Austrian Journal of Statistics

MMMMMM YYYY, Volume VV, 1-zz. C)SG L] |
http://www.ags.or.at/ I_I. =II

Riesz and beta-Riesz distributions

José A. Diaz-Garcia
Universidad Auténoma Agraria Antonio Narro

Abstract

This article derives several properties of the Riesz distributions, such as their corre-
sponding Bartlett decompositions, the inverse Riesz distributions and the distribution of
the generalised variance for real normed division algebras. In addition, introduce a kind
of generalised beta distribution termed beta-Riesz distribution for real normed division
algebras. Two versions of this distributions are proposed and some properties are studied.

Keywords: Beta-Riesz distribution, Riesz distribution, generalised beta function and distri-
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1. Introduction

It is imminent the important role played by Wishart and beta distributions type I and II
in the context of multivariate statistics. In particular, the relationship between these two
distributions to obtain the beta distribution in terms of the distribution of two Wishart
matrices. Faraut and Kordnyi (1994), and subsequently Hassairi, Lajmi, and Zine (2005),
propose a beta-Riesz distribution, which contains as a special case to the beta distribution
obtained in terms of the distribution Wishart, which shall be named beta-Wishart, all this
subjects in the context of simple Euclidean Jordan algebras. Such beta-Riesz distribution is
obtained analogously to the beta-Wishart distribution, but starting with a Riesz distribution.
Recently, Diaz-Garcia (2014b) proposes two versions of the Riesz distribution for real normed
division algebras.

Based in these last two versions of the Riesz distributions, it is possible to obtain two versions
of the beta-Riesz distributions, which by analogy with the beta-Wishart distributions are
termed beta-Riesz type I. As in classical beta-Wishart distribution, in addition it is feasible
to propose two version for the beta-Riesz distribution type II. Each of the two versions for
each beta-Riesz distributions of type I and II, (both versions for each) contain as particular
cases to beta-Wishart distribution type I and beta-Wishart distribution type II, respectively.

Although during the 90’s and 2000’s were obtained important results in theory of random
matrices distributions, the past 30 years have reached a substantial development. Essentially,
these advances have been archived through two approaches based on the theory of Jordan
algebras and the theory of real normed division algebras. A basic source of the mathematical
tools of theory of random matrices distributions under Jordan algebras can be found in Faraut
and Koranyi (1994); and specifically, some works in the context of theory of random matrices
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distributions based on Jordan algebras are provided in Massam (1994), Casalis and Letac
(1996), Hassairi and Lajmi (2001), and Hassairi et al. (2005), and the references therein.
Parallel results on theory of random matrices distributions based on real normed division
algebras have been also developed in random matrix theory and statistics, see Gross and
Richards (1987), Dumitriu (2002), Forrester (2005), Diaz-Garcia and Gutiérrez-Jdimez (2011),
Diaz-Garcia and Gutiérrez-Jdimez (2013), among others. In addition, from mathematical
point of view, several basic properties of the matrix multivariate Riesz distribution under the
structure theory of normal j-algebras and under theory of Vinberg algebras in place of Jordan
algebras have been studied, see Ishi (2000) and Boutouria and Hassiri (2009), respectively.

From a applied point of view, the relevance of the octonions remains unclear. An excellent
review of the history, construction and many other properties of octonions is given in Baez
(2002), where it is stated that... However, there is still no proof that the octonions
are useful for understanding the real world. We can only hope that eventually this
question will be settled one way or another.”

For the sake of completeness, in this article the case of octonions is considered, but the
veracity of the results obtained for this case can only be conjectured. Nonetheless, Forrester
(2005, Section 1.4.5, pp. 22-24) it is proved that the bi-dimensional density function of the
eigenvalue, for a Gaussian ensemble of a 2 X 2 octonionic matrix, is obtained from the general
joint density function of the eigenvalues for the Gaussian ensemble, assuming m = 2 and
B = 8, see Section 2. Moreover, as is established in Faraut and Kordnyi (1994) and Sawyer
(1997) the result obtained in this article are valid for the algebra of Albert, that is when
hermitian matrices (S) or hermitian product of matrices (X*X) are 3 x 3 octonionic matrices.

This article studies two versions for beta-Riesz distributions type I and II for real normed
division algebras. Section 2 reviews some definitions and notation on real normed division
algebras. And also, introduces other mathematical tools as two definitions of the generalised
gamma function on symmetric cones, three Jacobians with respect to Lebesgue measure and
some integral results for real normed division algebras. Section 3 proposes diverse proper-
ties of two versions of the Riesz distributions as their Bartlett decompositions, inverse Riesz
distributions and the distribution of the generalized variance. Section 4 introduces two gen-
eralised beta functions and, in terms of these, two beta-Riesz distributions of type I and II
are obtained for real normed division algebras. Also, the relationship between the Riesz dis-
tributions and the beta-Riesz distributions are studied. This section concludes studying the
eigenvalues distributions of beta-Riesz distributions type I and II in their two versions for real
normed division algebras.

