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Abstract

The open-source programming language and software environment R is currently one
of the most widely used and popular software tools for statistics and data analysis. This
contribution provides an overview of important R packages used in official statistics and
survey methodology and discusses the usefulness of R in the daily work of a statistical
office. Examples of activities and developments in R related projects in several national
and international statistical offices are given. The focus is not only on the internal infra-
structure that national and international statistical offices provide for using R but also
on some interesting R related projects carried out in those institutes. Two particular
packages (laeken and sdcMicro) and one data set (Statistics on Earnings Survey) are
used to illustrate the usefulness (and the user-friendliness) of R and to present methods
available in R. In addition, the access to international statistical databases like WDI of
World Bank and UN COMTRADE with R is illustrated.

Keywords: official statistics, survey methodology, R.

1. Some general statements on R

The R Core Team (http://www.r-project.org/) defines R as an environment rather than a
statistical system or programming language. R is an integrated suite of software facilities for
data manipulation, calculation and graphical display, which includes:

a suite of operators for calculations on arrays, mostly written in C and integrated in R;
- comprehensive, coherent and integrated collection of methods for data analysis;
- can be extended with (add-on) packages;

- graphical facilities for data analysis and display, either on-screen or in hard copy. It
features trellis graphics (Sarkar 2008) and an implementation of the grammar of graphics
book (Wilkinson and Wills 2005; Wickham 2009);

- a well-developed, simple and effective programming language which includes conditional
statements, loops, user-defined recursive functions and input and output facilities;

a flexible object-oriented system facilitating code reuse;
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- high performance computing with interfaces to compiled code and facilities for parallel
and grid computing;

- an environment that allows communication with many other software tools.

Each R package provides a structured standard documentation including code application
examples. Further documents (so called vignettes Leisch 2003) are also available showing
more applications of the packages and illustrating dependencies between the implemented
functions and methods.

R has become an essential tool for statistics and data science (Godfrey 2013). Also companies
in the area of social media (Google, Facebook, Twitter, Mozilla Corporation), in the banking
world (Bank of America, ANZ Bank, Simple), in the food and pharmaceutical area (FDA,
Merck, Pfizer), finance (Lloyd, London, Thomas Cook), technology companies (e.g. Revo-
lution Analytics as subsidiary of Microsoft), car construction and logistic companies (Ford,
John Deere, Uber), newspapers (The New York Times, New Scientist), and companies in
many other areas use R in a professional context (see also Gentlemen 2009; Tippmann 2015).

Outline of the paper

This contribution focuses on the use of R in national and international statistical organiza-
tions, giving the readers an overview of the usefulness of R in the area of official statistics.
In Section 2 we first give some impression about systems and software used in daily work at
the statistical office. This shows which variety of software is used in the daily work and how
R could serve as a mediator between and within these software products.

Survey methodology /statistics is one large part of official statistics. Typically, the data in this
area are of complex nature, having hierarchical structures and sampled from finite populations
using complex sampling designs. Due to non-response, measurement errors and additional
available information, many of the methods are focused on pre-processing of the data while
the main part of other methods are related to data summarization and dissemination. A
summary of available tools in different topics in survey methodology is therefore given in
Section 3, which enhances the CRAN Task View on Official Statistics that is maintained by
the authors of this paper.

Having presented a list of useful packages, the use of these packages and the strategy of using
R in national statistical offices as well as in international statistical offices are presented in
Section 4. This should give the readers an impression of the current status of the usage of R
and ideas how to integrate R into the production system. However, it is out of scope to give a
complete picture of the usage of R in each institution. Therefore a sample of selected offices
is taken and reported.

Two examples of applying R on real data from official statistics cannot show all the useful
packages and functions in the area of official statistics, but they show how efficiently R can
be used for a specific task. In the first example of Section 5, the estimation of indicators
is in focus while the second example shows the application of statistical disclosure control
methods. Both topics are of main interest in official statistics. In Section 5.3 the access to
international databases is shown. For the access to the world development indicators an R
package is used while JavaScript object notation (JSON) format is used to access data from

UN COMTRADE.

2. R in the statistical office

National and international statistical offices’ main responsibility is to collect and publish em-
pirical information about our society and economy, which become an important economic and
social factor. The huge information requirements of our society have led to the development
of sophisticated methods to collect, process, analyze and supply information. It is the role of
national statistical offices to provide reliably collected and expertly analyzed political, social
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and economic information. This information provides a basis for political decision-making;
Its application and use for this purpose has become of increasing importance for the general
public.

For data processing and data analysis in national or international statistical organization,
several well-established statistical software packages are often available (see also Todorov and
Templ 2012):

(1) SAS® because of its traditional position in these organizations (if the necessary funds
are available), its ability to handle large data sets and its availability on any platform,
including mainframes;

(i) SPSS® is considered user friendly because of its point-and-click interface (albeit still
providing the so-called syntax);

(iii) Stata® is likely the most cost-effective among the three and, in terms of its design, is
particularly suitable for handling data generated from complex survey designs (as is the
case in many NSOs).

