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Abstract

This article derives several properties of the Riesz distributions, such as their corre-
sponding Bartlett decompositions, the inverse Riesz distributions, the distribution of the
generalised variance and the density of their eigenvalues for real normed division algebras.
In addition, introduce a kind of generalised beta distribution termed beta-Riesz distribu-
tion for real normed division algebras. Two versions of this distributions are proposed
and some properties are studied.

Keywords: Beta-Riesz distribution, Riesz distribution, generalised beta function and distri-
bution, real, complex quaternion and octonion random matrices.

1. Introduction

It is imminent the important role played by Wishart and beta distributions type I and II
in the context of multivariate statistics. In particular, the relationship between these two
distributions to obtain the beta distribution in terms of the distribution of two Wishart
matrices.

In the last three decades, the family of elliptical contoured distributions has emerged as a ro-
bust alternative for dealing with non-normal samples. A number of well known distributions
belong to this class, such is the case of normal, t, Bessel, Kotz type, logistic, Pearson type II
and IV, among many others; but also infinitely many new distributions can be constructed
by choosing a suitable kernel corresponding to a measurable function. Elliptical distributions
are characterized by several properties, but for the context of sampling, their large variability
of kurtosis and weight of tails, can assure a best explanation of the sample, rather than the
usual forced fit to a normal model in presence of non explicable extremal points. Another im-
portant property of this set resides in the normal invariant statistics; i.e., assume that certain
random matrix X follows a matrix multivariate elliptical distribution, then, many matrices
of the form Y = f(X), for special functions f(·), are invariant under the complete family of
elliptical distribution, in the sense that the distribution of Y is invariant, independently of
the particular distribution of X, in fact the distribution of Y coincides with the case where
X has a matrix multivariate normal distribution, see Fang and Zhang (1990) and Gupta and
Varga (1993).

However, we must note that the addressed invariance only holds under a probabilistic de-
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pendence assumption; i.e., if the matrix X =

[
X1

X2

]
follows an elliptical distribution, then

X1 and X2 must be probabilistically dependent (recall that X1 and X2 are probabilistically
independent if X has a matrix multivariate normal distribution, Gupta and Varga (1993)).
Now, let XT denotes the transpose of X and consider a non negative definite matrix B,
where B1/2 denotes its non negative squared root, see Fang and Zhang (1990), then, the ma-
trix F = (XT

2 X2)
−1/2(XT

1 X1)(X
T
2 X2)

−1/2 is said to have a matrix multivariate Beta type II
distribution, moreover, the same distribution is obtained when X is assumed to follow matrix
multivariate distribution, see Fang and Zhang (1990) and Gupta and Varga (1993).

Now, if the random matrix X follows a matrix multivariate elliptical distribution and the
random matrix W = XTX is defined, for every particular elliptical distribution, W follows
also a different distribution. The distribution of W is usually known as the generalised
Wishart distribution, and it heritages several properties of elliptical contoured distributions.

By another hand some recent advances in probability has reached interesting general dis-
tributions, such as the case of Riesz distribution, due to Hassairi and Lajmi (2001), and
named under the denomination of Riesz natural exponential family (Riesz NEF); a distribu-
tion based in an special case of the well known Riesz measure given by Faraut and Korányi
(1994, p. 137). In fact, Riesz distribution includes Wishart and Gamma matrix multivari-
ate distributions as particular cases. Now, integrating theories have also appeared in other
contexts. For example, in matrix multivariate distribution theory, some extensions from real
to complex or quaternion or octonion fields appeared separately with great theoretical effort
in many cases, the results in each field arose unconnected each other for years; only recent a
new approach in the context of real normed division algebras could integrate, with an unified
theory, all the addressed dispersed results in such sets of numbers. Following this tendency,
recently, Dı́az-Garćıa (2015a) proposes two versions of the Riesz distribution for real normed
division algebras. Alternatively, Dı́az-Garćıa (2015b) shows that the two versions of Riesz
distributions correspond to two generalised Wishart distributions, both derived from certain
matrix multivariate elliptical distributions, which are termed matrix multivariate Kotz-Riesz
distributions.

Faraut and Korányi (1994), and subsequently Hassairi, Lajmi, and Zine (2005), propose a
beta-Riesz distribution, which contains as a special case to the beta distribution obtained in
terms of the distribution Wishart, which shall be named beta-Wishart, all this subjects in
the context of simple Euclidean Jordan algebras. Such beta-Riesz distribution is obtained
analogously to the beta-Wishart distribution, but starting with a Riesz distribution.

Based in these last two versions of the Riesz distributions, it is possible to obtain two versions
of the beta-Riesz distributions, which by analogy with the beta-Wishart distributions are
termed beta-Riesz type I. As in classical beta-Wishart distribution, in addition it is feasible
to propose two version for the beta-Riesz distribution type II. Each of the two versions for
each beta-Riesz distributions of type I and II, (both versions for each) contain as particular
cases to beta-Wishart distribution type I and beta-Wishart distribution type II, respectively.

Thus, there is no doubt about the theoretical and applied potential of Riesz distribution into
the setting in the setting of the integrative modern multivariate analysis. In general, every
problem possible ruled by a Wishart process with considerable constraints, potentially can be
studied under a more robust Riesz distribution; namely, some opportunities for consideration
involve estimation of covariance matrices and principal component estimation, under any of
the classical or bayesian approaches. Beta-Riesz distribution, for example, arises in a natural
way in bayesian inference, when the two parameter a priori distributions are probabilistically
independent. To prove this fact, recall the example about matrix X, referred in the third
paragraph of this section, and note that several situations consider are governed by proba-
bilistically independent matrices X1 and X2, both of them following a Kotz-Riesz elliptical
distribution. Under these assumptions, the distribution of the corresponding random matrix
F does not follow a beta-Wishart, but the beta-Riesz distribution. Then, if the two param-
eters, δ1 and δ2 are distributed as (XT

1 X1) and (XT
2 X2), respectively; i.e. δ1 and δ2 follows
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independent Riesz distributions, then the parameter matrix defined as F = δ
−1/2
2 δ1δ

−1/2
2 , has

a beta-Riesz distribution.