2. Preliminary results

A detailed discussion of real normed division algebras may be found in Baez (2002) and
J. Neukirch and R. Remmert (1990). For convenience, we shall introduce some notation,
although in general we adhere to standard notation forms.

For our purposes: Let F be a field. An algebra 2 over F is a pair (2(;m), where 2 is a finite-
dimensional vector space over F and multiplication m : A x A — A is an F-bilinear map; that
is, forall A € F, z,y,z € A,

m(z, Ay +z) = Am(z;y) +m(z;2)

mAx+y;z) = Am(z;z) +m(y;2).

Two algebras (2(;m) and (&;n) over F are said to be isomorphic if there is an invertible map
¢ : A — €& such that for all x,y € 2,

o(m(z,y)) = n(o(x), ¢(y))-
By simplicity, we write m(z;y) = xy for all z,y € 2.
Let A be an algebra over F. Then 2 is said to be
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1. alternative if z(zy) = (zz)y and x(yy) = (zy)y for all z,y € A,
2. associative if x(yz) = (zy)z for all z,y,z € A,
3. commutative if xy = yx for all z,y € A, and

4. wunital if there is a 1 € A such that 21 = x = 1z for all x € 2.

If 2 is unital, then the identity 1 is uniquely determined.

An algebra 2l over F is said to be a division algebra if 2 is nonzero and xy = Oy = = = Og or
y = Og for all x,y € 2.

The term “division algebra”, comes from the following proposition, which shows that, in such
an algebra, left and right division can be unambiguously performed.

Let 2 be an algebra over F. Then 2 is a division algebra if, and only if, 2 is nonzero and for
all a,b € A, with b #£ Og(, the equations bx = a and yb = a have unique solutions x,y € 2.

In the sequel we assume F = R and consider classes of division algebras over R or “real division
algebras” for short.

We introduce the algebras of real numbers R, complex numbers &€, quaternions $) and octonions
). Then, if 2 is an alternative real division algebra, then 2( is isomorphic to R, €, $ or O.

Let 24 be a real division algebra with identity 1. Then 2 is said to be normed if there is an
inner product (-,-) on 2 such that

(zy,zy) = (z,z)(y,y)  forallz,y €A

If 2 is a real normed division algebra, then 2l is isomorphic R, €, § or O.

There are exactly four normed division algebras: real numbers (), complex numbers (&),
quaternions ($)) and octonions (), see Baez (2002). We take into account that should be
taken into account, R, €, $ and O are the only normed division algebras; furthermore, they
are the only alternative division algebras.

Let 2 be a division algebra over the real numbers. Then 2 has dimension either 1, 2, 4 or
8. In other branches of mathematics, the parameters « = 2/4 and t = (3/4 are used, see
Edelman and Rao (2005) and Kabe (1984), respectively.

Finally, observe that

R is a real commutative associative normed division algebras,
¢ is a commutative associative normed division algebras,
$ is an associative normed division algebras,
£ is an alternative normed division algebras.

Let Lﬁm be the set of all m x n matrices of rank m < n over 2 with m distinct positive
singular values, where 2 denotes a real finite-dimensional normed division algebra. Let A™*™
be the set of all m xn matrices over 2. The dimension of A™*™ over R is Bmn. Let A € A™*",
then A* = AT denotes the usual conjugate transpose.

Table 1 sets out the equivalence between the same concepts in the four normed division
algebras.

Table 1: Notation

Real Complex Quaternion Octonion Gene}r '
notation
. L . . i- tional
Semi-orthogonal  Semi-unitary  Semi-symplectic Semi et); cpeé) 1ona Vﬁhn
Orthogonal Unitary Symplectic Excg}/)é;onal 18 (m)
. o Quaternion Octonion 8
Symmetric Hermitian hermitian hermitian Sm
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We denote by &2, the real vector space of all S € A™*™ guch that S = S*. In addition, let
‘,]Is‘g1 be the cone of positive definite matrices S € A™*™. Thus, ‘,B’g@ consist of all matrices
S = X*X, with X € S?n,n; then mﬁl is an open subset of GEn

Let D5, consisting of all D € 2™*™ D = diag(di,...,dm). Let ‘Zg(m) be the subgroup of
all upper triangular matrices T € A™*™ such that ¢;; =0 for 1 <i < j < m.

For any matrix X € A"*™, dX denotes the matriz of differentials (dx;;). Finally, we define

the measure or volume element (dX) when X € A™*"™, Sh, D8, or ng, see Dumitriu (2002)
and Diaz-Garcia and Gutiérrez-Jdimez (2011).

If X € A™*™ then (dX) (the Lebesgue measure in A™*"™) denotes the exterior product of the
Bmn functionally independent variables

m n 6
= /\ /\ dr;; where dx;; = /\ dxg-c).
i=1j=1 k=1
IfSe6h (orSe "S’g(m) with t;; > 0,4 =1,...,m) then (dS) (the Lebesgue measure in &5,

or in ‘Ig(m)) denotes the exterior product of the exterior product of the m(m —1)3/2 +m
functionally independent variables,

7\ dsi; /\ /\ ds

1<j k=1

Observe, that for the Lebesgue measure (dS) defined thus, it is required that S € ‘,]37%, that
is, S must be a non singular Hermitian matrix (Hermitian definite positive matrix).