However, if the objective is
- flexibility in reading, manipulating and writing data,
- availability of recent statistical methodology,

- versatile presentation capabilities for generating tables and graphics which can readily
be used in text processing systems such as ATEX (or Microsoft Word),

- creating dynamical reports using, e.g., rmarkdown (Allaire, McPherson, Xie, Wickham,
Cheng, and Allen 2014), Sweave (Leisch and Rossini 2003), brew (Horner 2011) or the
knitr (Xie 2013) package,

- to build web-based applications using shiny (RStudio Inc. 2014), and last but not least,

a particularly economical solution,

R is the answer (see also Todorov and Templ 2012). The integration of all types of modern
tools for scientific computing, programming and management of data and files into one en-
vironment is possible. Such an environment combines the capacities of R with editors that
allow syntax highlighting and code completion, the use of modern version control systems for
code and file management or a modern document markup languages such as INTEX or Mark-
down, or interfaces to general purpose programming languages such as C, C++ or Java as
well as easy-to-use (automatic) connections to powerful workstations. There exist editors that
provide a complete programming environment for R. For example, eclipse with the extension
STATET, an eclipse interface for R (see http://www.walware.de/goto/statet) or the modified
eclipse IDE from Open Analytics called Architect (http://www.openanalytics.eu/architect),
provide not only syntax highlighting, a defined project philosophy and interaction with R,
but also integrate C++, Java, IXTEX, Sweave, Subversion, server-connection facilities and
many more. A very popular IDE for R nowadays is RStudio (see http://support.rstudio.com),
which includes these features and additionally includes an integration of the packages shiny
and rmarkdown (and related tools for creating slides in HTML — RPresentation), i.e. it
provides a modern scientific computing environment, well designed and easy to use.

Although R has powerful statistical analysis features, data manipulation tools and versatile
presentation capabilities, it has not yet become a standard statistical package in national and
international statistical offices. This is mainly attributable to the widespread opinion that
R is difficult to learn and has a very steep learning curve, which is true for learners without
any programming skills. However, GUI’s which display the underlying produced code are
available as well (Fox 2005), and interfaces to all popular GUI toolkits are available.
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In the daily work of a national or international statistical organization, for example, at Statis-
tics Austria or at UNIDO, different systems for data analysis and data processing are used.
Data exchange between statistical systems (like SAS®, SPSS®, EViews, Stata®, Microsoft Ex-
cel), database systems (like Microsoft Access, MySQL, IBM DB2) or output formats (like
HTML, XML) is often required. Also note that the importance of statistical data and meta-
data exchange format (like SDMX) is continuously growing. In this respect, R offers very
flexible import and export interfaces either through its base installation or through add-on
packages which are available from CRAN. For example, the packages XML (Temple Lang
2013) and xml2 (Wickham 2015b) allow to read XML files. For importing delimited files,
fixed width files and web log files it is worth mentioning the package readr (Wickham and
Francois 2015) which is supposed to be faster than the available functions in base R. See
also the fread function from package data.table (Dowle, Short, Lianoglou, and Srinivasan
2014) that is also substantially faster than read.csv from base R. The packages XLConnect
(Mirai Solutions GmbH 2015) and readxl (Wickham 2015a) import Microsoft Excel files (.xls
and .xlsx) into R. The packages foreign (R Core Team 2015) and a newer promising package
called haven (Wickham and Miller 2015) allow to read SPSS®, Stata® and SAS® files from
within R.

The connection to all major database systems is easily established with the packages ROracle,
RMySQL, RSQLite, RmSQL, RPgSQL, RODBC and RJDBC. The DBI package provides an
extra abstraction layer, used by the former mentioned packages. The integration of other
statistical systems is made possible through packages like RWeka, X12 and RExcel, while
data exchange among these systems is facilitated by the package foreign. For more specific
applications like web page generation or data and metadata exchange between organizations,
the packages RZHTML, sdmxer or RSDMX can be used.

Data manipulation — in general but in any case with large data — can be best done with the
package dplyr (Wickham and Francois 2014) or the data.table (Dowle et al. 2014) package.
Functions for data manipulation in dplyr are implemented in C++ and thus the computational
speed is often much faster than the data manipulation functions of the base packages. The
syntax of dplyr is easy to learn and it is possible to write dplyr syntax in data pipelines that is
internally provided by package magrittr (Bache and Wickham 2014). data.table (consisting
of C code) even slightly outperforms dplyr but the syntax is not easy to learn, since especially
indexing is done differently from the base packages.