Although during the 90’s and 2000’s were obtained important results in theory of random
matrices distributions, the past 30 years have reached a substantial development. Essentially,
these advances have been archived through two approaches based on the theory of Jordan
algebras and the theory of real normed division algebras. A basic source of the mathematical
tools of theory of random matrices distributions under Jordan algebras can be found in Faraut
and Korányi (1994); and specifically, some works in the context of theory of random matrices
distributions based on Jordan algebras are provided in Massam (1994), Casalis and Letac
(1996), Hassairi and Lajmi (2001), and Hassairi et al. (2005), and the references therein.
Parallel results on theory of random matrices distributions based on real normed division
algebras have been also developed in random matrix theory and statistics, see for example
Gross and Richards (1987), Dumitriu (2002), Forrester (2005), Dı́az-Garćıa and Gutiérrez-
Jáimez (2011, 2013), among others. In addition, from mathematical point of view, several
basic properties of the matrix multivariate Riesz distribution under the structure theory of
normal j-algebras and under theory of Vinberg algebras in place of Jordan algebras have been
studied, see Ishi (2000) and Boutouria and Hassairi (2009), respectively.

From a applied point of view, the relevance of the octonions remains unclear. An excellent
review of the history, construction and many other properties of octonions is given in Baez
(2002), where it is stated that... However, there is still no proof that the octonions
are useful for understanding the real world. We can only hope that eventually this
question will be settled one way or another.”

For the sake of completeness, in this article the case of octonions is considered, but the
veracity of the results obtained for this case can only be conjectured. Nonetheless, Forrester
(2005, Section 1.4.5, pp. 22-24) it is proved that the bi-dimensional density function of the
eigenvalue, for a Gaussian ensemble of a 2×2 octonionic matrix, is obtained from the general
joint density function of the eigenvalues for the Gaussian ensemble, assuming m = 2 and
β = 8, see Section 2. Moreover, as is established in Faraut and Korányi (1994) and Sawyer
(1997) the result obtained in this article are valid for the algebra of Albert, that is when
hermitian matrices (S) or hermitian product of matrices (X∗X) are 3×3 octonionic matrices.

This article studies two versions for beta-Riesz distributions type I and II for real normed
division algebras. Section 2 reviews some definitions and notation on real normed division
algebras. And also, introduces other mathematical tools as three Jacobians with respect to
Lebesgue measure and some integral results for real normed division algebras. Section 3
proposes diverse properties of two versions of the Riesz distributions as their Bartlett de-
compositions, inverse Riesz distributions, the distribution of the generalized variance and the
distribution of their eigenvalues. Section 4 introduces two generalised beta functions and, in
terms of these, two beta-Riesz distributions of type I and II are obtained for real normed
division algebras. Also, the relationship between the Riesz distributions and the beta-Riesz
distributions are studied. This section concludes studying the eigenvalues distributions of
beta-Riesz distributions type I and II in their two versions for real normed division algebras.

2. Preliminary results

A detailed discussion of real normed division algebras may be found in Baez (2002) and
Neukirch, Prestel, and Remmert (1990). For convenience, we shall introduce some notation,
although in general we adhere to standard notation forms.

For our purposes: Let F be a field. An algebra A over F is a pair (A;m), where A is a finite-
dimensional vector space over F and multiplication m : A×A→ A is an F-bilinear map; that
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is, for all λ ∈ F, x, y, z ∈ A,

m(x, λy + z) = λm(x; y) +m(x; z)

m(λx+ y; z) = λm(x; z) +m(y; z).

Two algebras (A;m) and (E;n) over F are said to be isomorphic if there is an invertible map
φ : A→ E such that for all x, y ∈ A,

φ(m(x, y)) = n(φ(x), φ(y)).

By simplicity, we write m(x; y) = xy for all x, y ∈ A.

Let A be an algebra over F. Then A is said to be

1. alternative if x(xy) = (xx)y and x(yy) = (xy)y for all x, y ∈ A,

2. associative if x(yz) = (xy)z for all x, y, z ∈ A,

3. commutative if xy = yx for all x, y ∈ A, and

4. unital if there is a 1 ∈ A such that x1 = x = 1x for all x ∈ A.

If A is unital, then the identity 1 is uniquely determined.

An algebra A over F is said to be a division algebra if A is nonzero and xy = 0A ⇒ x = 0A or
y = 0A for all x, y ∈ A.

The term “division algebra”, comes from the following proposition, which shows that, in such
an algebra, left and right division can be unambiguously performed.

Let A be an algebra over F. Then A is a division algebra if, and only if, A is nonzero and for
all a, b ∈ A, with b 6= 0A, the equations bx = a and yb = a have unique solutions x, y ∈ A.

In the sequel we assume F = < and consider classes of division algebras over < or“real division
algebras” for short.

We introduce the algebras of real numbers <, complex numbers C, quaternions H and octonions
O. Then, if A is an alternative real division algebra, then A is isomorphic to <, C, H or O.

Let A be a real division algebra with identity 1. Then A is said to be normed if there is an
inner product (·, ·) on A such that

(xy, xy) = (x, x)(y, y) for all x, y ∈ A.

If A is a real normed division algebra, then A is isomorphic <, C, H or O.

There are exactly four normed division algebras: real numbers (<), complex numbers (C),
quaternions (H) and octonions (O), see Baez (2002).

Let A be a division algebra over the real numbers. Then A has dimension either 1, 2, 4 or
8. In other branches of mathematics, the parameters α = 2/β and t = β/4 are used, see
Edelman and Rao (2005) and Kabe (1984), respectively.

Let Lβm,n be the set of all m × n matrices of rank m ≤ n over A with m distinct positive
singular values, where A denotes a real finite-dimensional normed division algebra. Let Am×n

be the set of all m×n matrices over A. The dimension of Am×n over < is βmn. Let A ∈ Am×n,
then A∗ = ĀT denotes the usual conjugate transpose.