If A € DY, then (dA) (the Legesgue measure in ’Dfn) denotes the exterior product of the Sm
functionally independent variables

n B
A=A\ N\ a®.

i=1k=1

If H; € V5, then

(HjdH;) = /\ /\ h’ dh;.
i=1j=i+1
where H = (Hi|H%)* = (hy,...,hy|hpy,...,h,)* € 4%(n). Tt can be proved that this
differential form does not depend on the choice of the Hy matrix. When n = 1; V%l defines
the unit sphere in ™. This is, of course, an (m — 1)3- dimensional surface in A™. When
n = m and denoting H; by H, (HdH*) is termed the Haar measure on 4°(m).

The surface area or volume of the Stiefel manifold Vﬁl,n is

5 2mﬂ_mn,8/2

Vol(V3,,) = / (HydH) = 27 (1)
U Jmet, T Thing/?)

where '}, [a] denotes the multivariate Gamma function for the space &0,. This can be obtained

as a particular case of the genemlised gamma function of weight k for the space &5, with

K= (kl,kig, coiskm), k1 > ke > - > kpyy >0, k1, ke, ..., ky are nonnegative integers, taking

k= (0,0,...,0) and which for Re( )>(m—1)3/2— /-cm is defined by, see Gross and Richards

(1987),

I la, ]

/ otr{— A} A[*(mD/21g (A)(dA) 2)
Acph,

_ amlm=1)8/4 H Ila+ ki — (i —1)5/2]
=1
— [afT ) ®)
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where etr(-) = exp(tr(-)), | - | denotes the determinant, and for A € &5,

m—1

Gr(A) = [Ap[fr TT AR hen (4)
=1

with A, = (ars), 7,8 = 1,2,...,p, p = 1,2,...,m is termed the highest weight vector, see
Gross and Richards (1987). Also,

Mhlal = [ ctr{-AHAPDY2 -l GA)
€

m

= amm=DSAT]T[a — (i — 1)8/2],
=1

and Re(a) > (m —1)3/2.
In other branches of mathematics the highest weight vector q,(A) is also termed the generalised

power of A and is denoted as A,(A), see Faraut and Kordnyi (1994) and Hassairi and Lajmi
(2001).

Additional properties of g, (A), which are immediate consequences of the definition of g, (A)
and the following property 1, are:

1. if A\1,..., A, are the eigenvalues of A, then

g(A) = ] A1 (5)
i=1
2.
QN(Ail) = qgl(A) = Q—H(A)a (6)
3. if k=(p,...,p), then
a:(A) = |AJ, (7)

in particular if p = 0, then ¢,(A) = 1.

4, ifT:(tl,tQ,...,tm),tlZtQZ'--ZthO, then

qH+T(A) = QK(A)QT(A)7 (8)
in particular if 7 = (p,p,...,p), then
rtr(A) = grip(A) = [A]Pq(A). (9)

5. Finally, for B € A™>*™ in such a manner that C = B*B € GTBH,
QH(BAB*) = QH(C)QN(A) (10)
and

2:(BTTAB* ) = (¢4(C)) 'gu(A). (11)

Remark 2.1 Let P(G’g@) denote the algebra of all polynomial functions on 6’,%, and 73;.3(6?,1)
the subspace of homogeneous polynomials of degree k and let P”(Grﬁn) be an irreducible subspace

of P(Sh) such that
Pi(6n) =D D P (Sh).

Note that q, is a homogeneous polynomial of degree k, moreover q, € 77“(6%), see Gross and
Richards (1987).
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In (3), [a]g denotes the generalised Pochhammer symbol of weight «, defined as
[ald = JI(a—G—1)8/2)
i=1

m(m—1)3/4 ﬁ Tla+k; — (i —1)5/2]
=1
Fg@[a]

ng [a, K]
I'[al
where Re(a) > (m —1)3/2 — ky,, and

()i =a(a+1)--(a+i-1),

is the standard Pochhammer symbol.

An alternative definition of the generalised gamma function of weight « is proposed by Khatri
(1966), which is defined as

I la,—k] = /Aeip ctr{—A}|A|¢~(m=1B2=10 (A~1)(dA) (12)

= pmim-1)p/4 HF[a — ki — (m—1)3/2]
=1
_ (—1)*T/a]
a4 (m-1)8/2+1)7 (13)

where Re(a) > (m —1)3/2 + ki.

Similarly, from Herz (1955, p. 480) the multivariate beta function for the space 6?71, can be
defined as

B,’i[b, CL] _ / |S‘a—(m—1)ﬁ/2—1|1m o S|b—(m—1)ﬁ/2—1(ds)
0<S<I,,

_ / |R|a (m—-1)8/2— I‘I +R| (a+b) (dR)
REP,

_ Thla]Thb)
B Thla+0b] 14

where R = (I - S)™! — I, Re(a) > (m — 1)8/2 and Re(b) > (m — 1)3/2, see Diaz-Garcia
(2014a).