In the case of large data files which exceed available RAM, interfaces to (relational) database
management systems might be useful. The large data set problem can also be resolved by
using either the filehash, LaF, ff, ffbase or bigmemory packages or by connecting to powerful
workstations with Rserve (see http://www.rforge.net/Rserve/). Note that the RStudio server
enables you to provide a browser based interface (the RStudio IDE) to a version of R running
on a remote Linux server. This has some advantages such as to access your R workspace from
any location, to allow multiple users to access powerful hardware and having installation of
R packages and related features centralized.

R is designed to allow for parallel computing using multiple cores or CPU’s and the recom-
mended package for this task is the R package parallel. Several other packages can also be
used for parallel computing, such as snow or foreach. Note that for medium or large data sets,
parallel computing can be very slow on Microsoft Windows machines since the fork system call
is only available on POSIX compliant platforms (e.g. Unix based operating systems). There
exist user friendly interfaces for integrating compiled code (for example, the package Repp,
inline and rJava) and features for code profiling (the package profr and proftools). Worth
to mention is also an integration of scripting languages such as JavaScript, see for example
(amongst others) package shinyjs (Attali 2016). In addition, R offers interfaces to almost all
commercial and open-source linear program solvers which are often needed for special tasks
in survey methodology.
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3. R for survey statistics

R includes several methods that are helpful for data processing and survey methodology in
statistical offices and organizations which usually deal with complex data sets from finite pop-
ulations. The CRAN task view on Official Statistics and Survey Methodology (http://cran.r-
project.org/view=0OfficialStatistics) contains a list of packages which include methods typ-
ically used in official statistics and survey methodology. Below we list those packages and
briefly outline their functionalities.

3.1. Complex survey designs

The package sampling includes various algorithms (Brewer, Midzuno, pps, systematic, Samp-
ford, balanced (cluster or stratified) sampling via the cube method, etc.) for drawing survey
samples, as well as functionality to calibrate the design weights (see, e.g., Tillé 2006).

For estimation purposes and to work with already drawn survey samples, the package survey
(Lumley 2010) — the standard package for that task — can be used once the given survey
design has been specified (stratified sampling design, cluster sampling, multi-stage sampling
and pps sampling with or without replacement). The resulting object can be used to estimate
(Horvitz-Thompson-) totals, means, ratios and quantiles for domains or the entire survey
sample, and to apply regression models. Variance estimation for means, totals and ratios
can either be done by Taylor linearization or resampling (BRR, jackknife, bootstrap or user-
defined).

As an add-on package, ReGenesees uses facilities from and extends the survey package (not on
CRAN, see http://www.istat.it /en/tools/methods-and-it-tools/processing-tools /regenesees).
This package also includes a GUL

The package EVER (Estimation of Variance by Efficient Replication) provides variance esti-
mation for complex designs by delete-a-group jackknife replication for (Horvitz-Thompson-)
totals, means, absolute and relative frequency distributions, contingency tables, ratios, quan-
tiles and regression coefficients, even for domains.

The laeken package (Alfons and Templ 2013) implements functions to estimate certain so-
cial inclusion indicators (at-risk-of-poverty rate, quintile share ratio, relative median risk-
of-poverty gap, Gini coefficient), including their variance for domains and strata based on
(calibrated) bootstrap resampling.

To perform simulation studies in official statistics, the package simFrame (Alfons, Templ, and
Filzmoser 2010) provides a framework for comparing different point and variance estimators
under different survey designs as well different scenarios for missing values, representative and
non-representative outliers.

Other packages are available for selecting samples with specific designs: pps, sampfling and
SamplingStrata.

3.2. Calibration

To calibrate the sampling weights to precisely match the population characteristics and/or to
calibrate for unit non-responses, the package survey allows for post-stratification, generalized
raking/calibration, generalized regression (GREG) estimation and trimming of weights.

The EVER package includes facilities (function kottcalibrate()) for calibrating on known
population characteristics, on marginal distributions or joint distributions of categorical vari-
ables, or on totals of quantitative variables.

The calib() function in the package sampling allows to calibrate for non-response (with
response homogeneity groups) for stratified samples. The implementation in laeken (and
package simPop) (function calibWeights()) is similar but possibly faster.
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3.3. Editing and visual inspection of microdata

The package editrules (de Jonge and van der Loo 2012) provides tools for editing and error
localization using the Felligi-Holt principle and categorical constraints. It converts readable
linear (in)equalities into matrix form, which can then be applied for editing the given data set.
The package deducorrect depends on the package editrules and applies deductive correction
of simple rounding, typing and sign errors based on balanced edits. Values are changed so
that the given balanced edits are complete.

The package rrcovNA (Todorov, Templ, and Filzmoser 2011) provides robust location and
scatter estimation and robust principal component analysis with a high breakdown point for
incomplete data. It can thus be used to find representative and non-representative outliers.