We denote by Sβ
m the real vector space of all S ∈ Am×m such that S = S∗. In addition, let

Pβ
m be the cone of positive definite matrices S ∈ Am×m. Thus, Pβ

m consist of all matrices
S = X∗X, with X ∈ Lβm,n; then Pβ

m is an open subset of Sβ
m.

Let Dβ
m consisting of all D ∈ Am×m, D = diag(d1, . . . , dm). Let TβU (m) be the subgroup of

all upper triangular matrices T ∈ Am×m such that tij = 0 for 1 < i < j ≤ m.
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For any matrix X ∈ An×m, dX denotes the matrix of differentials (dxij). Finally, we define

the measure or volume element (dX) when X ∈ Am×n,Sβ
m, and Dβ

m, see Dumitriu (2002)
and Dı́az-Garćıa and Gutiérrez-Jáimez (2011).

If X ∈ Am×n then (dX) (the Lebesgue measure in Am×n) denotes the exterior product of the
βmn functionally independent variables

(dX) =
m∧
i=1

n∧
j=1

dxij where dxij =

β∧
k=1

dx
(k)
ij .

If S ∈ Sβ
m (or S ∈ TβU (m) with tii > 0, i = 1, . . . ,m) then (dS) (the Lebesgue measure in Sβ

m

or in TβU (m)) denotes the exterior product of the exterior product of the m(m − 1)β/2 + m
functionally independent variables,

(dS) =

m∧
i=1

dsii

m∧
i<j

β∧
k=1

ds
(k)
ij .

Observe, that for the Lebesgue measure (dS) defined thus, it is required that S ∈ Pβ
m, that

is, S must be a non singular Hermitian matrix (Hermitian definite positive matrix).

If Λ ∈ Dβ
m then (dΛ) (the Legesgue measure in Dβ

m) denotes the exterior product of the βm
functionally independent variables

(dΛ) =
n∧
i=1

β∧
k=1

dλ
(k)
i .

Now, we show three Jacobians in terms of the β parameter, which are proposed as extensions
of real, complex or quaternion cases, see Dı́az-Garćıa and Gutiérrez-Jáimez (2011).

Lemma 2.1 Let X and Y ∈ Pβ
m matrices of functionally independent variables, and let

Y = AXA∗ + C, where A ∈ Lβm,m and C ∈ Pβ
m are matrices of constants. Then

(dY) = |A∗A|(m−1)β/2+1(dX), (1)

where |B| denotes the determinant of B.

Lemma 2.2 (Cholesky’s decomposition) Let S ∈ Pβ
m and T ∈ TβU (m) with tii > 0,

i = 1, 2, . . . ,m. Then

(dS) =


2m

m∏
i=1

t
(m−i)β+1
ii (dT) if S = T∗T;

2m
m∏
i=1

t
(i−1)β+1
ii (dT) if S = TT∗.

(2)

Lemma 2.3 Let S ∈ Pβ
m. Then, ignoring the sign, if Y = S−1 + C, C ∈ Pβ

m is a matrix of
constants,

(dY) = |S|−β(m−1)−2(dS). (3)

Next is stated a general result, that is useful in a variety of situations, which enable us to
transform the density function of a matrix X ∈ Pβ

m to the density function of its eigenvalues,
see Dı́az-Garćıa (2014).
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Lemma 2.4 Let X ∈ Pβ
m be a random matrix with a density function fX(X). Then the joint

density function of the eigenvalues λ1, . . . , λm of X is

πm
2β/2+%

Γβm[mβ/2]

m∏
i<j

(λi − λj)β
∫

H∈Uβ(m)
f(HLH∗)(dH) (4)

where L = diag(λ1, . . . , λm), λ1 > · · · > λm > 0, (dH) is the normalised Haar measure, Γβm[a]

denotes the Gamma function for the space Sβ
m (Gross and Richards 1987) and

% =


0, β = 1;

−m, β = 2;
−2m, β = 4;
−4m, β = 8.

Finally, let’s recall the multidimensional convolution theorem in terms of the Laplace trans-
form. For this purpose, let’s use the complexification Sβ,C

m = Sβ
m + iSβ

m of Sβ
m. That is,

Sβ,C
m consist of all matrices Z ∈ (FC)m×m of the form Z = X + iY, with X,Y ∈ Sβ

m. It
comes to X = Re(Z) and Y = Im(Z) as the real and imaginary parts of Z, respectively.

The generalised right half-plane Φβ
m = Pβ

m + iSβ
m in Sβ,C

m consists of all Z ∈ Sβ,C
m such that

Re(Z) ∈ Pβ
m, see (Gross and Richards 1987, p. 801).

Definition 2.1 If f(X) is a function of X ∈ Pβ
m, the Laplace transform of f(X) is defined

to be

g(T) =

∫
X∈Pβm

etr{−XZ}f(X)(dX). (5)

where Z ∈ Φβ
m and etr(·) = exp(tr(·)).

Lemma 2.5 If g1(Z) and g2(Z) are the respective Laplace transforms of the densities fX(X)
and gY(Y) then the product g1(Z)g2(Z) is the Laplace transform of the convolution fX(X) ∗
gY(Y), where

hΞ(Ξ) = fX(X) ∗ gY(Y) =

∫
0<Υ<Ξ

fX(Υ)gY(Ξ−Υ)(dΥ), (6)

with Ξ = X + Y and Υ = X.

3. Riesz distributions

This section shows two versions of the Riesz distributions (Dı́az-Garćıa 2015a) and the study
of their Bartlett decompositions. Also, inverse Riesz distributions and the joint density of its
eigenvalues are obtained.

Definition 3.1 Let Σ ∈ Φβ
m and κ = (k1, k2, . . . , km) ∈ <m.

