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Abstract

The robust multi-array average (RMA), since its introduction in Irizarry, Bolstad,
Collin, Cope, Hobbs, and Speed (2003a); Irizarry, Hobbs, Collin, Beazer-Barclay, An-
tonellis, Scherf, and Speed (2003b); Irizarry, Wu, and Jaffee (2006), has gained popularity
among bioinformaticians. It has evolved from the exponential-normal convolution to the
gamma-normal convolution, from single to two channels and from the Affymetrix to the
Illumina platform.

The Illumina design provides two probe types: the regular and the control probes.
This design is very suitable for studying the probability distribution of both and one can
apply a convolution model to compute the true intensity estimator.

In this paper, we study the existing convolution models for background correction of
Tllumina BeadArrays in the literature and give a new estimator for the true intensity,
assuming that the intensity value is exponentially or gamma distributed and the noise has
lognormal distribution.

Our study shows that one of our proposed models, the gamma-lognormal with the
method of moments for parameters estimation, is the optimal one for the benchmark-
ing data set with benchmarking criteria, while the gamma-normal model has the best
performance for the benchmarking data set with simulation criteria.

For the publicly available data sets, the gamma-normal and the exponential-gamma
models with maximum likelihood estimation method can not be used and our proposed
models exponential-lognormal and gamma-lognormal have the best performance, showing
a moderate error in background correction and in the parametrization.

Keywords: convolution, background correction, Bead Arrays.

1. Introduction

There are various processes in producing data from microarray experiments and each process
contributes noise to the data. The noise can be of two types, biological and non-biological.
Non-biological noise should be avoided or at least minimized.

Sources for the non-biological noise are, for example, the chip itself, the scanner, or fluctua-
tions in the electric network. Therefore, the data needs to be adjusted. The pre-processing
will adjust the intensity value (Huber, Irizarry, and Gentleman 2005a; Huber, von Heydebreck,
and Vingron 2005b) and provides an estimate of the true intensity.
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To estimate the intensity value, researchers proposed additive and multiplicative models
and also additive-muliplicative error models, see e.g. Huber, von Heydebreck, and Vingron
(2004). In case of additive models, the underlying distribution is generally chosen as normal
(log-normal), exponential, or a Gamma-¢ mixture in the parametric approach (Allen, Chen,
and Xie (2009), Bolstad, Irizarry, Astrand, and Speed (2003), Chen, Xie, and Story (2011),
Hochreiter, Djork-Arné, and Obermayer (2006), Irizarry et al. (2003a,b, 2006), and Plancade,
Rozenholc, and Lund (2011, 2012)).

Irizarry et al. (2003a,b, 2006) and Bolstad et al. (2003), on the Affymetrix platform, have
estimated the true intensity values based on a convolution model in the background correc-
tion step of their robust multi-array average (RMA) pre-processing method. They assumed
that the true intensity is exponentially distributed and the background noise is normally
distributed.

Plancade et al. (2011, 2012) showed that the RMA model (in Bolstad et al. (2003) and
Irizarry et al. (2003a,b, 2006)) does not fit Illumina Bead Arrays: using the exponential-normal
convolution leads to a large distance between the observed and the modeled intensities. They
proposed, instead, the implementation of a gamma distribution for the intensity value and
normal distribution for the noise.

The simulation study of Plancade et al. (2011, 2012) showed that the gamma-normal model
performs better than the existing exponential-normal convolution model, giving a more accu-
rate and correct fit for the observed intensities in Illumina BeadArray.

Using a Gamma distribution for the intensity values in Illumina BeadArrays has been first
suggested by Xie, Wang, and Story (2009).

The studies of Baek, Son, and MacLachlan (2007) (on the background correction of the
image processing) and Chen et al. (2011) show that the noise distribution is usually skewed
in different degrees. In their studies, based on simulated and real data sets, Baek et al.
(2007) conclude that the gamma distribution is well suited for the noise. It accounts for the
intensities with a positive lower bound and is very flexible in its shape, including asymmetric
exponential type and symmetric normal type.

The proposed convolution of exponential-gamma distribution by Chen et al. (2011) improves
the intensity estimation and the detection of differentially expressed genes in the case when
the intensity to noise ratio is large and the noise has a skewed distribution.

In view of the remarks above, it is natural to model both the true intensity and the background
noise in Illumina BeadArrays as gamma distributed. In an earlier version of this paper we
have developed an estimator for the true intensity based on the gamma-gamma convolution
model of RMA. However, this model does not fit very well the Illumina benchmarking data
set. Independently, Triche, Weisenberger, Berg, Laird, and Siegmund (2013) proposed and
applied the gamma-gamma model to pre-process Illumina methylation arrays.

In this paper we introduce a new model for background correction in Illumina BeadArrays
where the true intensity value is exponentially or gamma distributed and the noise has a
lognormal distribution. As we will see, this model avoids the difficulties with the gamma-
gamma model and has an overall satisfactory performance.

We note that a new method reducing the bias of the maximum likelihood estimator of the
shape parameter of the gamma distribution was proposed by Zhang (2013). But since our
samples are very large, bias is not a problem in our studies.

