for estimating covariance among
normally distributed variables, and substitute in appropriate logratios.

∗
σij =

1

nij

∑
{t:xti 6=0 & xtj 6=0}

(log(xti/xtD)− ∗µi)(log(xtj/xtD)− ∗µj) (20)

Note that
∗
σij is based on nij observations, while

∗
µi and

∗
µj are based on ni and nj observations,

respectively. The formula in Equation 20 is based on the maximum likelihood estimator for
covariance of normal variables. For unbiased estimators we would divide by (nij − 1) instead
of nij .
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Our estimator for the d× d variance-covariance matrix is
∗
Ω = [

∗
σij ]. There are two potential

problems with this approach. There could be i, j, i 6= j, such that whenever xi > 0, xj = 0.
In that case we cannot estimate the covariance. Also, irrespective of that, the estimate of the

variance-covariance matrix,
∗
Ω, might not be positive definite.

In the spices-lentils-rice example,

∗
Ω =

(
0.00648 −0.00096
−0.00096 0.00035

)
which is positive definite.

8. Maximum likelihood estimators

For the case where there are no zeros, the location estimator described earlier is a maximum
likelihood estimator (MLE), but in general the estimator we found earlier is not an MLE.
From now on we will call that estimator the simple estimator, to contrast it with the MLE,
which we derive next.

We start by finding the location MLE given Ω for 3-part compositions, show it is unbiased,
and then show the relative efficiency of the simple estimator with to the MLE. Assume we
have a set of logistic normal compositional data with b different patterns of zeros as in (9).

x11, . . . ,x1r1
i.i.d.∼ L||W1||(BW1µ,BW1ΩBT

W1
) (rows of X1)

x21, . . . ,x2r2
i.i.d.∼ L||W2||(BW2µ,BW2ΩBT

W2
) (rows of X2)

...

xb1, . . . ,xbrb
i.i.d.∼ L||Wb||(BWb

µ,BWb
ΩBT

Wb
). (rows of Xb) (21)

In a block of data, as in (21), we use x`t to refer to the tth compositional observation with
W` pattern of zeros. We define y`t = ãlr(x`t,W`, D), and to ease notation, we write in terms
of y`t.

8.1. Likelihood

First we write the full likelihood and log likelihood for D-part compositions, and then restrict
ourselves to 3-part compositions. The full likelihood is:

L(µ,Ω|r1, . . . , rb,y11, . . . ,ybrb) = (22)

b∏
`=1

r∏̀
t=1

P (W`)

(2π)||W`||/2|BW`
ΩBT

W`
|1/2

exp
[
− 1

2
(y`t −BW`

µ)T (BW`
ΩBT

W`
)−1(y`t −BW`

µ)
]
.

The constant

b∏
`=1

r∏̀
t=1

P (W`)

(2π)||W`||/2|BW`
ΩBT

W`
|1/2

(23)

is independent of µ, so for purposes of maximizing the likelihood with respect to µ, we can
treat it as a single constant, C.

L(µ,Ω|r1, . . . , rb,y11, . . . ,ybrb)

= C

b∏
`=1

r∏̀
t=1

exp
[
− 1

2
(y`t −BW`

µ)T (BW`
ΩBT

W`
)−1(y`t −BW`

µ)
]

(24)
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= C exp
[
− 1

2

b∑
`=1

r∑̀
t=1

(y`t −BW`
µ)T (BW`

ΩBT
W`

)−1(y`t −BW`
µ)
]
. (25)

Taking the log gives:

logL(µ,Ω|r1, . . . , rb,y11, . . . ,ybrb) (26)

= logC − 1

2

b∑
`=1

r∑̀
t=1

(y`t −BW`
µ)T (BW`

ΩBT
W`

)−1(y`t −BW`
µ). (27)

For the simple case of three-part compositional data with some zeros in component one, and
some zeros in component two, the parent distribution for the transformed data is bivariate
normal,

N (µ,Ω) where µ =

[
µ1
µ2

]
, and Ω =

[
s11 s12
s12 s22

]
(28)

For the full bivariate normal distribution,

A = Ω−1 =
1

s11s22 − s212

[
s22 −s12
−s12 s11

]
. (29)

For the two univariate normal distributions, the inverses of the variances are: 1
s11

and 1
s22

.