The package VIM (Templ, Alfons, and Filzmoser 2012) can be used for visual inspection
of microdata. It is possible to visualize missing values using suitable plot methods and
to analyze missing values structure in microdata using univariate, bivariate, multiple and
multivariate plots. The information on missing values from specified variables is highlighted
in selected variables. VIM can also evaluate imputations visually. Moreover, the package
VIMGUI (Schopthause, Templ, Alfons, Kowarik, and Prantner 2014) provides a point and
click graphical user interface (GUI).

The package tabplot (Tennekes, de Jonge, and Daas 2013) entails the table plot visualization
method, which is used to profile or explore large statistical data sets. Up to a dozen variables
are shown column-wise as bar charts (numeric variables) or stacked bar charts (factors).
Hierarchies can be visualized with the package treemap.

Visual analysis of data is important to understand the main characteristics, main trends and
relationships in data sets and it can be used to assess the data quality. Using the R pack-
age sparkTable (Kowarik, Meindl, and Templ 2014a), statistical tables holding quantitative
information can be enhanced by including spark-type graphs such as sparklines —_~~" and
sparkbars Julhals . These kind of graphics have initially been proposed by Tufte (2001) and
are considered as simple, intense and illustrative graphs that are small enough to fit in a single
line. Thus, they can easily enrich tables and texts with additional information in a comprehen-
sive visual way. The R-package sparkTable uses a clean S4-class design and provides methods
to create different types of sparkgraphs that can be used in webpages, presentations and text
documents. With the GUI, graphical parameters can be interactively changed, variables can
be sorted, and graphs can be added/removed in an interactive manner. Thereby it is possible
to produce custom-tailored graphical tables — standard tables that are enriched with graphs
— that can be displayed in a browser and exported to various formats.

3.4. Imputation

A distinction is made between interactive model-based methods, k-nearest neighbor methods
(kNN) and miscellaneous methods. However, the criteria for using a given method depend on
the scale of the data, which in official statistics are typically a mixture of continuous, semi-
continuous, binary, categorical and count variables. Note that only few imputation methods
can deal with mixed types of variables and semi-continuous ones, and only the methods in
the package VIM account for robustness issues.

Expectation-Maximization (EM) based imputation methods are offered by the packages mi
(Yu-Sung, Gelman, Hill, and Yajima 2011), mice (van Buuren and Groothuis-Oudshoorn
2011), Amelia (Honaker, King, and Blackwell 2011), VIM and mix (Schafer 1997). The pack-
age mi provides the iterative EM-based multiple Bayesian regression imputation of missing
values and checking of the regression models used, whereas the regression models for each
variable can also be defined by the user. The data set may consist of continuous, semi-
continuous, binary, categorical and/or count variables. The package mice (van Buuren and
Groothuis-Oudshoorn 2011) provides iterative EM-based multiple regression imputation as
well, and the data set may consist of continuous, binary, categorical and/or count variables.
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Multiple imputation in which first bootstrap samples are drawn for EM-based imputation can
be carried out with Amelia (Honaker et al. 2011). It is also possible to impute longitudinal
data. The package VIM offers EM-based multiple imputation (function irmi()) using robust
estimations (Templ, Kowarik, and Filzmoser 2011), which adequately deal with data including
outliers. It can handle data consisting of continuous, semi-continuous, binary, categorical
and/or count variables.

Nearest neighbor (NN) imputation methods are also included in the VIM package. It provides
implementation of the popular sequential and random (within a domain) hot-deck algorithm,
and also a fast kNN algorithm which can be performed for large data sets. It uses a mod-
ification of the Gower Distance to deal with a mixture of numerical, categorical, ordered,
continuous and semi-continuous variables.

3.5. Statistical disclosure control

Data from statistical agencies and other institutions are often confidential in its raw form.
One of the main tasks of data providers is to modify the original data in order to guarantee
that no statistical unit can be re-identified and, at the same time, to minimize the loss of
information. For microdata perturbation, the package sdcMicro (Templ, Meindl, Kowarik,
and Chen 2014c; Templ, Kowarik, and Meindl 2015) can be used to generate confidential
(micro)data, i.e. to generate public- and scientific-use files. All methods are implemented in
C++ to allow fast computations. The package sdeMicroGUI (Templ, Meindl, and Kowarik
2014b) also provides a GUI (Kowarik, Templ, Meindl, and Fontenau 2014c; Templ et al.
2014b).

To simulate synthetic data, the package simPop (Alfons, Kraft, Templ, and Filzmoser 2011b;
Meindl, Templ, Alfons, and Kowarik 2014) offers methods for the simulation of synthetic,
confidential, close-to-reality populations for surveys based on sample data. Such population
data can then be used for extensive simulation studies in official statistics using, for example,
the package simFrame (Alfons et al. 2010). Another package, synthpop, offers also methods
to simulate populations, but it is not designed for dealing with hierarchical structures of the
data.