We compare the performance of the models on the Illumina spike-in data set, based on various
criteria: root and mean square error (RMSE), L; error, Kullback-Leibler (K-L) coefficient,
and some adapted criteria from Affycomp (Cope, Irizarry, Jaffee, Wu, and Speed 2004). These
criteria are measuring the reproducibility, accuracy, precision, specificity, and sensitivity of
the expression measure of each model. We then provide a simulation study to measure the
consistency of the error of background correction and the parametrization. The description
and some details on these criteria and simulation can be found at http://rfajriyah.staff.
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Our paper is organized as follows. In Section 2 we review previous work related to the
background correction for Illumina BeadArrays. Our proposed models are described in Sec-
tions 3.1 and 3.2. Section 3.3 explains the benchmarking and the simulation studies on the
benchmarking data set and Section 3.4 compares the performance of all models in the public
data sets. Finally, Section 4 states the conclusions and indications of future work.

2. Previous work

Affymetrix is the pioneer and most widely used platform for microarray gene expression
experiments. The tools and algorithms to handle the data are numerous, both free and
commercial. Some methods for pre-processing are available. Examples for the background
correction step are: MAS5.0 by Affymetrix, multiplicative model based expression index
(MMBE) by Li and Wong (2001), RMA in Irizarry et al. (2003a,b, 2006) and Bolstad et al.
(2003), GC-RMA by Wu, Irizarry, Gentleman, Martinez-Murillo, and Spencer (2004) and
maximum likelihood estimation based on the normal-exponential convolution model by Silver,
Ritchie, and Smyth (2009).

Illumina is one of the alternative platforms and is increasingly popular. A few statistical
methods have been developed for BeadArray data and there is no consensus yet for the
pre-processing steps (Shi, Oshlack, and Smyth 2010). Xie et al. (2009) mention that for the
background correction step, Illumina bead studio gives two options (no background correction
and background substraction) and the packages for BeadArrays in R provide three options
(no background correction, background substraction and RMA background correction).

Ding, Xie, Park, Xiao, and Story (2008) extended the RMA model by proposing the model-
based background correction method (MBCB) and showed that their model leads to a more
precise determination of the gene expression and a better biological interpretation of Illumina
BeadArray data.

The studies of Chen et al. (2011) and Plancade et al. (2011, 2012) show that their background
correction models are made by adapting the RMA Affymetrix model. As Forcheh, Verbeke,
Kasim, Lin, Shkedy, Talloen, Gohlmann, and Clement (2012), pointed out, most preprocessing
methods for Illumina BeadArrays are taken from the Affymetrix microarray platform.

In general, the background correction is applied toward each array, where in each array there
are probes, probesets and genes (terminology for the Affymetrix platform) or bead and bead-
type level probes (terminology for the Illumina platform).

At the Illumina platform, each gene is only targeted by one bead-type, which has been rep-
resented by about 30 time replications. If we can have a raw benchmarking data set, then it
is possible to have all bead-type level probes of the raw data intensities.

The current publicly available benchmarking data set for the Illumina platform is the raw
data from the bead studio, which is the average of the bead-type level probes, not background
corrected and of unnormalized intensity. Therefore, the background correction in this paper
is applied to the gene intensity in each array.

Suppose we have J arrays and for each array there are I regular genes. Our convolution
model is as follows:

Bj:Sij+Bij7 i=1,....I, j7=1,...,J, (1)

where P;;, Si;, and B;; are the observed signal, true signal, and noise intensity, respectively.
The S;; arei.i.d. and so are the B;;; the S;; are independent of the B;;. The P;; are observable.
Our task is to recover the unknown signals S;; from the P;;. To do this, for each array j we
also have M observable noise intensities Bg,,j, m = 1,..., M; the By,,; are i.i.d. with the
same distribution as the B;; and are independent of all of the S;;, B;;. The S;; and B;;
have a known type of distribution (exponential, gamma, normal, lognormal) with unknown
parameters.
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2.1. Background correction by RMA

The RMA method was developed for the Affymetrix platform, where the design of arrays is
different from the Illumina one. In this platform, one has perfect match and mismatch probe
design. The RMA uses only the perfect match probe, which is the targeted probe of the
intended gene. For those not familiar with the Affymetrix platform, refer to Bolstad (2004),
Bolstad et al. (2003), and Irizarry et al. (2003a,b, 2006) for further information.

In modeling the intensity values, the RMA model (Bolstad et al. (2003) and Irizarry et al.
(2003a,b, 2006)) assumes that the intensity values are affected by the noise of the chip.
By referring to Equation (1), in the RMA model P;; is the observed bead-type level probe
intensity, S;; is the true signal with Sj; ~ fl(sljﬁ ) = Exp(6;), 0; > 0, and B;j is the
background noise of the chip with B;j ~ fa(bij; 15, ]) N(pj, 0 ]) Ki € R, a > 0. To avoid
negative intensity values, we truncate B;; at 0 from below, i.e. we replace B;; by max{DB;;,0};
this will not change its density function fa(bjj;; 145, ajz) for b;; > 0.
Assuming independence, the joint density of the two-dimensional random variable (S;;, B;;)
is

meBz'j (8455 bijs p1g 0]2'7 0j) = 0; exp { B Hjsij}fQ(bij; i UJZ)’ bij, sij > 0.
Furthermore, the transformation formula for two-dimensional densities gives that joint density
of S and P is

2
Isi;.P.; (85 Dig; 1> 055 05)

6202
= 0;exp { ]2 L —0;(pij — Mj)} fa(sijs ms.py 03), 0 < sij <pij, (2)

where p15.p; = pij — —Gjajz. From (2) we get the marginal density of P;; and the conditional
density of S;; given F;; as

02 2 . i — .
sz](pljagjaujv ]) 0; eXp{2 —0; (pZJ _/J’J)} <q) <M> + @ <W> - 1)
93 93

fa(sijs ps.pj, 02)
e 52) — DT
sz‘jIPzd(S”‘p”’MS'P’j?U]) (I)<'U‘SP]) +¢(m) 1

9j

The background adjusted intensity is computed as the conditional expectation of the true
signal given the observed intensity, i.e.