In these formulas,
y1j1 is the jth data point among the univariate data from the first component.
y2j2 is the jth data point among the univariate data from the second component.
y3j is a 2-part vector with data from both components,[

y1j1
�

] [
�
y2j2

] [
y3j1
y3j2

]
. (30)

In the example, the y1j1 correspond to elements of Table 2, log(spices/rice). The y2j2 corre-
spond to elements of Table 3, log(lentils/rice), and y3j1 correspond to elements of Table 4,
both log(spices/rice) and log(lentils/rice).

We define the means of these matrices in the usual way.

1

r1

r1∑
j=1

y1j1 = ȳ11
1

r2

r2∑
j=1

y2j2 = ȳ22
1

r3

r3∑
j=1

y3j =

[
ȳ31
ȳ32

]
(31)

Partial derivatives

∂ logL(µ|Y,Ω, r1, r2, r3)

∂µ1
=

1

s11
r1(ȳ11 − µ1) +

s22
s11s22 − s212

r3(ȳ31 − µ1) +
−s12

s11s22 − s212
r3(ȳ32 − µ2) (32)

∂ logL(µ|Y,Ω, r1, r2, r3)

∂µ2
=

1

s22
r2(ȳ22 − µ2) +

s11
s11s22 − s212

r3(ȳ32 − µ2) +
−s12

s11s22 − s212
r3(ȳ31 − µ1) (33)
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MLE for location, given Ω

We set the partial derivatives equal to zero, replace µ with µ̂, and solve. The result is:

µ̂1|Ω, r1, r2, r3 =
(r1ȳ11 + r3ȳ31)(r2 + r3)s11s12 − r1ȳ11r2s212 + (ȳ22 − ȳ32)r2r3s11s12

(r1 + r3)(r2 + r3)s11s22 − r1r2s212
(34)

µ̂2|Ω, r1, r2, r3 =
(r2ȳ22 + r3ȳ32)(r1 + r3)s11s12 − r2ȳ22r1s212 + (ȳ11 − ȳ31)r1r3s12s22

(r1 + r3)(r2 + r3)s11s22 − r1r2s212
(35)

In the case where there are no univariate data from the second component, i.e, r2 = 0, we
have:

(µ̂1|Ω, r1, r2, r3)
∣∣∣
r2=0

=
r1ȳ11 + r3ȳ31

(r3 + r1)
=

1

(r3 + r1)

 r3∑
j=1

y3j1 +

r1∑
j=1

y1j1

 . (36)

That shows that when we have r2 = 0, the MLE (µ̂1|Ω, r1, r2, r3) is equal to our simple
estimator for µ1. Similarly, when r1 = 0, (µ̂2|Ω, r1, r2, r3) is equal to our simple estimator for

µ2. It also turns out that (µ̂1|Ω, r1, r2, r3)
∣∣∣
r3=0

= ȳ11, and when r3 = 0, the simple estimator

is also ȳ11, so they are equal in that case as well.

8.2. Unbiasedness of conditional MLE for 3-part composition

To show that µ̂|Ω, r1, r2, r3 is unbiased, we start by pointing out the expectations of the var-
ious means:

E[ȳ11] = E

 1

r1

r1∑
j=1

y1j1

 =
1

r1

r1∑
j=1

E [y1j1] = µ1 (37)

E[ȳ22] = E

 1

r2

r2∑
j=1

y2j2

 =
1

r2

r2∑
j=1

E [y2j2] = µ2 (38)

E

[[
ȳ31
ȳ32

]]
= E

 1

r3

r3∑
j=1

y3j

 =
1

r3

r3∑
j=1

E [y3j ] =

[
µ1
µ2

]
(39)

When we take the expectation in expression(34), the term with (ȳ22 − ȳ32) vanishes because
E[ȳ22] = E[ȳ32]. That leaves only terms with E[ȳ11] = µ1 and E[ȳ31] = µ1, which we can
factor:

E [µ̂1|Ω, r1, r2, r2] =
µ1
[
(r1 + r3)(r2 + r3)s11s12 − r1r2s212

]
(r1 + r3)(r2 + r3)s11s22 − r1r2s212

= µ1 (40)

This shows that µ̂1 is unbiased. By symmetry we get that µ̂2 is unbiased.