Now, we show three Jacobians in terms of the § parameter, which are proposed as extensions
of real, complex or quaternion cases, see Diaz-Garcia and Gutiérrez-Jdimez (2011).

Lemma 2.1 Let X and Y € ‘Bﬁm matrices of functionally independent variables, and let
Y = AXA* 4+ C, where A € Efn,m and C € ‘,Bgl are matrices of constants. Then

(dY) = |A*A|Pm=D/241(gX). (15)

Lemma 2.2 (Cholesky’s decomposition) Let S € ‘Bfn and T € Tg(m) with t; > 0,
1=1,2,...,m. Then

QmHtﬁm DTHAT) if S=T'T

2mHtﬁZ‘ HlaT) if S =TT
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Lemma 2.3 Let S € i]3§1 Then, ignoring the sign, if Y = S™1

(dY) =[]~ =D2(ds). (17)

Next is stated a general result, that is useful in a variety of situations, which enable us to
transform the density function of a matrix X € 213% to the density function of its eigenvalues,
see Diaz-Garcia (2014a).

Lemma 2.4 Let X € 2]37% be a random matriz with a density function fy (X). Then the joint
density function of the eigenvalues A1, ..., A\, of X is
am?B/2+e M

sz )\ .\B8 *
Sy L0 o, £ D (18)

where L = diag(A1, ..., Am), A1 > -+ > A\, >0, (dH) is the normalised Haar measure and

0, B=1
= —2m, [ =4;
—4m, =28

Finally, let’s recall the multidimensional convolution theorem in terms of the Laplace trans-
form. For this purpose, let’s use the complexification Gﬁf = 6& + iGgl of 651. That is,
S5:¢ consist of all matrices Z € (F)™*™ of the form Z = X + 7Y, with X, Y € &5,. It
comes to X = Re(Z) and Y = Im(Z) as the real and imaginary parts of Z, respectively.
The generalised right half-plane oo, = ‘Brﬁn + z'ng in 6;65C consists of all Z € GE{C such that
Re(Z) € Pb,, see (Gross and Richards 1987, p. 801).

Definition 2.1 If f(X) is a function of X € &Bﬁm, the Laplace transform of f(X) is defined
to be

o) = [ L X O) (19)
where Z, € @51.

Lemma 2.5 If g1(Z) and g2(Z) are the respective Laplace transforms of the densities fy (X)
and gy (Y) then the product g1(Z)g2(Z) is the Laplace transform of the convolution f, (X)
9y (Y), where

he(E) = LX) s (D)= [ Ty (@-T)(aT). (20)

with2=X4+Y and T = X.

3. Riesz distributions

This section shows two versions of the Riesz distributions (Diaz-Garcia 2014b) and the study
of their Bartlett decompositions. Also, inverse Riesz distributions are obtained.

Definition 3.1 Let X € @ﬁl and k = (k1, ko, ..., km), k1 > ko> >k >0, ki1, ko, ...k
are nonnegative integers.
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1. Then it is said that X has a Riesz distribution of type I if its density function is
ﬁaerZ?;l ki

Tmla, k] 2]2q, ()

otr{ ~Z X} ("D (X) (dX) (21)

for X € B, and Re(a) > (m — 1)3/2 — ky,; denoting this fact as X ~ D‘igil(a, K, ).
2. Then it is said that X has a Riesz distribution of type II if its density function is

g (3) Bam—2 1 ki
[0, —k] |2

etr{ —XIX}|X[¢m (MmO (X1 (dX) (22)

for X € B, and Re(a) > (m —1)B/2 + k1; denoting this fact as X ~ 9‘{?,{11(@, K, X).

Theorem 3.1 Let 3 € ®5 and k = (ki ko, ... km), k1 > ks > -+ > kp, > 0. And let
Y =X"1.
1. Then if X has a Riesz distribution of type I the density of Y is
ﬁam—l-zgil k;

Tmla, &) 2], ()

etr{ =X~y "1}y | ler =062 o (v 1) (dY) (23)

for Re(a) > (m —1)3/2 — ky, and is termed as inverse Riesz distribution of type I.
2. Then if X has a Riesz distribution of type II the density of Y is

g () o2z ki
[0, —K] |2

etr{ -2~y 1}y |~ etm=DE/24 DY) (dY) (24)

for Re(a) > (m —1)3/2+ k1 and it said that Y has a inverse Riesz distribution of type
II.

Proof. It is immediately noted that (dX) = |Y|~#("=D=2(4Y) and from (21) and (22). O

Observe that, if k = (0,0,...,0) in two densities in Definition 3.1 and Theorem 3.1 the
matrix multivariate gamma and inverse gamma distributions are obtained. As consequence,
in this last case if ¥ = 23 and a = n/2, the Wishart and inverse Wishart distributions are
obtained, too.

Theorem 3.2 Let T € S} (m) with t;; >0, i =1,2,...,m and define X = T*T.

1. If X has a Riesz distribution of type I, (21), with 3 = I,,,, then the elements t;; (1 <
i <j<m) of T are all independent. Furthermore, t ~ G5(a +k; — (i — 1)8/2,1) and
V2t ~ NP(0,1) (1<i<j<m).