For tabular data, the package sdcTable (Templ and Meindl 2010) can be used to provide
confidential (hierarchical) tabular data. It includes techniques to solve the secondary cell
suppression problem. A method is included that protects the complete hierarchical, multi-
dimensional table at once, and therefore it is only suitable for small problems. The package
also offers interfaces to various commercial and open-source linear program solvers.

3.6. Time series analysis and seasonal adjustment

For a general time series methodology, we refer to the CRAN Task View TimeSeries on
CRAN. Specifically for survey methodology, the decomposition of time series can be done
using the function decompose(). For a more advanced decomposition the functions stl1()
and StructTS() can be used. All these functions are available in the base stats package.
Many powerful tools for seasonal adjustment can be accessed via the R package x12 and
x12gui (Kowarik, Meraner, Templ, and Schopfhauser 2014b). It provides a wrapper function
and GUI for the X12 binaries, which have to be installed first. Another package, available
on CRAN is seasonal, which supports also SEATS Specification Files from TRAMO-SEATS,

a software for seasonal adjustment developed by the Bank of Spain.

3.7. Statistical matching and record linkage

The package StatMatch (D’Orazio, Di Zio, and Scanu 2006) provides functions for conducting
statistical matching between two data sources sharing a number of common variables. It
creates a synthetic data set after matching of two data sources via a likelihood approach or
hot-deck. Matchlt allows nearest neighbor matching, exact matching, optimal matching and
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full matching, among other matching methods.

The package RecordLinkage (Borg and Sariyar 2015) provides functions for linking and de-
duplicating data sets. It can be used to perform and evaluate different record linkage methods.
A stochastic framework is implemented which calculates weights through an EM algorithm.
Machine learning methods are utilized, including decision trees (package rpart), adaboost
(package ada), neural nets (package nnet) and support vector machines (see package 1071
and package kernlab). The generation of record pairs and comparison patterns from single
data items are provided as well. Comparison patterns can be chosen to be binary or based on
some string metrics. In order to reduce computation time and memory usage, blocking can
be used.

It is worth mentioning the package stringdist (van der Loo 2014), which implements various
methods for string comparison.

3.8. Small area estimation

The package hbsae (Boonstra 2012) provides functions to compute small area estimates based
on a basic area or unit-level model. The model is fit using restricted maximum likelihood
(REML), or in a hierarchical Bayesian way. Auxiliary information can be either counts re-
sulting from categorical variables or means from continuous population information.

The package rsae (Schoch 2014) provides functions to estimate the parameters of the basic
unit-level small area estimation (SAE) model (aka nested error regression model) by means
of ML or robust ML. On the basis of the estimated parameters, robust predictions of the
area-specific means are computed (incl. MSE estimates; parametric bootstrap). However,
the current version (rsae 0.1-5) does not allow for categorical independent variables.

The package nlme provides facilities to fit Gaussian linear and nonlinear mixed-effects models
and lme4 includes facilities to fit linear and generalized linear mixed-effects model, both used
in small area estimation. With package JoSAE (Breidenbach 2013), point and variance esti-
mation for the generalized regression (GREG) and a unit level empirical best linear unbiased
prediction (EBLUP) estimators can be made at domain level. It basically provides wrapper
functions to the lme package that is used to fit the basic random effects models. Package
saeSim (Warnholz and Schmid 2015) provides tools for simulation of synthetic data for small
area related tasks.

3.9. Indices and indicators

A comprehensive collection of indicator methodology is included in the package laeken which
helps to estimate popular risk-of-poverty and inequality indicators (at-risk-of-poverty rate,
quintile share ratio, relative median risk-of-poverty gap, Gini coefficient, gender pay gap). In
addition, standard and robust methods for tail modeling of Pareto distributions are provided
for the semi-parametric estimation of indicators from continuous univariate distributions such
as income variables. Classes for the resulting indicators are defined as well as print, summary,
plotting and subsetting methods for objects of these classes. The variances of the indicators
can be estimated via a calibrated bootstrap approach (Alfons and Templ 2013).

Various indicators of poverty, concentration and inequality are included in the package ineq
(Zeileis 2014). It provides some basic tools like Lorenz curves and Pen’s parade graph. How-
ever, it is not designed to deal with sampling weights directly (these could only be approxi-
mately emulated via rep(x, weights)). The package IC2 includes three inequality indices:
extended Gini, Atkinson and Generalized Entropy. It can deal with sampling weights and
subgroup decomposition is also supported.

The function priceIndex() from the package micEcon can be used to calculate price indices.