8.3. General maximum likelihood estimators

For the general case of MLE for higher dimensions than shown here, the log likelihood can
be differentiated, and the score functions can be solved with a computer algebra system. In
addition, the Hessian can be checked to verify the solution is a maximum. We have done
this for the case of 3-part compositions and do not anticipate any obstacles to extending the
program to handle the general case of D-dimensions.
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9. Variances of location estimators

Next we find variances of the two location estimators, the MLE, and the simple estimator.
Both are unbiased. A question we need to answer is, what is the efficiency of the simple

estimator relative to the MLE. We have been using µ̂ for the MLE. We continue to use
∗
µ for

the simple estimator (of the location). In our discussion,

efficiency(
∗
µ1, µ̂1) =

Var(µ̂1)

Var(
∗
µ1)

. (41)

9.1. Variances of location estimators

The variances of the MLE and the simple location estimator are derived in the Appendix.
They are:

Var(µ̂1|Ω, r1, r2, r3) =
r3

(
(r3 + r2)

2s311s
2
22 + r22s

2
11s

2
12s22 − 2r2(r3 + r2)s

2
11s

2
12s22

)
+ r2r

2
3s

2
11s

2
12s22 + r1s11((r3 + r2)s11s22 − r2s212)2

((r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212)2
(42)

Var(µ̂2|Ω, r1, r2, r3) =
r3

(
(r3 + r1)

2s322s
2
11 + r21s

2
22s

2
12s11 − 2r1(r3 + r1)s

2
22s

2
12s11

)
+ r1r

2
3s

2
22s

2
12s11 + r2s22((r3 + r1)s22s11 − r1s212)2

((r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212)2
(43)

Var(
∗
µ1|Ω, r1, r2, r3) =

s11
r1 + r3

. (44)

Var(
∗
µ2|Ω, r1, r2, r3) =

s22
r2 + r3

. (45)

9.2. Relative efficiency of location estimators

The first thing we show is that when the covariance element of Ω is zero, i.e, s12 = 0, then

Var(µ̂) = Var(
∗
µ).

Var(µ̂1|Ω, r1, r2, r3) =
r3

(
(r3 + r2)

2s311s
2
22 + r22s

2
11s

2
12s22 − 2r2(r3 + r2)s

2
11s

2
12s22

)
+ r2r

2
3s

2
11s

2
12s22 + r1s11((r3 + r2)s11s22 − r2s212)2

((r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212)2
(46)

Evaluate at s12 = 0.

Var(µ̂1|Ω, r1, r2, r3)
∣∣∣
s12=0

=
r3
(
(r3 + r2)

2s311s
2
22

)
+ r1s11((r3 + r2)s11s22)

2

((r23 + (r2 + r1)r3 + r1r2)s11s22)2
(47)

Factor numerator and denominator.

Var(µ̂1|Ω, r1, r2, r3)
∣∣∣
s12=0

=
(r3 + r2)

2s311s
2
22(r3 + r1)

(r3 + r1)2(r3 + r2)2s211s
2
22

=
s11

r3 + r1
= Var(

∗
µ1). (48)

Similarly,

Var(µ̂2|Ω, r1, r2, r3)
∣∣∣
s12=0

=
s22

r3 + r2
= Var(

∗
µ2). (49)

We have already shown in Section 8.1.2 that when r2 = 0, µ̂1 =
∗
µ1, and when r1 = 0, µ̂2 =

∗
µ2;

and when r3 = 0, µ̂1 =
∗
µ1, and µ̂2 =

∗
µ2. Next we need to compare the variance of

∗
µ with the

variance of µ̂ in cases where the estimators are not obviously the same.
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Figure 1: Efficiency of
∗
µ relative to µ̂ with low covariance (0.2)

We consider a sample of 100 compositions from a logistic normal distribution with the number
of zeros in part 1 ranging from 0 to 100, and similarly for part 2. We calculate the relative
efficiency. These are not simulations; they are calculations based on the expressions for the
variances of the estimators. We consider all possible combinations of r1, r2, r3 such that
r1 + r2 + r3 = 100. A larger sample would give roughly the same picture, just with finer
granularity. In addition, while we want to understand the effect of the covariance term s12 for
every possible value between −1 and 1, we get a feel for the space by choosing three values,
s12 ∈ {0, 0.2, 0.8}. For simplicity we choose s11 = s22 = 1.