1
Mslp,j) + ) (pij_,U«SP,j

9j 9j

Dij
E(Sz]|f)l] = Pij) = o ( ) h /0 Sijf2(5ij§NS.P,ij?)dSij-

The substitution s;; = pug p; + o;t yields

Dij
/ sij f2(Siji ws.pj, 02 )dsi;
0

s (2 (B o (1550) 1) e (o (15) o ()
J J j j

and thus (see Bolstad et al. (2003))

HS.Pjy Pij —HsS.P,j
p(LrL) - p(Putan)
(L) + D) 1

J J

E(Sij|Pij = pij) = ms.pj + 0j

Note that modelling the noise as a truncated normal variable has the consequence that the
noise equals 0 with a positive probability pg, a rather unpleasant feature of the model. As
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pointed out in Xie et al. (2009), however, in practical cases pg is rather small, so this problem
can be disregarded. To avoid this difficulty, one can model the noise as the absolute value of
a N(u,0?) variable, which changes the calculations above. However, since in this paper we
will provide a background correction model fitting the reality considerably better, we do not
give the details here.

2.2. Exponential-normal MBCB

Xie et al. (2009) use the same underlying distributions in (1) for background correction. The
difference with the RMA (Bolstad et al. (2003) and Irizarry et al. (2003a,b, 2006)) are

1. Xie et al. (2009) use +o0o as the upper bound of the integral to compute the marginal
density function and the conditional expectation of the true intensity value. On the
other hand, RMA uses p as the upper bound of the integration.

The background corrected intensity value of Xie et al. (2009) is

¢ MS.P,j
—~
E(Sij|Pij = pij) = ps.pj + UjW'

93

2. Under the convolution model (1), where the true intensity value is assumed exponentially
distributed and the noise is normally distributed, we need to estimate the parameters 60,
iy, and 0 . Xie et al. (2009) offer three estimation methods: the method of moments,
maxnnum hkehhood estimation, and a Bayesian approach. On the other hand, RMA
applies the ad-hoc method.

Ding et al. (2008) use the exponential-normal convolution model to correct the background
of the Illumina platform by using Markov chain Monte Carlo simulation.

2.3. Gamma-normal convolution

Plancade et al. (2011, 2012) introduced gamma-normal convolution to model the background
correction of [llumina BeadArray. The model is based on the RMA background correction of
Affymetrix GeneChip. Plancade et al. (2011, 2012) assume that the intensity value is gamma
distributed and the noise is normally distributed.

Under model (1), fp,; is the convolution of fs,; and fp, . The background corrected intensity
is computed as the conditional expectation of S;; given P;; = p;j, i.e.

E(Sij|Pij = pij) = il Szjgfj:n E;),ror?(pzy Sij)dsij’ "
f ag,ﬁj ﬁ?gl;(pzj Sij)dS;j
where ﬁ% 521 exp(—f;5)
Ejff;’j(s): : F(aj) d , aj, B, s >0

is the gamma density. When S;; is gamma distributed and B;; is normally distributed,
then (4) has no analytic expression like (3). Plancade et al. (2011, 2012) implemented the
Fast Fourier Transform to estimate the parameters and to correct the background. For the
background correction with Fast Fourier Transform, the corrected intensity (4) is rewritten
as
E(Su|P ) a;iBi [ 15 5, (i) Fioas (Dij — sij)dsi
P = pi) =
ij 1735 ij = (Sij)fuj,oj (pij — Sij)dsij

a;,B;

Y

since s,]fa B (8ij) = a;B; f2 a]+1 8 (si5) is valid for every s;; > 0.

19
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2.4. Exponential-gamma convolution

Under model (1), Chen et al. (2011) proposed for the distribution of the true intensity and
its noise the exponential and gamma distribution, respectively. Therefore, S;; ~ fi(si;;0;) =
EXp(Qj) and Bij ~ fg(bij; aj,Bj) = Gamma(aj,ﬂj), where Sij, bij, 9]', Ozj,ﬁj > 0.

The corrected background intensity of Chen et al. (2011) is

157 b7 exp(—(B; — 05)biz)dbi
79 b2 exp(— (85 — 0;)bij)dbyj

E(Sij|Pij = pij) = pij —

3. Results

Now we present the results of the two proposed convolution models: the exponential-lognormal
convolution in Section 3.1 and the gamma-lognormal convolution in Section 3.2. In each
section, the formula for the background corrected intensity value is derived and methods to
estimate the parameters are explained. Section 3.3 present the benchmarking results, i.e. a
performance comparison of all models at the Illumina spike-in data set. Section 3.4 present
the performance comparison of all models for the public data sets. The simulation study
results are presented in Sections 3.3 and 3.4.

For further details on the benchmarking criteria, supplemental plots and simulations see Sup-
plementary_Materials at http://rfajriyah.staff.uii.ac.id/category/supplementary/.

3.1. Exponential-lognormal convolution

Background correction Consider model (1) when the true intensity S;; is exponentially
distributed, i.e.