2. If X has a Riesz distribution of type II, (22), with ¥ = L, then the elements t;; (1 <
i < j < m) of T are all independent. Moreover, t% ~ G°(a — k; — (i — 1)3/2,1) and
V2ti; ~ NP(0,1) (1<i<j<m).

Where x ~ GP(a, o) denotes a gamma distribution with parameters a and o and y ~ ./\/15(0, 1)
denotes a random variable with standard normal distribution for real normed division algebras.
Moreover, their respective densities are

ﬁx'aazéex —Bz/atx*  (dx
0"(a+0.0) = fo oz exp{—Aa/a)a" (da).
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and

M (y:0,1) = ———— exp{—y?/2}(dy)

(27 /ﬁ)

where Re(a) >0 and o € <I>f, see Diaz-Garcia and Gutiérrez-Jdimez (2011).

Proof. Thisis given for the case of Riesz distribution type I. The proof for Riesz distribution
type Il is the same thing. The density of X is

ﬁam+2§i1 ki

Tl etr{—X}|X |2~ (m=DE/2=1g (X)(dX). (25)

Since X = T*T we have

trX = trT"T = th,
Z<]
X| = |T*T| =T = Ht
m—1
0(X) = qu(T*T) = [T*TF JT Tk = Htm,
=1

and by Theorem 2.2 noting that dt?i = 2t;;dt;;, then

(dX) = QWHtﬁ"” Aty |

i<j
= ﬁ (1) ( A dti) A dti
i i=1 1<J

Substituting this expression in (25) and using (5) we find that the joint density of the ¢;; (1 <
i < j <m) can be written as

m ﬂa+ki*(i71)ﬁ/2

HF[a+k —— g oo )OI (a2

M 7 7577 e =t Nty

only observe that

ﬂam—l—zgl k; Bam—s—zm ki—m(m—1)3/4
Fgl[a, E] - B m(m—1)3/4,m(m—1)5/4 Hm I‘[ + ki — (l _ 1)/8/2]
ﬁ ﬁaJrkl (i—1)3/2 m 1
T Tt k= G- 18/2) L (/)

O

In analogy to generalised variance for Wishart case, the following result gives the distribution
of |X| when X has a Riesz distribution type I or type II.

Theorem 3.3 Let v = |X|/|X|. Then
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1. if X has a Riesz distribution of type I, (21), the density of v is
[19° (& a+ki—(i—1)8/2,1).
i=1

2. if X has a Riesz distribution of type II, (22), the density of v is

ﬁgﬁ (2 :a—k— (i —1)3/2,1).
=1

where t?i, 1 =1,...,m, are independent random variables.

Proof. This is immediately from Theorem 3.2, noting that if
B=3x"12Xx2"1/2 = T*T,
with T € ‘I@(m) and t; >0,i=1,2,...,m, then

m
Bl =] =XI/1= =v.
i=1

4. Generalised beta distributions: Beta-Riesz distributions.

This section defines several versions for the beta functions and their relation with the gamma
functions type I and II. In these terms, the beta-Riesz distributions type I and II are defined.
Finally, diverse properties are studied.

4.1. Generalised c-beta function

A generalised of multivariate beta function for the cone mﬁ, denoted as B}Bn [a, k; b, 7], can be

defined as

/ S| (m=B/2 g, (S)|L,, — S|P~ (M8 (L, — S)(dS) (26)
0<S<I,,

where k = (k1, ko, ..., km), k1 > ka > -+ > kp, >0, k1, ko, ..., ky, are nonnegative integers,
T = (t1,t2, ..., tm), t1 > tog > -+ >ty >0, t1,to,..., 1, are nonnegative integers, Re(a) >

(m —1)3/2 — ky,, and Re(b) > (m — 1)3/2 — t,. This is defined by Faraut and Koranyi
(1994, p. 130) for Euclidean simple Jordan algebras. In the context of multivariate analysis,
this generalised beta function can be termed generalised c-beta function type I, as analogy to
the correspondence case of matrix multivariate beta distribution, and using the term c-beta
as abbreviation of classical-beta. In the next theorem we introduce the generalised c-beta
function type II and its relation with the generalised gamma function.

Theorem 4.1 The generalised c-beta function type I can be expressed as

[ RO g (R, R (L, + R)(AR)
Rem'm

nla, K]0 [b, 7]

TP la+b,k+7]
where k = (ki,ka, ..., km), k1 > ko > -+ > kp >0, k1, ka, ..., ky, are nonnegative integers,
T = (t1,t2, ... tm), t1 >ty > -+ >ty >0, t1,ta,...,ty are nonnegative integers, Re(a) >

(m—1)3/2 — ky, and Re(b) > (m —1)5/2—ty,. The integral expression is termed generalised
c-beta function type II.
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Proof. Let R = (I —S)~! —1I then by Lemma 2.3 (dS) = (I + R)"#(m=1)-2(4(R)).
The desired result is obtained making the change of variable on (26) noting that S = (I,,, +
R)"'?R(1,, + R)"'/2, then

S| = R||Ln + R| ™,

Ly — S| = [I;m + erv
and by (6) and (11) we have

@ (I + R) 2RIy + R)™2) g (I + R) 1) = ¢(R)g, ), (I + R).