In all three figures, we plot Var(µ̂2)/Var(
∗
µ2) versus Var(µ̂1)/Var(

∗
µ1). In Figure 1 we use a

small covariance term, s12 = 0.2. In Figure 2 we use a large covariance, s12 = 0.8. In both
figures, we shade by the size of r1 relative to r2. We already showed in (48) and (49) that

when s12 = 0, the relative efficiency of
∗
µ with respect to µ̂ is 1, so there is no plot for s12 = 0.

Figure 1 shows the relationship between efficiency of
∗
µ1 and

∗
µ2 and the relative sizes of r1

and r2. In the worst case, when r1 >> r2, the efficiency of
∗
µ1 approaches 1, and the efficiency

of
∗
µ2 falls off toward 0.97. A point to note here is that for a relatively small covariance, 0.2,

the simple estimator,
∗
µ has a variance almost as small as that of µ̂. We will save discussion

of the bands or striations for Figure 3.

Figure 2, which shows efficiency based on a covariance of 0.8, has the same pattern as Figure 1,

but with larger variances for
∗
µ, smaller efficiency. Here the worst cases can have an efficiency

of less than 0.5 for either component of
∗
µ, though when the efficiency of

∗
µ1 is that small, the

efficiency of
∗
µ2 is very near 1.

Figure 3 shows the same points, for a covariance of 0.8, but shaded by the value of r3. To
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Figure 2: Efficiency of
∗
µ relative to µ̂ with high covariance (0.8)

help decipher it, we show a subset of the points in Figure 4.

Figure 4 shows a subset of the points, only the points where r3 ∈ {1, 2, 3, 4, 61, 62, 63, 64}.
When r3 is very small there is a wide range of possibilities for r1 and r2. The four leftmost
points in the upper left of Figure 4 are points where r1 is 1 or 2; r2 is somewhere between
94 and 97, and r3 is 2, 3, or 4. In these cases, the sample for estimating µ1 is very small,
from 3 to 6 points, some from univariate data and some from the bivariate data. In that case,
the MLE has a much smaller variance than the simple estimator. In that same case, there
is a much larger sample from univariate data for estimating µ2, upwards of 90 points, plus a
handful of points from the bivariate data. In that case, the difference between the variance

of
∗
µ2 and µ̂2 is very small.

Graphs with negative covariances, −0.2, and −0.8 look the same as with positive covariances,
and are omitted for the sake of brevity.

9.3. Summary of relative efficiency

Both the simple estimator for the location,
∗
µ, and the maximum likelihood estimator, µ̂, are

unbiased given Ω. The simple estimator’s efficiency relative to the MLE tends to decrease as
the covariance component of Ω increases. We say “tends” because even with a covariance of

0.8, there are cases where the efficiency of both components of
∗
µ relative to µ̂ is very close

to one.

When there are relatively few zeros, and they are balanced,
∗
µ has a variance almost as small

as µ̂. The more zeros there are, or the more unbalanced their distribution is, the larger the
variance of one or more components of the simple estimator.



18 A Logistic Normal Mixture Model for Compositional Data Allowing Essential Zeros

0.6

0.8

1.0

0.6 0.8 1.0
Var(mle1)

Var(simple1)

V
ar

(m
le

2)
V

ar
(s

im
pl

e2
)

0

25

50

75

r3

Relative Efficiency: Covariance=0.8

Figure 3: Efficiency of
∗
µ relative to µ̂ with high covariance (0.8) and relative to r3

10. Subcompositional coherence

One of the reasons for using the logistic normal approach is that, in the base case without
zeros, it preserves subcompositional coherence, described by Aitchison and Egozcue (2005)
p. 831, as follows, “Subcompositional coherence demands that two scientists, one using full
compositions and the other using subcompositions of these full compositions, should make
the same inference about relations within the common parts.” This implies that the subcom-
position of a location estimator equals the location estimator for the subcomposition.