Sij ~ f1(sij;0;) = 0 exp(—0;sij), 0;,si; > 0,

and the background noise B;; is lognormally distributed, i.e.

1 log by — )2
Byj ~ fa(bij; 1, 03) = exp ((]u])

bijO'j\/ 2w 202

), i € R, sz,bij>0.
J

Then the joint density function of S;; and B;; equals

0; exp(—b;si;) (log bij — pu5)?
b (85 biy) = LEPTT5) (o (080G TG
fsz]vBZ]( J ]) bwo_jm Xp

and thus the joint density function of S;; and F;; is

0; exp(—0;s;; log(pij — Sii) — pi)?
fSiijij(Sijvpi.j) = L) exXp <_( (P i) = 143) ) Sij < Pij-

(Pij — sij)ojv2m 207

Consequently, the marginal density function of P;; equals

Pii g exp(—0;si; log(pij — sij) — p5)>
fPij(pij):/(] (J (=0;sij) exp <_( (Pij i) — 1) dsij.

Pij — 8ij)0;V/ 2T 207
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Using the substitution log(p;; — sij) = 2i; we get

8P §; exp(—0;(pij — %)) (2ij — 1j)°
Y J 3 \Pij _ (&g — Hy g
fp,; (i) / o ov/2m €xp 952 dzij

J

_ 0 exp(—0;pi;) / o8Py exp i bje kz”
o;V2m —c0 j . !

OOek;

_ O exp(=6;pi; logpis )
2] J Zk'/ exp< 2 +k2ij dZij

21

9 ; 0o logpL] zii — (p; + k0.2 2
exp(— Jpj Z exp ( <,Uj + 5 >> exp (—( d (2]02 i) dzij
J

0 7T

=0, exp(—GjPij)Ca,ja

R O e

The conditional density function of S;; given P;; = p;; is now obtained as

exp(03 (b = 5i9)) (_ (log(pi; — sij) um)

(Pij = si5)0V21Cl,j 207

where

fsi;1p,; (si51pij) =

with conditional mean

E(Sij| Pij = pij) =
1 ’ (pij — sij)ojV2m

a?j

Using the substitution log(p;; — sij) = zij, this equals

Dij log pi; (1 — %) exp(ejezij) (Zij _ /’Lj)2 p
ex s e Ziq
Caj ) o\2m P\ 20 v

J

.. e*ij . pRig

i oo log p;j P eXp(HJe 7) o _(Zij _ ,Uj)2 .

= | NG p 952 ij
a,j —0o0 gj 2m Uj

E(Si;| Py = pij) =

gy

Hi+ 5

2
J

=Dij — C - o om 203

(o)
)

( (zij — (5 + (k+ 1)Uf))2>
exp | — dz;j

) /logp“ exp(f;e®i) exp (_ (zij — (py + (7]2'))2

/logp”
2
Ch, 0;
= Dij Cj (Mﬂr;),
7]

<. 9% k+2 log pij — (uj + (k +1)073)
Ch,j = ﬁ exp <k: </~Lj + 5 0'J2->> d J ]0-. i
J

k=0

where

exp(0,pij) /Pij sij exp(—0jsij) exp (_ (log(pij — sij) — “j)2> ds.:
C 0 v

> dzij



22 Convolution Models for Background Correction of BeadArrays

Parameter estimation To estimate the parameters 0;, ;1;, and 0'?, j =1,...,J in the
exponential-lognormal model we can use various methods.

1. Maximum likelihood estimation (MLE):
This is implemented by applying the optim function in R to maximize the log-likelihood
function of the jth array

I M
Z(log 0; — 0;pi; +1og Cy j:x) + Z

i=1 m=1

1 ——

(_ ( og bO;ZJZ :uj) _ % 10g(27r0]2-bgmj)> ’
where p;; and bg,,; are the observed values of Pj; and By,,;. Note that C,; in the
log-likelihood function is defined by the infinite series at the end of the previous section.
However, the terms of this infinite series decrease very rapidly and thus we can cut off the
series at a proper index K giving C, ;. ¢, making it suitable for its computation in R. The
index K is chosen as the smallest integer for which |(Cy j.x —Cq. j;ik—1)/Ca,jix—1] < 0.001
holds.

2. Method of moments:
Note that the method of moments estimator of the parameter 6 in an exponential
distribution is the reciprocal of the sample mean. Since the S;; are not observable, but
the By, are, we consider Equation (1) and estimate 1/6; by the difference mean(p;;) —
mean(bom;). Further, the parameters ;; and (7]2 in the lognormal part are estimated by
the sample mean and variance of the observed log bo,,; values.

3. Plug-in estimator:

(a) We calculate the MLE of the parameter in the model of S;; by utilizing the observed
sample p;; instead of s;;. This is justified by the fact that, in some sense, the
distribution of S;; is similar to the distribution of P;;.

(b) We estimate p; and 032- through MLE based on By,,; as described above.

3.2. Gamma-lognormal convolution

Background correction Consider now model (1) and assume that the true intensity S;;
is gamma distributed, i.e.

BJ% s%] exp(—si;3;)
INCH) ’

Sij ~ fi(siji 0, B5) = aj, B, 8:5 > 0,

and that the background noise B;; is lognormally distributed, i.e.

1 (log bij — p;)?