For the expression in terms of generalised gamma function, let B = 21/2821/2 in (26), such
that (£'/2)2 = 2. Then (dS) = |E|~ ("~ DF/2-1(dB), and

Brﬁn la, K; b, 7] |E‘a+b7(mil)6/2il%+7(5)

— /0 ’B‘af(mfl)ﬁ/Qflqn(B)‘E - B‘bf(mfl)ﬁ/Zfqu(E - B)(dB)

Taking Laplace transform of both size, by (21), the left size is

/ | Bl b rle =z S0 g, (@) )
=5

= Bgl[a, K3 b, T]Fgl[a +bk+ T]]Z\_(a+b)qn+T(Z),

and applying Lemma 2.5, ¢1(Z) is
L, el -EB g (=) (dE) = T s ) 2] an(2),
P,
and go(Z) is given by
/ P etr{ —EZ}E — B|"" "~V g (B — B)(dB) = T}, [b; 7] Z| "4-(2).
=eP

Thus, equally
D3 [a, k)T, 7]

B la, kb, 7] = 3 .
Ila+ b,k + 7]

2. Generalised k-beta function

Alternatively, a generalised of multivariate beta function for the cone m&, can be defined and
denoted as

Bﬁz[“? —K;b, —T] = / ‘S’ai(mil)ﬁmil%(sil)’Im - S|b7(m71)ﬂ/271qT((Im - S)il)(ds)
0<S<I,,

(27)
where kK = (k1, ko, ..., km), k1 > ko > -+ > kp, >0, k1, ko, ...,k are nonnegative integers,
T = (t1,t2,...,tm), t1 > ta > -+ >ty >0, t1,ta,..., 1, are nonnegative integers, Re(a) >

(m—1)5/2+ k1 and Re(b) > (m —1)3/2+t1. Again, in the context of multivariate analysis,
this generalised k-beta function can be termed generalised k-beta function type I, as an analogy
to the corresponding case of matrix multivariate beta distribution and using the term k-beta
as abbreviation of Khatri-beta. Next theorem introduces the generalised k-beta function type
IT and its relation with the generalised gamma function proposed by Khatri (1966).

11



12 Riesz and beta-Riesz distributions

Theorem 4.2 The generalised k-beta function type II can be expressed as
[ RO RL, 4RI g, (L, + R)(AR)
REP,

o F/rgn[aa _K’]Fl’rgn[bv _T]
Fﬂ[a+b,—1—e—7‘] ’
where k = (ki,ka, ..., km), k1 > ka > - > kp >0, k1, ka, ..., ky are nonnegative integers,
T = (t1,t2, ... tm), t1 >ty > -+ >ty >0, t1,ta,...,ty are nonnegative integers, Re(a) >
(m—1)3/2+ k1 and Re(b) > (m —1)3/2+t1. The integral expression is termed generalised
k-beta function type II.

Proof. The proof is analogous to the given for Theorem 4.1. ([

Observe that if K = (0,...,0) and 7 = (0,...,0) in (26), Theorem 4.1, (27) and Theorem 4.2
the beta function (14) is obtained.

4.3. c-beta-Riesz and k-beta-Riesz distributions

As an immediate consequence of the results of the previous section, next the c-beta-Riesz and
k-beta-Riesz distributions types I and II are defined.

Definition 4.1 Let k = (k1, ko, ..., km), k1 > ka > -+ >k, >0, k1, ko, ..., kn are nonneg-
ative integers and T = (t1,to, ..., tm), t1 > ta > -+ >ty >0, t1,t2,...,t, are nonnegative
integers.

1. Then it said that S has a c-beta-Riesz distribution of type I if its density function is
1

BE, la, k; b, T]

where 0 < S < I, and Re(a) > (m —1)3/2 — ky, and Re(b) > (m —1)3/2 — tp,

S|4 =D Rg (S) Ly, — S|PV g (I, — S)(dS),  (28)

2. Then it said that R has a c-beta-Riesz distribution of type II if its density function is
1

mm’ai(miw/zilq“(m‘l +R| gl (1, + R)(dR), (29)

where R € Ph, and Re(a) > (m —1)3/2 — ky, and Re(b) > (m —1)3/2 —tp,
Similarly we have

Definition 4.2 Let k = (k1,k2, ..., km), k1 > k m , k1,ko, ..., ky are nonneg-
ative integers and T = (t1,ta, ..., tm), t1 > ta > -+ >ty >0, t1,t2,...,t, are nonnegative
integers.
1. Then it said that S has a k-beta-Riesz distribution of type I if its density function is
1
Brﬂn [CL, ) b7 _T]
where 0 < S < I,,, and Re(a) > (m —1)3/2 + k1 and Re(b) > (m —1)3/2 + t;.