In the presence of zeros, do we maintain this property? It depends on which estimators are
used. We have shown that in general when there are zeros, the MLE for the mean is not
the same as the simple estimator for the mean. The MLE does not preserve subcomposi-
tional coherence when we have zeros. The simple estimators, by construction, do preserve
subcompositional coherence provided the same Dth component is in both. Thus for inference,
there is a choice to be made between maintaining subcompositional coherence and maximizing
likelihood.

The issue of the relationship between compositions containing zeros, and subcompositional
coherence, has been addressed from other points of view as well. Greenacre (2011) introduced
a measure of subcompositional incoherence and suggested ways of getting it small enough
for practical purposes in the paradigm of correspondence analysis. Scealy and Welsh (2014)
argue more generally that although logratio methods for analyzing compositions have their
uses, some of the principles that have been used to motivate them, such as subcompositional
coherence, should not be taken to be as important as has been argued, e.g., by Aitchison
(1994).
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Figure 4: Efficiency of
∗
µ relative to µ̂ with high covariance (0.8). r3 ∈ {1 : 4, 61 : 64}.

11. Discussion

The goal has been to extend the additive logistic normal distribution to cope with essen-
tial zeros. We have done that by requiring that the final component of each composition
be nonzero, and by projecting compositions with zeros onto smaller dimensional subspaces,
thereby addressing the issues of division by zero, and the log of zero. We arrive at a mixture
of logistic normals where each distribution has a mean and a covariance parameter which are
projections from a common mean and covariance.

We construct two sets of estimators, simple estimators,
∗
µ,
∗
Ω, and maximum likelihood estima-

tors, µ̂, Ω̂. These are estimated using all of the compositions in the data, regardless of where
the zeros occur, assuming that the Dth component is always nonzero. The simple estimators
preserve subcompositional coherence, while the maximum likelihood estimators do not.

There are some limitations to this approach. In addition to the assumption that the Dth part
is always nonzero, we assume that each composition has at least one more nonzero part, i.e.,
the vertices of the simplex are not in the support of the distribution. We assume a common
mean and variance. Obviously, for a data set where different zero patterns have different
means or variances or both, this model would not be appropriate. It is possible for the simple
estimator of the covariance to produce a nonpositive definite matrix. If that happens, one
possible approach is to estimate the covariance matrix using only the compositions that do
not contain zeros. Another possible approach, once more work is done, would be to use the
MLE. Currently, though, we do not have a general software solution for finding the MLE.
One last concern is that a data set might have two parts which are never positive at the same
time, in which case, the simple estimator for the covariance cannot be found.
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In compositional data zeros are a common occurrence. We developed this logistic normal
mixture model with the intention of making analysis of such data easier. For future work, we
plan to extend existing compositional data methods for inference, graphing, clustering, etc.,
to work with this distribution.
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13. Appendix

13.1. Variance of location MLE, µ̂

Next we derive the variance of the location MLE, µ̂|Ω, r1, r2, r3. First we rewrite the expres-
sion (34) so that each of the ȳ terms stands alone.

µ̂1|Ω, r1, r2, r3 =

(r23 + r2r3)s11s22ȳ31 − r2r3s11s12ȳ32 + r2r3s11s12ȳ22 + ((r1r3 + r1r2)s11s22 − r1r2s212)ȳ11
(r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212

(50)

To find the variance of µ̂1|Ω, r1, r2, r3, we need to replace r1ȳ11 with
∑r1

j=1 y1j1; r2ȳ22 with∑r2
j=1 y2j2; r3ȳ31 with

∑r3
j=1 y3j1; and r3ȳ32 with

∑r3
j=1 y3j2. We also make some other substi-

tutions to simplify the algebra.