1. Then it is said that X has a Riesz distribution of type I if its density function is

βam+
∑m
i=1 ki

Γβm[a, κ]|Σ|aqκ(Σ)
etr{−βΣ−1X}|X|a−(m−1)β/2−1qκ(X)(dX) (7)

for X ∈ Pβ
m and Re(a) ≥ (m − 1)β/2 − km; where Γβm[a, κ] is the generalised gamma

function of weight κ and qκ(A) is the highest wight vector or generalised power of A(see

Gross and Richards 1987); denoting this fact as X ∼ Rβ,I
m (a, κ,Σ).
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2. Then it is said that X has a Riesz distribution of type II if its density function is

βam−
∑m
i=1 ki

Γβm[a,−κ]|Σ|aqκ(Σ−1)
etr{−βΣ−1X}|X|a−(m−1)β/2−1qκ(X−1)(dX) (8)

for X ∈ Pβ
m and Re(a) > (m − 1)β/2 + k1; where Γβm[a,−κ] is the generalised gamma

function of weight κ proposed by Khatri (1966); denoting this fact as X ∼ Rβ,II
m (a, κ,Σ).

Theorem 3.1 Let Σ ∈ Φβ
m and κ = (k1, k2, . . . , km) ∈ <m. And let Y = X−1.

1. Then if X has a Riesz distribution of type I the density of Y is

βam+
∑m
i=1 ki

Γβm[a, κ]|Σ|aqκ(Σ)
etr{−βΣ−1Y−1}|Y|−(a+(m−1)β/2+1)qκ(Y−1)(dY) (9)

for Re(a) ≥ (m− 1)β/2− km and is termed as inverse Riesz distribution of type I.

2. Then if X has a Riesz distribution of type II the density of Y is

βam−
∑m
i=1 ki

Γβm[a,−κ]|Σ|aqκ(Σ−1)
etr{−βΣ−1Y−1}|Y|−(a+(m−1)β/2+1)qκ(Y)(dY) (10)

for Re(a) > (m− 1)β/2 + k1 and it said that Y has a inverse Riesz distribution of type
II.

Proof. It is immediately noted that (dX) = |Y|−β(m−1)−2(dY) and from (7) and (8). �

Note that, the density function (9) was studied previously by Tounsi and Zine (2012) in real
case.

Observe that, if κ = (0, 0, . . . , 0) in two densities in Definition 3.1 and Theorem 3.1 the
matrix multivariate gamma and inverse gamma distributions are obtained. As consequence,
in this last case if Σ = 2Σ and a = βn/2, the Wishart and inverse Wishart distributions are
obtained, too.

Theorem 3.2 Let T ∈ TβU (m) with tii > 0, i = 1, 2, . . . ,m and define X = T∗T.

1. If X has a Riesz distribution of type I, (7), with Σ = Im, then the elements tij (1 ≤
i ≤ j ≤ m) of T are all independent. Furthermore, t2ii ∼ Gβ(a+ ki − (i− 1)β/2, 1) and√

2tij ∼ N β
1 (0, 1) (1 ≤ i < j ≤ m).

2. If X has a Riesz distribution of type II, (8), with Σ = Im, then the elements tij (1 ≤
i ≤ j ≤ m) of T are all independent. Moreover, t2ii ∼ Gβ(a − ki − (i − 1)β/2, 1) and√

2tij ∼ N β
1 (0, 1) (1 ≤ i < j ≤ m).

Where x ∼ Gβ(a, α) denotes a gamma distribution with parameters a and α and y ∼ N β
1 (0, 1)

denotes a random variable with standard normal distribution for real normed division algebras.
Moreover, their respective densities are

Gβ(x : a, α) =
1

(α/β)aΓ[a]
exp{−βx/α}xa−1(dx),

and

N β
1 (y : 0, 1) =

1

(2π/β)β/2
exp{−βy2/2}(dy)

where x ∈ Lβ1,1, y ∈ Pβ
1 , Re(a) > 0 and α ∈ Φβ

1 , see Dı́az-Garćıa and Gutiérrez-Jáimez
(2011).
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Proof. This is given for the case of Riesz distribution type I. The proof for Riesz distribution
type II is the same thing. The density of X is

βam+
∑m
i=1 ki

Γβm[a, κ]
etr{−βX}|X|a−(m−1)β/2−1qκ(X)(dX). (11)

Since X = T∗T we have

tr X = tr T∗T =

m∑
i≤j

t2ij ,

|X| = |T∗T| = |T|2 =
m∏
i=1

t2ii,

qκ(X) = qκ(T∗T) = |T∗T|km
m−1∏
i=1

|T∗iTi|ki−ki+1 =
m∏
i=1

t2kiii ,

and by Theorem 2.2 noting that dt2ii = 2tiidtii, then

(dX) = 2m
m∏
i=1

t
β(m−i)+1
ii

∧
i≤j

dtij

 ,

=

m∏
i=1

(
t2ii
)β(m−i)/2(∧

i=1

dt2ii

)
∧

∧
i<j

dtij

 .

Substituting this expression in (11) we find that the joint density of the tij (1 ≤ i ≤ j ≤ m)
can be written as

m∏
i=1

βa+ki−(i−1)β/2

Γ[a+ ki − (i− 1)β/2]
exp{−βt2ii}

(
t2ii
)a+ki−(i−1)β/2−1 (dt2ii)

×
m∏
i<j

1

(π/β)β/2
exp{−βt2ij}(dtij),

only observe that

βam+
∑m
i=1 ki

Γβm[a, κ]
=

βam+
∑m
i=1 ki−m(m−1)β/4

β−m(m−1)β/4πm(m−1)β/4∏m
i=1 Γ[a+ ki − (i− 1)β/2]

=

m∏
i=1

βa+ki−(i−1)β/2

Γ[a+ ki − (i− 1)β/2]

m∏
i<j

1

(π/β)β/2
.

�

In analogy to generalised variance for Wishart case, the following result gives the distribution
of |X| when X has a Riesz distribution type I or type II.

Theorem 3.3 Let v = |X|/|Σ|. Then

1. if X has a Riesz distribution of type I, (7), the density of v is

m∏
i=1

Gβ
(
t2ii : a+ ki − (i− 1)β/2, 1

)
.

2. if X has a Riesz distribution of type II, (8), the density of v is

m∏
i=1

Gβ
(
t2ii : a− ki − (i− 1)β/2, 1

)
.
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where t2ii, i = 1, . . . ,m, are independent random variables.