Bij ~ fa(bij; pj,02) = exp | ——2—2 |, € R, 07 > 0.
i f2( 7] Mj ]) bijUj /—27_‘_ p ( 2(7]2 :UJ] j

The joint density function of S;; and B;; is

&

a;—1
78] exp(—sijB;) 1 exp (_ (log bi; — Mj)2>

fSivBi'(S“ab”) =
- Dij \ot]y P F(Oéj) bijaj /7271_
and thus the joint density function of S;; and F;; is
Fou (56, pii) = s exp(—siiB) 1 exp _ (log(pij — sij) — 1y)?
R () (pij — sij)o3V2m 207 |
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Hence, the marginal density function of P;; is obtained as

a; a;i—1
fe.(pij) = /pij 53‘]5@-]? exp(—si;;) 1 exp | — Uog(p; — sij) = Mj)Z ds;;.
v 0 I'(ay) (pij — sij)ojV2m 2075 !

Using the substitution log(pi; — sij) = 2i; we get

. 1 o a;—1 3.
f (p' ) B /IOgPij 5]?[]17?;] (1 - e}%j) eXp(_pijﬁj + €ZU5J> exp [ — (Zij - ,U,j)Q do
Pia —00 F(OZJ')O']'\/ 2w 20']2 "

a; o=l —m. 3. 1 ij i i—1 2
= B;'pij  exp(—pijB;) /ng] (1 — ez”)aj exp(e*i%) exp (—(Zij — 1) ) dzij

['(cj)ov2r S Dij 202

J
a1
_B7p ep(=pyBy)
()

ZZ Yo DY ((k . ( i n);)) o <logpz'j - (Mj; (k+ n)%z)) '

|
k=0 n—0 pwn

Cc,j,

where

The conditional density function is now obtained as

1
_exp((pij — 5i5)By)si; (log(pij — si5) = 15)°
fSij\Pij (81] |pl.7) - Ozjf]. exp o 2 2
Cejpii  (Pij — sij)o5V 2w 7%

with respective conditional mean

Dij B Dij s o5 B 1 e )2
E(S;;|P, = pij) __¢ — / ij exp 7( Og(pzj Sw) :U’J) dsi;.
Cc’jpij] 0 (plj - 81])0‘3 V 27'('

Substituting log(p;; — si;) = zi; this becomes

zii \ XJ
- plogpy; (1 —%2) Texp (ezijﬁj) )2
Di i Zi 1%
E(Sij|Pij = pij) = 073 ( J) exp —7( ]2 23) dzij
¢,) J—o0 Uj\/Qﬂ' Uj
piiCa,j (
= —, 5)
Ce,;j
where
o3 log pij — (pj + (k +n)o?)
Caj = ZZ ) n' 5”exp ((k+n) (,u] (k‘+n)2j>)<1>< d JU' I
k=0 n=0 ij j

Parameter estimation To estimate the parameters «;, 3;, uj, and 0]2- in (5), we can use
either of the following methods.

1. Maximum likelihood estimation:
This is implemented by applying the optim function in R to maximize the log-likelihood
function of the jth array

I
> (log(Cejixc) + (o — 1) log(piz) — pijB; + o log(B;) — log(T(a;)))
=1

(log bom; — p1j)* 1
+ Z ( Jj J ~3 10g(27m bOm]) .

Similarly to the exponential-lognormal model, in the computation of C.; the cutoff
index K is chosen according to the criteria |(C¢ j;x — Ce,j;x—1)/Ce,jix—1| < 0.002.
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2. Method of moments:
The implementation of this method for the jth array is done by recalling that in case
of a gamma distribution with parameters «; and f;, the method of moments estimator
for aj/B; and o/ ﬁjz is the sample mean and the sample variance, respectively. Thus,
considering Equation (1) we get

» _ mean(s;;)  mean(p;;) — mean(bo;)

- var(s;;)  var(pij) — var(bomy)

I

;=
as also

Y . (mean(s;;))*  (mean(p;;) — mean(bom;))>
& = Bj mean(s;;) = var(sijj) o Var(pjj) — V&I‘(bom]’)]

Furthermore, p; and 0]2- are estimated by the mean and variance of log boyy ;.

3. Plug-in estimator:
In equation (1), P;; and Boy,y,; are observable intensities. Therefore, the plug-in estimator
is implemented by

(a) estimating a; and 3; through MLE based on the p;; values, and
b) estimating p; and o2 through MLE based on the bg,,; values.
Hj j J

3.3. Benchmarking

Benchmarking data set Illumina platform has provided a benchmarking data set, the
[lumina spike-in Dunning, Barbosa-Morais, Lynch, Tavaré, and Ritchie (2008). These spike-
in probes are targeting bacterial and viral genes absent from the mouse genome. These were
added at specific concentrations on each sample. Therefore the change in expression level of
a particular spike between samples is known a priori. The expression levels of the non-spikes
should not change between samples.

There are twelve different concentrations of spike: 1000 picomolar (pM), 300, 100, 30, 10,
3,1, 0.3, 0.1, 0.03, 0.01, and 0.00 pM. It was replicated four times. Therefore, there are 48
samples and each sample has regular and control bead-type level probes.

There are approximately about 48000 bead-type level probes for each sample and in addition
the 33 spike-in bead-type level probes are added into it. For the control, there are 1616 bead-
type level probes. These control experiments are the benchmarking data sets of Illumina and
are used to compare low-level analysis methods such as in Affymetrix platform.