Let k31 = (r3 + r2)s11s22. (51)

Let k32 = r2s11s12. (52)

Let k22 = r3s11s12. (53)

Let k11 = (r3 + r2)s11s22 − r2s212. (54)

Let kdenom = (r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212. (55)

With these in place, we get

µ̂1|Ω, r1, r2, r3 =
1

kdenom

k31 r3∑
j=1

y3j1 − k32
r3∑
j=1

y3j2 + k22

r2∑
j=1

y2j2 + k11

r1∑
j=1

y1j1


=

1

kdenom

 r3∑
j=1

(k31y3j1 − k32y3j2) + k22

r2∑
j=1

y2j2 + k11

r1∑
j=1

y1j1

 . (56)

The y2j2 are i.i.d. univariate normal; the y1j1 are i.i.d. univariate normal; and the y3j are
i.i.d bivariate normal, so the variance of the estimator is:

Var(µ̂1|Ω, r1, r2, r3) =(
1

kdenom

)2
Var

 r3∑
j=1

(k31y3j1 − k32y3j2)

+ Var

k22 r2∑
j=1

y2j2

+ Var

k11 r1∑
j=1

y1j1

 .
(57)
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Var(y2j2) = s22 and Var(y1j1) = s11, so

Var(µ̂1|Ω, r1, r2, r3) =

(
1

kdenom

)2
Var

 r3∑
j=1

(k31y3j1 − k32y3j2)

+ k222r2s22 + k211r1s11

 .
(58)

To find the variance of the remaining sum requires the facts that y3j are i.i.d., and that
Cov(y3j1, y3j2) = s12.

Var

 r3∑
j=1

(k31y3j1 − k32y3j2)

 =

r3∑
j=1

Var(k31y3j1 − k32y3j2)

=

r3∑
j=1

[Var(k31y3j1) + Var(k32y3j2)− 2k31k32Cov(y3j1, y3j2)]

=

r3∑
j=1

[
k231s11 + k232s22 − 2k31k32s12

]
=r3

[
k231s11 + k232s22 − 2k31k32s12

]
. (59)

With that we can write the variance of the MLE, µ̂1.

Var(µ̂1|Ω, r1, r2, r3) =(
1

kdenom

)2 [
r3
(
k231s11 + k232s22 − 2k31k32s12

)
+ k222r2s22 + k211r1s11

]
. (60)

Substituting the values for the k’s back in gives:

Var(µ̂1|Ω, r1, r2, r3) =
r3

(
(r3 + r2)

2s311s
2
22 + r22s

2
11s

2
12s22 − 2r2(r3 + r2)s

2
11s

2
12s22

)
+ r2r

2
3s

2
11s

2
12s22 + r1s11((r3 + r2)s11s22 − r2s212)2

((r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212)2
(61)

Symmetry also gives the variance of µ̂2 given Ω.

Var(µ̂2|Ω, r1, r2, r3) =
r3

(
(r3 + r1)

2s322s
2
11 + r21s

2
22s

2
12s11 − 2r1(r3 + r1)s

2
22s

2
12s11

)
+ r1r

2
3s

2
22s

2
12s11 + r2s22((r3 + r1)s22s11 − r1s212)2

((r23 + (r2 + r1)r3 + r1r2)s11s22 − r1r2s212)2
(62)

13.2. Variance of simple location estimator,
∗
µ

Our simple estimator for the location is
∗
µ =

[ ∗
µ1
∗
µ2

]
. Here we concern ourselves with Var(

∗
µ1)

and then rely on symmetry to arrive at the variance of
∗
µ2.

∗
µ1 =

1

r1 + r3

 r1∑
j=1

y1j1 +

r3∑
j=1

y3j1

 (63)

Var(
∗
µ1) = Var

 1

r1 + r3

 r1∑
j=1

y1j1 +

r3∑
j=1

y3j1


=

1

(r1 + r3)2
Var

 r1∑
j=1

y1j1 +

r3∑
j=1

y3j1


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=
1

(r1 + r3)2
(r1s11 + r3s11)

=
s11

r1 + r3
. (64)

By symmetry, Var(
∗
µ2) =

s22
r2 + r3

. (65)
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