Proof. This is immediately from Theorem 3.2, noting that if

B = Σ−1/2XΣ−1/2 = T∗T,

with T ∈ TβU (m) and tii > 0, i = 1, 2, . . . ,m, then

|B| =
m∏
i=1

t2ii = |X|/|Σ| = v.

�

Theorem 3.4 Let Σ = Im and κ = (k1, k2, . . . , km), k1 ≥ k2 ≥ · · · ≥ km ≥ 0, k1, k2, . . . , km
are nonnegative integers.

1. Let λ1, . . . , λm, λ1 > · · · > λm > 0 be the eigenvalues of X. Then if X has a Riesz
distribution of type I, the joint density of λ1, . . . , λm is

βam+
∑m
i=1 ki πm

2β/2+%

Γβm[mβ/2]Γβm[a, κ]

m∏
i<j

(λi − λj)β exp

{
−β

m∑
i=1

λi

}

×
m∏
i=1

λ
a−(m−1)β/2−1
i

Cβκ (L)

Cβκ (Im)
. (12)

where L = diag(λ1, . . . , λm) and Re(a) ≥ (m− 1)β/2− km.

2. Let δ1, . . . , δm, δ1 > · · · > δm > 0 be the eigenvalues of X. Then if X has a Riesz
distribution of type II, the joint density of their eigenvalues is

βam−
∑m
i=1 ki πm

2β/2+%

Γβm[mβ/2]Γβm[a, κ]

m∏
i<j

(δi − δj)β exp

{
−β

m∑
i=1

δi

}

×
m∏
i=1

δ
a−(m−1)β/2−1
i

Cβκ (D−1)

Cβκ (Im)
). (13)

where D = diag(δ1, . . . , δm), Re(a) > (m− 1)β/2 + k1.

Where % is defined in Lemma 3 and Cβκ (·) denotes the zonal spherical functions or spherical
polynomials, see Gross and Richards (1987) and Faraut and Korányi (1994, Chapter XI,
Section 3).

Proof. 1. From Lemma 3

βam+
∑m
i=1 ki πm

2β/2+%

Γβm[mβ/2]Γβm[a, κ]|Σ|aqκ(Σ)

m∏
i<j

(λi − λj)β

∫
H∈Uβ(m)

etr{−βHLH∗}|HLH∗|a−(m−1)β/2−1qκ(HLH∗)(dH).

Therefore,

βam+
∑m
i=1 ki πm

2β/2+%

Γβm[mβ/2]Γβm[a, κ]|Σ|aqκ(Σ)

m∏
i<j

(λi − λj)β
m∏
i=1

λ
a−(m−1)β/2−1
i exp

{
−β

m∑
i=1

λi

}
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∫
H∈Uβ(m)

qκ(HLH∗)(dH),

the result is follow from (Gross and Richards 1987, Equation 4.8(2) and Definition 5.3) and
Faraut and Korányi (1994, Chapter XI, Section 3).

2. Is proved similarly. �

4. Generalised beta distributions: Beta-Riesz distributions

This section defines several versions for the beta functions and their relation with the gamma
functions type I and II. In these terms, the beta-Riesz distributions type I and II are defined.
Finally, diverse properties are studied.

4.1. Generalised c-beta function

A generalised of multivariate beta function for the cone Pβ
m, denoted as Bβm[a, κ; b, τ ], can be

defined as ∫
0<S<Im

|S|a−(m−1)β/2−1qκ(S)|Im − S|b−(m−1)β/2−1qτ (Im − S)(dS) (14)

where κ = (k1, k2, . . . , km) ∈ <m, τ = (t1, t2, . . . , tm) ∈ <m, Re(a) > (m − 1)β/2 − km and
Re(b) > (m−1)β/2− tm. This is defined by Faraut and Korányi (1994, p. 130) for Euclidean
simple Jordan algebras. In the context of multivariate analysis, this generalised beta function
can be termed generalised c-beta function type I, as analogy to the correspondence case of
matrix multivariate beta distribution, and using the term c-beta as abbreviation of classical-
beta. In the next theorem we introduce the generalised c-beta function type II and its relation
with the generalised gamma function.

Theorem 4.1 The generalised c-beta function type I can be expressed as∫
R∈Pβm

|R|a−(m−1)β/2−1qκ(R)|Im + R|−(a+b)q−(κ+τ)(Im + R)(dR)

=
Γβm[a, κ]Γβm[b, τ ]

Γβm[a+ b, κ+ τ ]
,

where κ = (k1, k2, . . . , km) ∈ <m, τ = (t1, t2, . . . , tm) ∈ <m, Re(a) > (m − 1)β/2 − km and
Re(b) > (m− 1)β/2− tm. The integral expression is termed generalised c-beta function type
II.

Proof. Let U(Im−S)∗ U(Im−S) = (Im−S) the Cholesky decomposition of (Im−S) where

U(Im − S) ∈ TβU (m) and define R = U(Im − S)∗−1SU(Im − S)−1 then

R = U(Im − S)∗−1(Im − (Im − S))U(Im − S)−1

= U(Im − S)∗−1 U(Im − S)−1 − Im

Thus (Im + R) = U(Im − S)∗−1 U(Im − S)−1. By Lemma 2.3

(dR) = | U(Im − S)∗−1 U(Im − S)−1|(m−1)β+2(dS)

= |Im + R|(m−1)β+2(dS),

therefore (dS) = (I+R)−(m−1)β−2(dR). Now remember that qκ(T∗−1AT−1) = qκ(A)q−κ(B) =
qκ(A)q−1κ (B) for B = T∗T, we have

|R|a−(m−1)β/2−1qκ(R) = |Im − S|−a+(m−1)β/2+1|S|a−(m−1)β/2−1qκ(S)q−κ(Im − S)
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and

|Im + R|b−(m−1)β/2−1qτ (I + R) = |Im − S|−b+(m−1)β/2+1q−κ(Im − S),

then

|Im + R|−b+(m−1)β/2+1q−τ (I + R) = |Im − S|b−(m−1)β/2−1qκ(Im − S).

from where the desired result is obtained.