Performance studies We compare all convolution models: Irizarry et al. (2003a,b, 2006)
and Bolstad et al. (2003): RMA (Exponential-Normal), Plancade et al. (2011, 2012): Gamma-
Normal, Chen et al. (2011): Exponential-Gamma, Xie et al. (2009): Exponential-Normal
adjusted for Illumina BeadArrays with MLE for the parameters, Bayesian approach and the
method of moments, and the proposed models: exponential-lognormal and gamma-lognormal.

We will call the methods above, respectively, as follows: ENr, GN, EG, ENm, ENm, ENn,
ELNn, ELNm, ELNp, GLNn, GLNm, and GLNp. We use the MBCB package (Allen et al.
(2009) and Xie et al. (2009)) to adjust the intensity values of these existing models ENr,
ENm, ENmc and ENn. Except that, the GN uses the NormalGamma package (Plancade
et al. (2011)).

Table 1 shows that the GLNn reproduces the Illumina concentration better than others.
The ENr shows the closest performance toward the GLNn. Note that the computation of
the Kullback-Leibler coefficient is implemented in each array j based on the nominal con-
centrations O in Table 1 and the observed intensities P in Table 2, and the value in each
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Table 1: Reproducibility of each method toward the Illumina spike-in concentration

Model RMSE K-L
ENr 1.346 51310
ENn 1.407 41010

ENm 1.483 23170
ENmc 1.483 23170
EG 1.470 20660
GN 1.521 58480
ELNn 1.411 41200
ELNm 1.489 21280
ELNp 1.423 37800
GLNn  1.323 4333
GLNm  1.510 29630
GLNp  10.700 —115400

Table 2: Reproducibility of each method toward the Illumina spike-in based on the experiment
data

Model RMSE K-L
ENr 7.251 1141000
ENn 7.127 1062000

ENm 6.927 926500
ENmc 6.927 926200
EG 6.919 907900
GN 7.100 1183000
ELNn 7.124 1062000
ELNm 6.904 911600
ELNp 7.092 1035000
GLNn 6.825 793400
GLNm  6.937 968400

table is the median Kullback-Leibler coefficient based on J = 42 arrays. The Kullback-
Leibler coefficient for two positive sequences (X1ij,...,Xr;), (S1j,...,S51j) is computed as
K-L; = Zi[:l Xijlog(Xi;/Sij), which can also be negative if S;; > X;; for all or for most 4.
This is a sign that the S are overestimating X, where X could be O (Table 1) or P (Table 2).
Therefore we exclude the GLNp model from further comparisons. The behavior of GLNp
which is different from other models, also shown at the supplemental plots.

Table 2 shows how each method reproduces the data from the experiment. We see that GLNn
can be considered to reproduce it better than others, based on the RMSE, and the Kullback-
Leibler coefficient. Tables 1 and 2 provide insight about how the performance comparison
among the models would be conducted further.

In the first part, we compute the adopted Affycomp benchmarking criteria, based on the
data after background correction and their log transformation. In the second part, in the
simulation, the MSEy. and the L; error will be computed based on the log transformation of
the experiment and the nominal concentration data.

The log transformations that we use here, respectively, for the benchmarking and the FFPE
data sets are as follows

yzlogQ(:L‘+ 1:2—1—1) and y:10g2(33+1+\/x2—|—1),
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Table 3: Median SD, IQR, and 99.9% percentiles of log fold change for non spike-in between
replicates for each model.

Model Median SD IQR  99.9%

ENr 0.027 0.062 0.415
ENn 0.043 0.089 0.441
ENm 0.069 0.139 0.486
ENmc 0.069 0.139 0.486
EG 0.065 0.134 0477
GN 0.051 0.098 0.520
ELNn 0.045 0.093 0.442
ELNm 0.071 0.145 0.489
ELNp 0.049 0.100  0.449

GLNn 0.038 0.075 0.398
GLNm 0.076 0.080 0.507

Table 4: The signal detect R? by regressing the nominal and observed value for each model
for the Illumina spike-in.

Model R?> Low.R?> Med.R?> High.R?
ENr 0.959 0.618 0.698  0.559
ENn 0.958 0.622 0.695 0.557
ENm  0.957 0.635 0.695 0.558
ENmc  0.957 0.635 0.695 0.558
EG 0.957 0.633 0.695 0.558
GN 0.956  0.650 0.697 0.555
ELNn  0.958 0.624 0.695 0.557
ELNm  0.957 0.636 0.694 0.558
ELNp  0.958 0.627 0.695 0.557
GLNn 0.960  0.609 0.696 0.558
GLNm  0.956 0.637 0.694 0.558

where x is the nominal concentration O or the observed intensity value P.

First part 1In Table 3 it is shown that the ENr method provides the smallest variation
and IQR and the GLNn model provides the smallest 99.9% percentiles of log fold change
for the non spike-in between replicates. The largest variation, IQR, and 99.9% percentiles,
respectively, are observed for the GLNm, the ELNm, and the GN method.

In Table 4 it is shown that, in general, all methods perform similar to each other. The
GLNn models have the highest signal detect R?. The GN model has the highest R? at low
concentration but has the lowest R? at high concentration. This means that the GN model
works better at low concentration. On the other hand the ENr shows that it works better at
medium and high concentrations, which is followed closely by GLNn model.

If we divide the concentrations into two categories, where high concentration means that
the nominal concentration is at least 3 pM and low concentration means that the nominal
concentration is at most 1 pM, the GLNn model has the highest R? (the data is not shown
here). It means, in general and at high concentrations, the GLNn offers a better fit than other
models. As in Table 4, Table 5 shows that all models have similar performance, although the
GLNn model has the highest R? of nominal concentration against observed log-fold-change.
Table 6 provides the results from the computation of the AUC value. The table shows that all
models have a better accuracy at medium concentrations than at low and high concentrations.
The ENr performs very poor at the low concentrations, but the GLNm performs best. At high
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Table 5: The R? observed log-fold-change against nominal log-fold-changes for the spike-in
genes.