S| tm= VRGN (S) T, — S|P DA T (T, — S)(dS),  (30)

2. Then it said that R has a k-beta-Riesz distribution of type I if its density function is
1
Bgl[a7 —KR; b’ _T]

IR|*~(m= D271 VR L, + R|T g,y (L, + R)(dR),  (31)

where R € Po, and Re(a) > (m — 1)3/2 + ky and Re(b) > (m — 1)3/2 + t1.
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Observe that the relationship between the densities (28) and (29), and between the densities
(30) and (31) are easily obtained from the theorems 4.1 and 4.2, respectively.

The following result state the relation between the Riesz and beta-Riesz distributions.

Theorem 4.3 Let X and Xo be independently distributed as Riesz distribution type I, such
that Xy ~ R (a,k, 1) and Xo ~ Re! (b,7,1,), Re(a) > (m — 1)3/2 + ki and Re(b) >
(m—1)3/2+ty. Let

S = (X1 + Xo) 12Xy (X + Xo) "V,

where (X1 4+ X2)'/2 is any nonsingular factorisation of (X1 + Xa), (X1 + Xo) = (X1 +
X2)'/2(X ;1 + Xo)Y/?'. Then S has a c-beta-Riesz distribution type 1.
Proof. The joint density of X; and Xz) is given by

ﬂ(a+b)m+2§11(ki+ti)

Tinla, <] [b, 7]

etr{— (X + Xo) Xy [+~ (MDA g, (X)

X [ X |~ (m=B/271 (X o) (dX 1) A (dXs).

Let Y = X + X9 and Z = Xy, then, (dX;) A (dX2) = (dY) A (dZ). Then the joint density
of Y and Z is given by

5(a+b)m+zlm:1(ki+ti)

etr{=Y}|Y — Z|*~(m-1B/2=1, (y 7
Tla, 5]Ton[b, 7] =Y | ( :

x|Z|b~ (=827 (Z)(dY) A (dZ).
Let S=Y 12ZY Y2 and W = Y, with Y = Y¥/2'Y/2, then,
(dY) A (dZ) = [W[Pm=D/24L (W) A (dS)
Hence the joint density of S and W is

[latb)ym+332  (kitti)

T2 [a, 5|05, [b, 7]

et [~ W [W|5m /2 (W)[T - s[e (=12

x (I — 8)[S|P =" VP/271g, (S)(dW) A (dS).
Therefore, integrating with respect to W the desired result is obtained. ([

Theorem 4.4 Let X; and Xo be independently distributed as Riesz distribution type I, such
that Xy ~ R (a,k, 1) and Xo ~ R (b, 7,1,), Re(a) > (m — 1)3/2 + ki and Re(b) >
(m — l)ﬂ/Q + 1. Let
R — X1—1/2X2X1—1/2”
1/2 . . . . 1/2/ 1/2
where X,'" is any nonsingular factorisation of X1, in the sense that X1 = X;'” X;'". Then
S has a c-beta-Riesz distribution type I1.

Proof. The joint density of X; and X3) is given by

Ig(a+b)m+zyi1(ki+ti)

etr{—(X; + Xo)}| Xy ¢~ (m=DB/2-1, (X
T2l T2 BT {—= (X1 + X2) HXq] (X1)

x| X |~ (=827 (X)) (dX 1) A (dX3).
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Let R = X, /?X,X; /% and W = Xy, with X; = X1/*X1/2, then,
(dX1) A (dX5) = [W[Hm=DHH (W) A (dR)
Hence the joint density of S and W is

ﬁ(a+b)m+2ﬁ1(ki+ti)

etr{—W Im +R W a+b_(m_1)ﬁ/2_1in T W
T3 fa AR 7 {-=W( )HW] +7(W)

x|R|P~(m=DB/2=1 (R)(AW) A (dR).
Then, integrating with respect to W the density of R is obtained. U
O

The following theorems 4.5 and 4.6 contain versions for k-beta-Riesz distributions of theorems
4.3 and 4.4, whose proofs are similar.

Theorem 4.5 Let X1 and Xg be independently distributed as Riesz distribution type 11, such
that X1 ~ R (a,k,1n) and Xo ~ R (b, 7,1,,,), Re(a) > (m — 1)3/2 + k1 and Re(b) >
(m—1)8/2+1t;. Let

S = (X + Xg) V23X (X + Xo) V7,

where (X + X2)Y/2 is any nonsingular factorisation of (X1 + Xa), (X1 + X3) = (X1 +
X2)1/2(X1 + X2)1/2/. Then S has a k-beta-Riesz distribution type I.

Theorem 4.6 Let X; and Xy be independently distributed as Riesz distribution type I, such
that X1 ~ R (a, 5, 1) and Xo ~ R (b, 7,1,), Re(a) > (m —1)8/2 + k1 and Re(b) >
(m—1)8/2+1t;. Let

R — Xfl/ZXngl/z ’

where Xi/Q 1s any nonsingular factorisation of X1, in the sense X = X1/21X1/2. Then S
has a k-beta-Riesz distribution type II.