For the expression in terms of generalised gamma function, let B = U(Ξ)∗SU(Ξ) in (14),
such that Ξ = U(Ξ)∗ U(Ξ). Then (dS) = |Ξ|−(m−1)β/2−1(dB), and

Bβm[a, κ; b, τ ]|Ξ|a+b−(m−1)β/2−1qκ+τ (Ξ)

=

∫ Ξ

0
|B|a−(m−1)β/2−1qκ(B)|Ξ−B|b−(m−1)β/2−1qτ (Ξ−B)(dB).

Taking Laplace transform of both size, by (7), the left size is∫
Ξ∈Pβm

Bβm[a, κ; b, τ ] etr{−ΞZ}|Ξ|a+b−(m−1)β/2−1qκ+τ (Ξ)(dΞ)

= Bβm[a, κ; b, τ ]Γβm[a+ b;κ+ τ ]|Z|−(a+b)qκ+τ (Z−1),

and applying Lemma 2.5, g1(Z) is∫
Ξ∈Pβm

etr{−ΞZ}|Ξ|a−(m−1)β/2−1qκ(Ξ)(dΞ) = Γβm[a;κ]|Z|−aqκ(Z−1),

and g2(Z) is given by∫
B∈Pβm

etr{−BZ}|B|b−(m−1)β/2−1qκ(B)(dB) = Γβm[b; τ ]|Z|−bqτ (Z−1).

Thus, equally

Bβm[a, κ; b, τ ] =
Γβm[a, κ]Γβm[b, τ ]

Γβm[a+ b, κ+ τ ]
.

�

4.2. Generalised k-beta function

Alternatively, a generalised of multivariate beta function for the cone Pβ
m, can be defined and

denoted as

Bβm[a,−κ; b,−τ ] =

∫
0<S<Im

|S|a−(m−1)β/2−1qκ
(
S−1

)
|Im−S|b−(m−1)β/2−1qτ

(
(Im − S)−1

)
(dS)

(15)
where κ = (k1, k2, . . . , km) ∈ <m, τ = (t1, t2, . . . , tm) ∈ <m, Re(a) > (m − 1)β/2 + k1 and
Re(b) > (m−1)β/2+t1. Again, in the context of multivariate analysis, this generalised k-beta
function can be termed generalised k-beta function type I, as an analogy to the corresponding
case of matrix multivariate beta distribution and using the term k-beta as abbreviation of
Khatri-beta. Next theorem introduces the generalised k-beta function type II and its relation
with the generalised gamma function proposed by Khatri (1966).

Theorem 4.2 The generalised k-beta function type II can be expressed as∫
R∈Pβm

|R|a−(m−1)β/2−1qκ(R−1)|Im + R|−(a+b)q−(κ+τ)
(
(Im + R)−1

)
(dR)
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=
Γβm[a,−κ]Γβm[b,−τ ]

Γβm[a+ b,−κ− τ ]
,

where κ = (k1, k2, . . . , km) ∈ <m, τ = (t1, t2, . . . , tm) ∈ <m, Re(a) > (m − 1)β/2 + k1 and
Re(b) > (m− 1)β/2 + t1. The integral expression is termed generalised k-beta function type
II.

Proof. The proof is analogous to the given for Theorem 4.1. �

Observe that if κ = (0, . . . , 0) ∈ <m and τ = (0, . . . , 0) ∈ <m in (14), Theorem 4.1, (15) and
Theorem 4.2 the classical beta function is obtained, see Herz (1955).

4.3. c-beta-Riesz and k-beta-Riesz distributions

As an immediate consequence of the results of the previous section, next the c-beta-Riesz and
k-beta-Riesz distributions types I and II are defined.

Definition 4.1 Let κ = (k1, k2, . . . , km) ∈ <m and τ = (t1, t2, . . . , tm) ∈ <m.

1. Then it said that S has a c-beta-Riesz distribution of type I if its density function is

1

Bβm[a, κ; b, τ ]
|S|a−(m−1)β/2−1qκ(S)|Im − S|b−(m−1)β/2−1qτ (Im − S)(dS), (16)

where 0 < S < Im and Re(a) > (m− 1)β/2− km and Re(b) > (m− 1)β/2− tm.

2. Then it said that R has a c-beta-Riesz distribution of type II if its density function is

1

Bβm[a, κ; b, τ ]
|R|a−(m−1)β/2−1qκ(R)|Im + R|−(a+b)q−(κ+τ)(Im + R)(dR), (17)

where R ∈ Pβ
m and Re(a) > (m− 1)β/2− km and Re(b) > (m− 1)β/2− tm.

Similarly we have

Definition 4.2 Let κ = (k1, k2, . . . , km) ∈ <m and τ = (t1, t2, . . . , tm) ∈ <m.

1. Then it said that S has a k-beta-Riesz distribution of type I if its density function is

1

Bβm[a,−κ; b,−τ ]
|S|a−(m−1)β/2−1qκ(S−1)|Im − S|b−(m−1)β/2−1qτ

(
(Im − S)−1

)
(dS),

(18)
where 0 < S < Im and Re(a) > (m− 1)β/2 + k1 and Re(b) > (m− 1)β/2 + t1.

2. Then it said that R has a k-beta-Riesz distribution of type II if its density function is

1

Bβm[a,−κ; b,−τ ]
|R|a−(m−1)β/2−1qκ(R−1)|Im + R|−(a+b)q−(κ+τ)

(
(Im + R)−1

)
(dR),

(19)

where R ∈ Pβ
m and Re(a) > (m− 1)β/2 + k1 and Re(b) > (m− 1)β/2 + t1.

Observe that the relationship between the densities (16) and (17), and between the densities
(18) and (19) are easily obtained from the theorems 4.1 and 4.2, respectively.