For visualization purposes, the package sparkTable offers tools to produce scalable sparklines
for webpages and reports, as already mentioned in Section 3.3. It also contains visualization
tools for presenting indicators in checker plots—a grid-based representation of possible com-
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plex indicators, bar plots and time series in thematic maps (Templ, Hulliger, Kowarik, and
First 2013).

3.10. Dependencies between packages

Figure 1 shows the dependencies between packages listed at the CRAN Task View on Official
Statistics and Survey Methodology. In general, each package may depend on others using
functionality already implemented there. As soon as a package depends to another one as
depending on it in the package description, the whole namespace of this package is imported.
Too many dependencies often may cause packages instability over time, since any change in
a package has an influence. On the other hand, dependencies highlight packages connections.
This makes the functions design and usage more consistent. For example, several packages
rely on the survey package—the samplingbook package uses existing functionality of the
survey package while the VIMGUI package allows imputation of survey objects. In general,
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Figure 1: Dependencies between packages listed at the CRAN Task View on Official Statistics
and Survey Methodology.

not many connections between the highlighted packages are visible. On the one hand, this
makes the packages independent but the consistency of code and code usage might increase
as soon as packages allow for dealing with similar structures and objects belonging to other
packages.

The choropleth map in Figure 2 presents each country according to the relative downloads of
R packages included in the CRAN Task View on Official Statistics and Survey Methodology.
Since no download statistics about downloads from all (approximately 90) CRAN mirrors
and internal repositories exist, the download of RStudio’s '0-cloud” CRAN log files from
October 2012 till March 2014 are used to show the distribution of R over the world. Since the
absolute number of downloads is dominated by countries with high population, the absolute
download statistics per country are divided by the 2005 population count. North America,
Europe and Australia are leading in the usage of R packages listed on the CRAN Task
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View on Official Statistics and Survey Methodology. Figure 3 also presents the download
statistics from RStudio’s repository and the most popular packages listed on the CRAN Task
View on Official Statistics and Survey Methodology (note that a similar analysis was carried
out at http://www.r-bloggers.com/finally-tracking-cran-packages-downloads/). The figures
underestimate the download by not considering all CRAN mirrors and on the other hand
overestimation is caused by counting also package updates. The packages Hmisc, nlme and
Imed are downloaded with highest frequency. Note that these packages are also used for
tasks not related to the official statistics and survey methodology. Therefore, the most widely
used packages for survey tasks might be survey and mice (more than 250 times per week on
average). In any case, the download peak refers to packages that include imputation methods
(mice, mitools, Amelia, VIM, mi), which suggests the extensive use of this methodology.
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Figure 2: Choropleth map showing the downloads of R packages included in the CRAN Task
View on Official Statistics and Survey Methodology over the world. The number of downloads
are presented per capita (i.e. normalized by dividing by the population counts).
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Figure 3: Average number of downloads per week (from October 2012 till March 2014) for the
most downloaded packages listed on the CRAN Task View on Official Statistics and Survey
Methodology.
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4. The use of R in selected national statistical offices

Statistical organizations need a strategy for using and distributing software to their employees.
The national statistical offices of Canada, Austria, Netherlands, Italy, USA, UK, the statistical
offices of a few other countries and several international agencies are quite active in using R.
This is recognized by the number of contributions at international conferences, see for example
the official statistics sessions at the useR! 2013 conference in Albacete, the R session at the
International Conference on Establishment Surveys in Montreal 2012, as well as the UNECE
data editing work sessions in 2012, 2013 and 2014. The latter had sessions focused on the use
of R in data editing and imputation. Tutorials at the NTTS 2015 and the Q2014 on the use
of R in the statistical office were presented.

Moving to R seems to be slow due to the lack of strong programming knowledge and avail-
ability of many legacy code developed in other statistical software environments. However,
new and innovative projects using R are carried out, some of them are listed in the following
subsections. Examples will be given of how R is used in selected national statistical offices.

4.1. Use of R at Statistics Austria

At Statistics Austria, R is currently installed on more than 65 computers and on virtual
servers. This is useful for tasks involving large memory requirements or to put content on the
web, e.g. via shiny (RStudio Inc. 2014).

The leading R-team at Statistics Austria consists of three methods division experts. In ad-
dition, each department has nominated one person as first contact in case of questions and
problems. Furthermore, the following organizational setup has been chosen:

o the R-experts at the methods unit (the administrators) take care that the version used
is always up-to-date and they also decide on a GUI front-end which packages should
be installed with the default installation. They place all necessary files (R, RStudio,
packages, documentation, examples) on a particular server, in the following termed
container;

e the IT department takes these files and deploys the R-installation including the front-
end (RStudio) to users. This ensures that only one standardized software package is
installed on all computers;

o the general R-support is centralized through a mailing list (apart from direct questions
that can be answered by first-contact persons);

e an internal wiki was created and is used to collect know-how;

o the administrators define — together with the IT department — access rights for users
on the servers, the mailing list, wiki, file depot, etc. In this situation, basically two user
groups exist:

1. R-administrators: have read and write access and are responsible for the folder
containing all software package, documentation, wiki, etc. Additionally, adminis-
trators have full access to the mailing list “R-Support”.