4.4. Some properties of the c-beta-Riesz and k-beta-Riesz distributions
This section derives the distributions of eigenvalues for c-beta-Riesz and k-beta-Riesz distri-

butions type I and II. First remember that:

Remark 4.1 If ch;(M) denotes the i-th eigenvalue of the matriz M € m&, then note that if
X,Y € B,
chy (X72YX7Y2) = ¢hy(X71Y) = chy (YX ).

Furthermore, if A € <I>gl is a nonsingular matriz then

ch;((A’XA)'A'YA) = chy(X71Y)

Then, it is found the joint distributions of the eigenvalues for random matrices ¢- and k-beta-
Riesz type I and II assuming that 3 # I,,, in theorems 4.3-4.6.

Theorem 4.7 Let & € ®0, & = (ki, ko, ... km), k1 > ko > -+ > k
are nonnegative integers and T = (t1,to, ..., tm), t1 >ty > - >t
nonnegative integers.
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1. Let Ay, ..., A, A1 > - > Ay, > 0 be the eigenvalues of S. Then if S has a c-beta-Riesz
distribution of type I, the joint density of A1, ..., Am S

m?B/2+o0 m m
71— a+k;—(m— -
&) ] | I()\l —)‘j)ﬁ | | >‘i+ (=521
Lm[mB/2]Bla, £; b, 7]

i<j i=1
H(l _ )\Z_)bthr(m*l)ﬁ/?*l </\ d)\i) 7
i=1 i=1
where 0 < A\; < 1,i=1,...,m and Re(a) > (m—1)5/2—ky, and Re(b) > (m—1)3/2—

tm-

2. Letd1,...,0m, 01 > -+ > 0y > 0 be the eigenvalues of R. Then if R has a c-beta-Riesz
distribution of type II, the joint density of their eigenvalues is

m?B/2+0 e m
™ a+k;—(m—1)8/2—1
[T — s T o0
Fﬁ[mﬂ/ﬂlﬁﬁ[a, K3 b, 7] i<j( 9 i=1 '

ﬁ —(a+b+ki+t;) (7\ d52> ’
where §; >0, i =1,...,m and Re(a) > (m —1)5/2 — kp, and Re(b) > (m —1)3/2 —ty,.

o is defined in Lemma 2.4.

Proof. This is due to applying the Lemma 2.4 in (28) and (29), and taking into account
the Remark 4.1 and equations (5) and (6). O

This section conclude establishing the Theorem 4.7 for the case of the k-beta-Riesz distribu-
tions.

Theorem 4.8 Let X € ®0, v = (k1. ko, ... km), k1
are nonnegative integers and T = (t1,ta, ..., ty), t1 >
nonnegative integers.

Zk22 >k
to > tm

mZ k17k27"'7k
> . >0, t

1,to, ..., tm are

1. Let Ay, ...; A \m, AL > - > Ay > 0 be the eigenvalues of S. Then if S has a k-beta-Riesz
distribution of type I, the joint density of A\1,..., A\ 1S

m?B/2+0 m o
; T 5 H()‘i B )\j)gl—[)\?—ki—(m—l)ﬁﬂ—l
Lin[mB3/2]Bmla, —k; b, —7] i<j i=1
H bt (m—1)8/2— 1(/\d>\>
i=1 1=1

where 0 < X\ < 1,i=1,...,m and Re(a) > (m—1)5/2+k; and Re(b) > (m—1)3/2+t;.

2. Letd1,...,0m, 61 > -+ > 0y > 0 be the eigenvalues of R. Then if R has a k-beta-Riesz
distribution of type II, the joint density of their eigenvalues is

m?B/2+¢ m o
T a—ki—(m—1)8/2—1
” 5._5.)ﬂ||5.
3 3 ; (0 = E
Fm[m,ﬁ/2]6m [CL, —k; b, 77-] i<j i=1

ﬁ —(a+b—Fk;—t;) (7\ d52> ’
(m

where §; > 0,i=1,...,m and Re(a) > (m —1)3/2+ k1 and Re(b) > (m —1)5/2 +1;.

15



16 Riesz and beta-Riesz distributions

o is defined in Lemma 2.4.

Finally observe that if in all result of this section are taking x = (0,0,...,0) and 7 =
(0,0,...,0) the obtained results are the corresponding to matrix multivariate beta distribu-
tions of type I and II.

Conclusions

Finally, note that the real dimension of real normed division algebras can be expressed as
powers of 2, 3 = 2" for n =0,1,2,3. On the other hand, as observed from Kabe (1984), the
results obtained in this work can be extended to hypercomplex cases; that is, for complex,
bicomplex, biquaternion and bioctonion (or sedenionic) algebras, which of course are not
division algebras (except the complex algebra). Also note, that hypercomplex algebras are
obtained by replacing the real numbers with complex numbers in the construction of real
normed division algebras. Thus, the results for hypercomplex algebras are obtained by simply
replacing @ with 20 in our results. Alternatively, following Kabe (1984), it can be concluded
that, results are true for ‘2"-ions’, n = 0,1, 2, 3,4, 5, emphasising that only for n = 0,1,2,3
are the result algebras, in fact, real normed division algebras.
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