The following result state the relation between the Riesz and beta-Riesz distributions.
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Theorem 4.3 Let X1 and X2 be independently distributed as Riesz distribution type I, such
that X1 ∼ Rβ,I

m (a, κ,Σ) and X2 ∼ Rβ,I
m (b, τ,Σ), Re(a) > (m − 1)β/2 + k1 and Re(b) >

(m− 1)β/2 + t1. Let
S = U(X1 + X2)

∗−1X1 U(X1 + X2)
−1,

where U(X1 + X2) ∈ TβU (m) is such that (X1 + X2) = U(X1 + X2)
∗ U(X1 + X2). Then S

and (X1 + X2) are independent, S has a c-beta-Riesz distribution type I and (X1 + X2) ∼
Rβ,I
m (a+ b, κ+ τ, Im).

Proof. The joint density of X1 and X2 is given by

β(a+b)m+
∑m
i=1(ki+ti)

Γβm[a, κ]Γβm[b, τ ]|Σ|a+bqκ+τ (Σ)
etr{−βΣ−1(X1 + X2)}|X1|a−(m−1)β/2−1qκ(X1)

×|X2|b−(m−1)β/2−1qτ (X2)(dX1) ∧ (dX2).

Let Y = X1 + X2 and Z = X1, then, (dX1) ∧ (dX2) = (dY) ∧ (dZ). Then the joint density
of Y and Z is given by

β(a+b)m+
∑m
i=1(ki+ti)

Γβm[a, κ]Γβm[b, τ ]|Σ|a+bqκ+τ (Σ)
etr{−βΣ−1Y}|Z|a−(m−1)β/2−1qκ(Z)

×|Y − Z|b−(m−1)β/2−1qτ (Y − Z)(dY) ∧ (dZ).

Let W = U(Y)∗ U(Y), with U(Y) ∈ TβU (m) and Z = U(Y)∗SU(Y). Observing that U(Y) is
a function of W

(dY) ∧ (dZ) = | U(Y)∗ U(Y)|β(m−1)/2+1(dU(Y)∗ U(Y)) ∧ (dS)

Hence the joint density of S and W = U(Y)∗ U(Y) is

β(a+b)m+
∑m
i=1(ki+ti)

Γβm[a+ b, κ+ τ ]|Σ|a+bqκ+τ (Σ)
etr{−βΣ−1 U(Y)∗ U(Y)}| U(Y)∗ U(Y)|a+b−β(m−1)/2−1

qκ+τ (U(Y)∗ U(Y))(dU(Y)∗ U(Y))

×Γβm[a+ b, κ+ τ ]

Γβm[a, κ]Γβm[b, τ ]
|S|a−(m−1)β/2−1qκ(S)|I− S|b−(m−1)β/2−1qτ (I− S)(dS).

which shows that W = U(Y)∗ U(Y) = X1 + X2 ∼ Rβ,I
m (a + b, κ + τ,Σ) independently of S

with a c-beta-Riesz distribution type I. �

Theorem 4.4 Let X1 and X2 be independently distributed as Riesz distribution type I, such
that X1 ∼ Rβ,I

m (a, κ,Σ) and X2 ∼ Rβ,I
m (b, τ,Σ), Re(a) > (m − 1)β/2 + k1 and Re(b) >

(m− 1)β/2 + t1. Let
R = U(X2)

∗−1X1 U(X2)
−1,

where U(X2) ∈ TβU (m) is such that X1 = U(X2)
∗ U(X2). Then S has a c-beta-Riesz distribu-

tion type II.

Proof. From Theorem 4.1 we know that if S has a c-beta-Riesz distribution type I then
R = U(Im − S)∗−1SU(Im − S)−1 has a c-beta-Riesz distribution type II. In addition the
theorem establish that if X1 and X2 be independently distributed as Riesz distribution type
I, such that X1 ∼ Rβ,I

m (a, κ,Σ) and X2 ∼ Rβ,I
m (b, τ,Σ) then R = U(X1)

∗−1X1 U(X2)
−1.

Thus, the desired result is follow if we proof that

R = U(Im − S)∗−1SU(Im − S)−1 = U(X2)
∗−1X1 U(X2)

−1.
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With this aim in mind, let U(Y) ∈ TβU (m), such that X1 + X2 = U(Y)∗ U(Y), then S =

U(Y)∗−1X1 U(Y)−1. Now, if X2 = U(X2)
∗ U(X2), with U(X2) ∈ TβU (m). We have

Im − S = Im − U(Y)∗−1X1 U(Y)−1

= U(Y)∗−1(U(Y)∗ U(Y)−X1)U(Y)−1

= U(Y)∗−1X2 U(Y)−1

= U(Y)∗−1 U(X2)
∗ U(X2)U(Y)−1

=
(
U(X2)U(Y)−1

)∗ (
U(X2)U(Y)−1

)
= U(Im − S)∗ U(Im − S).

This least equally is obtained observing that
(
U(X2)U(Y)−1

)
∈ TβU (m), then

(
U(X2)U(Y)−1

)
=

U(Im − S). Therefore

U(Im − S)∗−1SU(Im − S)−1 =
(
U(X2)U(Y)−1

)∗−1
S
(
U(X2)U(Y)−1

)−1
= U(X2)

∗−1 U(Y)∗SU(Y)U(X2)
−1

= U(X2)
∗−1X1 U(X2)

−1.

From where the desired result is obtained. �

The following theorems 4.5 and 4.6 contain versions for k-beta-Riesz distributions of theorems
4.3 and 4.4, whose proofs are similar.

Theorem 4.5 Let X1 and X2 be independently distributed as Riesz distribution type II, such
that X1 ∼ Rβ,II

m (a, κ,Σ) and X2 ∼ Rβ,II
m (b, τ,Σ), Re(a) > (m − 1)β/2 + k1 and Re(b) >

(m− 1)β/2 + t1. Let
S = U(X1 + X2)

∗−1X1 U(X1 + X2)
−1,

where U(X1 + X2) ∈ TβU (m) is such that (X1 + X2) = U(X1 + X2)
∗ U(X1 + X2). Then S has

a k-beta-Riesz distribution type I.