Model  Obs-intended-fc.R?  Obs-(low)-int-fc. R?

ENr 0.976 0.989
ENn 0.974 0.990
ENm 0.972 0.985
ENmc 0.972 0.985
EG 0.972 0.986
GN 0.970 0.987
ELNn 0.974 0.990
ELNm 0.972 0.985
ELNp 0.973 0.990
GLNn 0.978 0.991
GLNm 0.971 0.984

Table 6: AUC value for each model.

27

Model Low Medium High Average  All
concentration AUC concentration AUC  concentration AUC AUC

ENr 0.450 0.987 0.785 0.585 0.886
ENn 0.518 0.987 0.764 0.631 0.899
ENm 0.573 0.987 0.741 0.667 0.911
ENmc 0.573 0.987 0.741 0.667 0.911
EG 0.567 0.987 0.746 0.664 0.910
GN 0.552 0.987 0.723 0.651 0.904
ELNn 0.524 0.987 0.763 0.635 0.900
ELNm 0.574 0.987 0.741 0.668 0.912
ELNp 0.534 0.987 0.761 0.642 0.902
GLNn 0.498 0.987 0.784 0.619 0.896
GLNm 0.579 0.987 0.730 0.671 0.913

concentrations, the ENr performs the best and it is followed by the GLNn. But in general,
the highest AUC is achieved by all the model with the MLE parameter estimation methods:
the GLNm, ELNm, and ENm.

The computation, which is based on all arrays, provides the results where all models have the
AUC greater than 0.9. According to Zhu, Zeng, and Wang (2010), the AUC between 0.9 and
1.0 is classified as excellent in measuring the accuracy. Therefore, based on Table 6, we can
identify that there are some models excellency accurate in predicting the gene expression.

Second part We do N = 100 simulations to assess the performance of each model. The bias
of the background correction is assessed by the MSE., and the bias of the parameterization
is assessed by the L error.

From the simulation results in Table 7 we can see that results for the EG model are not
available, because the MBCB package did not work at the log transformation that we have
chosen. The GN model performs best, by providing the smallest bias for the background
correction and the parameters. A close performance is achieved by the ELN, particularly by
the ELNn. The GLNn does not have an optimal performance on the MSEy,.., but we still can
consider its performance good, concerning that the bias of the parameters are similar to other
proposed models and GN.

One of the proposed models, GLNm has the highest bias on the MSE;. and the parameter a.
In our view this happens because we use an approximation in estimating the true intensity
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Table 7: The simulation results on the spike-in data set.

Model MSEy,. L, error
@ I} 7 o

ENr 0.045 0.664 46.58 11.44
ENn 0.049 0.625  41.61 2.806
ENm 0.038 0.610  58.92 2.040
ENmc  0.036 0.610  62.77  2.039
GN 0.030 0.0003 0.007 0.013 0.015
ELNn 0.048 0.009 0.0004 0.018
ELNm 0.039 0.840 0.0004 0.018
ELNp 0.061 0.472 0.0004 0.018

GLNn  0.216 0.052  0.055 0.0004 0.018
GLNm  84.37 38.86  0.851 0.0003 0.017

value. The EN models (ENr, ENm, ENn and ENmc) have considerably better performance
at MSE., but are not good at the parametrization. The bias on the parametrization of the
noise is higher than in other models.

3.4. The public data sets

Based on the results from Section 3.3, we compare the performance of these models on some
public data sets. We would like to know how good these models are in real data samples.
Here, we choose to use the formalin-fixed, paraffin-embedded (FFPE) data sets from Waldron,
Ogino, Hoshida, Shima, Reed, Simpson, Baba, Nosho, Segata, Vargas, Cummings, Lakhani,
Kirkner, Giovannucci, Quackenbush, Golub, Fuchs, Parmigiani, and Huttenhower (2012):
the FFPE of tumors from colorectal cancer patients (GSE32651, 1003 samples), breast cancer
metastases of the lymph node and autopsy tissues (GSE32490: GSE32489, 120 samples).
Each sample has 24526 bead-type level probes.

The links for the data set are http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE32651 and http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32490.

Currently the FFPE archival samples are widely available in million and it is a great source
of information in medical studies about some diseases, for example cancer. This data type is
suffering from the RNA degradation, which leads to poor performance in array-based studies.
However, the Illumina’s DASL assays could provide high-quality data from this degraded
RNA samples.

Comparing the performance of these background correction models certainly would help re-
searchers to choose the appropriate background correction for their data, particularly if their
data is the FFPE type.

The background correction for the FFPE data set is implemented in three steps:

step 1 Do the quality control (QC) to the raw FFPE data. In this paper, we used the ffpe
package in R (Waldron (2013)).

step 2 Do the data transformation logy(Pj; + 1 + 4 /Pf] + 1 to the raw FFPE data after QC

and estimate the background correction parameters based on it. The estimators of true
intensity value and the background correction are based on the regular and negative
control probe intensity data, respectively.

step 3 Compute the true intensity value (the adjusted intensity estimator) based on the BC
parameters at step 2.


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32651
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32651
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32490
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Table 8: Simulation results on the GSE32651 data set.