2. R-team: team-members have read-only access to the R container and read and
write access to the wiki.

Currently five R courses are offered for the employees at Statistics Austria. The introductory
course consists of 12 hours tutorial (3 x 4 hours), the aim is to reach a certain level of know-
ledge for all participants. The target group is constituted by beginners and regular R users
who learned R in self-study. For the latter group many fundamental insights to the software
are presented which are mostly new even for experienced users. The course covers topics on
data types, data import/export (including database connections), syntax, data manipulation
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(including presentation of important add-on packages such as dplyr and data.table) and basic
object-orientation features. Ex-cathedra teaching is followed by exercises and R sessions in
which the trainers interactively give additional insights.

The advanced training course consists of four-module courses between 4 and 8 hours each.
This course covers topics on graphics (graphics, grid, ggplot2, ggmap, ggvis), classes and
object-orientation (83 classes as well as a brief introduction to 84 classes), dynamic reporting
(Sweave, knitr, brew, rmarkdown), R development issues (profiling, debugging, benchmark-
ing, basic packaging), web-applications (shiny), data manipulation (dplyr, data.table) and
survey statistics using survey. The courses give an overview of other useful packages for
key-tasks in official statistics.

At Statistics Austria, methodological training is offered to staff. In these courses, R is inten-
sively used for teaching purposes, but participants do not get in direct touch with R. The
reason was that for these courses no requirements with respect to any software or programming
language should be set. Thus, a blended learning feedback system was developed (Dinges,
Kowarik, Meindl, and Templ 2011). At the start of a course, participants fill out an online
questionnaire. The collected data are then automatically used in the exercises and are also
incorporated into the presentation slides. Participants are able to identify their data in vari-
ous graphics, tables and other output. At various times, participants have to do interactive
exercises using point and click directly in the browser. An online client/server based tool was
developed which includes (among others) single- and multiple choice questions, animated and
interactive examples. All clicks and answers from the participants are automatically saved on
the server and aggregated statistics (feedback) are generated automatically in order to show
clearly if the examples were correctly solved. In a teacher-interface, trainers can select certain
examples which are then available for course participants. They also get feedback about how
many participants have already solved which question and the correctness of the solutions.
In the student-interface, the current exercises are available and listed ready to be selected.

Beside the development of the packages laeken, sparkTable, sdcTable, sdcMicro, sdcMi-
croGUI, VIM, VIMGUI, x12 and x12GUI, R is applied in the production process for sampling,
editing and imputation, estimation, analysis and output generation for several surveys. One
example could be the estimation regarding PEAAC (Program for the International Assess-
ment of Adult Competencies) or even the tourism statistics as well as the higher education
forecast where R is used for everything, also for producing reports (see, e.g., Radinger, Nacht-
mann, Peterbauer, Reif, Hanika, Kowarik, and Lehner 2014).

4.2. Use of R at the national statistical office at UK

The National Statistical Office of UK started to use R version 2.0.1. in 2004. Employees train-
ing is done since 2005. In 2011 an R testing group was established consisting of members of
the methods and IT department, with the aim of testing disclosure control tools and standard
graphics using R. Since 2012 an R development group has been installed, whose objective was
to test if R, and related specialized packages, are ready for use in the production environ-
ment. Several applications were investigated in the past. R was used to call X12ARIMA. In
addition, the dlm package (Petris 2010) was used to calculate the unemployment statistics.
The survey package is used for the Labor Force Survey (panel design). The survey error
correlation problem induced by this rotating panel is considered, specifying a multivariate
model according to time series of five waves (a selected household will be surveyed five times
in row, 1/5 of households are exchanged) of the rotating panel. The spatstat package and
its kernel smoothing features (Baddeley and Turner 2005) are used to visualize crime data
at postcode level. The MortalitySmooth package (Camarda 2012) has been used for mortal-
ity rates estimation (Brown, Mills, Ayoubkhani, and Gallop 2013). Hereby, the (smoothed)
mortality against age per year are presented in heat maps.

Currently, the survey and ReGenesees packages are tested and other statistical functions are
implemented for the national accounts database CORD.



Austrian Journal of Statistics

4.3. Use of R at the national statistical institute of Romania

The National Statistical Institute of Romania established the Romanian R team in 2013. They
organized already two international workshops on New Challenges for Statistical Software -
The Use of R in Official Statistics, the last held in Bucharest in April 2015.

One course was given with the title Introduction in SAFE estimation techniques with application
in R whereas the JoSAE package was used. Several other courses on R are planned.