Theorem 4.6 Let X1 and X2 be independently distributed as Riesz distribution type I, such
that X1 ∼ Rβ,II

m (a, κ,Σ) and X2 ∼ Rβ,II
m (b, τ,Σ), Re(a) > (m − 1)β/2 + k1 and Re(b) >

(m− 1)β/2 + t1. Let
R = U(X2)

∗−1X1 U(X2)
−1,

where U(X2) ∈ TβU (m) is such that X2 = U(X1)
∗ U(X1). Then S has a k-beta-Riesz distribu-

tion type II.

4.4. Some properties of the c-beta-Riesz and k-beta-Riesz distributions

This section derives the distributions of eigenvalues for c-beta-Riesz and k-beta-Riesz distri-
butions type I and II. First consider the following integrals:

Q(κ, τ,A,B) =

∫
Uβ(m)

qκ(HAH∗)qτ (HBH∗) (dH)

and

Q1(κ, τ,A,B) =

∫
Uβ(m)

qκ(HAH∗)q−(κ+τ) (HBH∗) (dH)

Theorem 4.7 Let Σ ∈ Φβ
m, κ = (k1, k2, . . . , km), k1 ≥ k2 ≥ · · · ≥ km ≥ 0, k1, k2, . . . , km

are nonnegative integers and τ = (t1, t2, . . . , tm), t1 ≥ t2 ≥ · · · ≥ tm ≥ 0, t1, t2, . . . , tm are
nonnegative integers.
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1. Let L = diag(λ1, . . . , λm), λ1 > · · · > λm > 0 be the eigenvalues of S. Then if S has a
c-beta-Riesz distribution of type I, the joint density of λ1, . . . , λm is

πm
2β/2+%

Γβm[mβ/2]Bβm[a, κ; b, τ ]

m∏
i<j

(λi−λj)β
m∏
i=1

λ
a−(m−1)β/2−1
i

m∏
i=1

(1−λi)b−(m−1)β/2−1

Q(κ, τ,L, Im − L)

(
m∧
i=1

dλi

)
,

where 0 < λi < 1, i = 1, . . . ,m and Re(a) > (m−1)β/2−km and Re(b) > (m−1)β/2−
tm.

2. Let ∆ = diag (δ1, . . . , δm), δ1 > · · · > δm > 0 be the eigenvalues of R. Then if R has a
c-beta-Riesz distribution of type II, the joint density of their eigenvalues is

πm
2β/2+%

Γβm[mβ/2]Bβm[a, κ; b, τ ]

m∏
i<j

(δi−δj)β
m∏
i=1

δ
a−(m−1)β/2−1
i

m∏
i=1

(1−δi)−(a+b)

Q1 (κ, τ,∆, (Im + ∆))

(
m∧
i=1

dδi

)
,

where δi > 0, i = 1, . . . ,m and Re(a) > (m− 1)β/2− km and Re(b) > (m− 1)β/2− tm.

% is defined in Lemma 2.4.

Proof. This is due to applying the Lemma 2.4 in (16) and (17). �

This section conclude establishing the Theorem 4.7 for the case of the k-beta-Riesz distribu-
tions.

Theorem 4.8 Let Σ ∈ Φβ
m, κ = (k1, k2, . . . , km), k1 ≥ k2 ≥ · · · ≥ km ≥ 0, k1, k2, . . . , km

are nonnegative integers and τ = (t1, t2, . . . , tm), t1 ≥ t2 ≥ · · · ≥ tm ≥ 0, t1, t2, . . . , tm are
nonnegative integers.

1. Let L = diag (λ1, . . . , λm), λ1 > · · · > λm > 0 be the eigenvalues of S. Then if S has a
k-beta-Riesz distribution of type I, the joint density of λ1, . . . , λm is

πm
2β/2+%

Γβm[mβ/2]Bβm[a,−κ; b,−τ ]

m∏
i<j

(λi−λj)β
m∏
i=1

λ
a−(m−1)β/2−1
i

m∏
i=1

(1−λi)b−(m−1)β/2−1

Q
(
κ, τ,L−1, (Im − L)−1

)( m∧
i=1

dλi

)
,

where 0 < λi < 1, i = 1, . . . ,m and Re(a) > (m−1)β/2+k1 and Re(b) > (m−1)β/2+t1.

2. Let ∆ = diag (δ1, . . . , δm), δ1 > · · · > δm > 0 be the eigenvalues of R. Then if R has a
k-beta-Riesz distribution of type II, the joint density of their eigenvalues is

πm
2β/2+%

Γβm[mβ/2]Bβm[a,−κ; b,−τ ]

m∏
i<j

(δi−δj)β
m∏
i=1

δ
a−(m−1)β/2−1
i

m∏
i=1

(1−δi)−(a+b)

Q1

(
κ, τ,∆−1, (Im + ∆)−1

)( m∧
i=1

dδi

)
,

where δi > 0, i = 1, . . . ,m and Re(a) > (m− 1)β/2 + k1 and Re(b) > (m− 1)β/2 + t1.
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% is defined in Lemma 2.4.

Finally observe that if in all result of this section are taking κ = (0, 0, . . . , 0) ∈ <m and
τ = (0, 0, . . . , 0) ∈ <m the obtained results are the corresponding to matrix multivariate beta
distributions of type I and II.

Conclusions

Finally, note that the real dimension of real normed division algebras can be expressed as
powers of 2, β = 2n for n = 0, 1, 2, 3. On the other hand, as observed from Kabe (1984), the
results obtained in this work can be extended to hypercomplex cases; that is, for complex,
bicomplex, biquaternion and bioctonion (or sedenionic) algebras, which of course are not
division algebras (except the complex algebra). Also note, that hypercomplex algebras are
obtained by replacing the real numbers with complex numbers in the construction of real
normed division algebras. Thus, the results for hypercomplex algebras are obtained by simply
replacing β with 2β in our results. Alternatively, following Kabe (1984), it can be concluded
that, results are true for ‘2n-ions’, n = 0, 1, 2, 3, 4, 5, emphasising that only for n = 0, 1, 2, 3
are the result algebras, in fact, real normed division algebras.
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