Model MSEy, Ly error

Q@ 15} 1 o
ENr 0.058 0.657 297.67 22.61
ENn 0.281 0.572 1.984  2.627
ENm 0.086 0.591 28.05 1.715
ENmc 0.036 0.610 62.77  2.039
ELNn 0.275 0.025 0.001 0.018
ELNm  0.059 0.826 0.0004 0.018
ELNp 0.672 0.487 0.001 0.018

GLNn 0.838 0.340 0.527 0.001 0.018
GLNm  84.15 71.87 0.887 0.0005 0.018

Table 9: Simulation results on the GSE32489 data set.

Model MSEy,. L, error

@ I6] I o
ENr 0.093 0.665 67.17 9.511
ENn 0.863 0.509 0.936  2.039
ENm 0.182 0.558 14.20 1.712
ENmc 0.184 0.556 14.18  1.049
ELNn 1.055 0.857 0.002 0.018
ELNm 0.116 0.781 0.001 0.018
ELNp 1.247 0.461 0.002 0.018

GLNn 1.348 0.332 0.497 0.002 0.018
GLNm 164.98 22.24 0.805 0.0004 0.018

The results of our computation are in Tables 8 and 9. From these tables we can see that
there are no EG and GN models. Neither of these models can work on these data sets. For
some samples in the data set, both models fail to compute the parameters which has the
consequence that the true intensity value cannot be provided.

We decided to remove the EG and GN models from further comparisons in both FFPE data
sets. Here we provide the results of the rest of the models only.

Tables 8 and 9 consistently show that the bias of the parameters of noise in the EN models
are higher than the proposed models. For the parameter 5, the ELNn has the smallest bias
and it is followed by the ELNp and the GLNn. With regard to the bias of the background
correction, the EN models show the smallest bias in both of FFPE data sets.

4. Conclusions and indication of future work

We have studied additive models of background correction for Bead Arrays and proposed some
new models where the true intensity is assumed to have exponential or gamma distribution
and the noise is lognormally distributed. We have derived the estimator of the true intensity
value of the proposed models.

Further, we compared the performance of all models, based on the benchmarking and public
data sets. In the benchmarking data set we adopted the criteria from the Affycomp (Cope
et al. 2004) and for the simulation study we used the criteria which have been used in Xie
et al. (2009), Chen et al. (2011) and Plancade et al. (2011, 2012). For the public data sets,
we only used the criteria for the simulation study.

We have seen in Sections 3.3 and 3.3 that EN, EG, GN and GLN perform rather similar.
However, the GLNn model has provided the highest reproducibility in comparison to other

29
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models. From the Affycomp criteria we can provide the following points:

1. The ENr and GLNn provide the lowest variation between replicates and all models using
the MLE estimation method have a higher variation than others.

2. The GLNn model has the highest signal detect R? in general and in high concentration.
This means the GLNn model is the best fitted for the gene expression.

3. The GLNn model, based on the MvA plot, produces the least number of genes which
should not be expressed but are nevertheless expressed. On the other hand, the GN
model provides the largest number of such genes.

4. All models with the MLE estimation method have a higher average AUC value, which
means that they provide a better accuracy in predicting the gene expression.

5. The ENr and GLNn have the lowest IQR of log fold-change between replicates.

6. Points 1 and 2 show that the GLNn and ENr are more accurate and precise in modelling
the gene expression and points 3 and 5 show that the specificity and sensitivity of the
GLNn and ENr model are better than others.

In the simulation study, the best performance in estimating the signal by measuring its back-
ground correction and parametrization errors is achieved by the GN model. It is followed by
our proposed ELN models. It has been shown that the GLNn does not perform optimally at
the MSEy. criterion, but for the parametrization this model still can be considered good.

In the FFPE public data set, the GN and EG models cannot be implemented. This is in
strong contrast with the fact that in the simulation study of benchmarking data set, the GN
model has the best performance.

The EN models show the highest bias in the parametrization in both public data sets and the
lowest bias in the background correction. Our proposed models, except the GLNm, show the
lowest bias in the parametrization in both data sets and a moderate bias in the background
correction.

Based on the results from the benchmarking data and the public data sets, we would suggest
researchers the following:

1. if the GN model works properly at the data set at hand (i.e. the estimated signals in
all arrays can be computed by this model and the simulation criteria for this data at
this model are low) then use the GN model to correct the background.

2. if the GN model fails, then use our proposed models, particularly the GLNn model.
The reason for not choosing the ELN models is that the value of the parameter « from
the benchmarking data set is less than 1, around 0.2. Therefore, the gamma model
is more appropriate to model the true intensity distribution than the exponential one.
We believe that the right approximative computation of the GLN models will lead to a
better performance than the current approximation.

The ELN models perform better than the original EN models, due to the fact that not
only the regular probes, but also the control probes are skew-distributed (Chen et al.
2011). Therefore, these models could be the second choice after the GLN, when the GN
model does not work.

3. With regard to the computation time, at the benchmarking data set the EN models are
working faster than the others. They are followed by the ELNp, ELNn, and EG. The
GLNn and the ENmc are the third fastest, then come the GN and the ELNm, which
are followed by the GLNm as the slowest one.
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One of the purposes of using microarray technology is finding the genes which are expressed
differentially due to some disease or condition. Therefore, it is important to investigate the
effect of bias of the background correction and the parametrization toward the differentially
expressed genes. This will be our future work.
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