Various R packages play an important role for the Business Register Department, due to
the need of using of administrative data in the production of business statistics. Hereby, R
is used because of its flexibility and powerful tools for editing, validation of data and data
imputation. The quality of data is in general evaluated and reported using existing tools in
R. Probabilistic record linkage methods are applied to merge enterprises from different data
sources on the basis of names and address information. The Department of Indicators on
Population and International Migration uses the package JoSAE for the application of small
area estimation techniques. It is used to produce data on annual international migrant stocks.
The Department of Social Statistics tests the use of R for sampling. Particularly packages
ReGenesees, vardpoor and survey are tested for use in the production according to variance
estimation for household surveys.

More information can be found in (Dobre and Adam 2014).

4.4. Use of R at the national statistical institute of Serbia

The Statistical Office of Serbia uses the laeken package for poverty estimation. They compared
the results obtained with laeken to those obtained with SAS® Macros provided by Eurostat.
They also use R for estimations on the monthly retail trade survey. They use the package
XLConnect to read and write Microsoft Excel files from within R.

4.5. Use of R at Statistics Netherlands

Statistics Netherlands started using R in a systematic manner already in 2010, see van der
Loo (2012). A knowledge center was built up, an internal wiki provides code examples and
serves as a platform for knowledge sharing. Every employee who wants to use R participates
in training courses that are offered internally in the office. Statistics Netherlands distinguishes
between three installations of R:

e the production installation is the smallest one,
o the analysts installation includes more packages and

o the researchers installation includes all tools which are useful for the development of
R code including the RTools (https://cran.r-project.org/bin/windows/Rtools/) which
facilitate the infrastructure for R package building on Microsoft Windows platforms.

Currently R is installed on approximately 160 individual computers and it is used mainly
for data manipulation tasks, regression analysis, visualizations and data editing. Examples
of R use in the statistical production process include the estimation of the Dutch Hospi-
tal Standardized Mortality Ratio (HSMR), the estimation of certain unemployment figures,
estimation of tourist accommodations, and manipulation of supply and demand tables for
National Accounts, see van der Loo (2012). Statistics Netherlands uses R also for data col-
lection and web crawling with web robots, and for collecting data for compilation of price
statistics.

Several packages were developed by Statistics Netherlands. The editrules package for data
editing and the deducorrect package for deductive correction and deductive imputation, see
Section 3.3. With the rspa package numerical records can be modified to satisfy edit rules.
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These packages are used for automatic data editing system in child care center statistics.
NET/SQL is used to communicate between R and the database.

Also packages for visualization were developed by Statistics Netherlands and submitted to
CRAN: treemap, tableplot and tabplotd3. The package LaF can import large ASCII files. In
addition, Statistics Netherlands also developed the packages stringdist, docopt, ffbase, daff
and whisker.

4.6. Use of R at UNIDO

The statistical business process of international organizations is slightly different from that in
the national statistical offices. International organizations like the United Nations Industrial
Development Organisation (UNIDO) do not carry out surveys, but collect and aggregate data
from national authorities (statistical offices, ministries, governmental departments) and create
multivariate cross-sectional time series for their analysis and for further dissemination. The
statistical activities of UNIDO are defined by its responsibility to provide the international
community with global industrial statistics and meet internal data requirements to support
the development and research program of the organization. Currently, UNIDO maintains
an industrial statistics database, which is regularly updated with the data, collected from
national statistical offices and OECD (for OECD member countries). UNIDO also collects
national accounts-related data from the National Accounts Main Aggregates Database of
UNSD, the World Development Indicators of the World Bank and other secondary sources.
Such data are primarily used to compile statistics related to Manufacturing Value Added
(MVA); its growth rate and share in gross domestic product (GDP) in various countries
and regions. UNIDO disseminates industrial data through its publication of the International
Yearbook of Industrial Statistics, CD products and through the newly developed online portal
at http://stat.unido.org.

The statistics team in UNIDO started using R already in 2008, when the migration of the
complete statistical system from a mainframe to a client/server architecture was completed.
While the main production line is still in SAS® and .NET, all new applications and tools are
developed in R. UNIDO has published two research papers on the topic R in the Statistical
Office (Todorov 2010; Todorov and Templ 2012). These papers present an overview of R,
which focuses on the strengths of this statistical environment for the typical tasks performed
in national and international statistical offices and outline some of the advantages of R using
examples from the statistical production process of UNIDO where certain steps were either
migrated or newly developed in R. One example application emphasizes the graphical excel-
lence of R as applied for generating publication quality graphics included in the International
Yearbook of Industrial Statistics (UNIDO 2014). The graphics together with the related text
are typeset in ITEX using the R tool for dynamic reporting Sweave. Another application
illustrates the analytical and modeling functions available in R and and within add-on pack-
ages (see Boudt, Todorov, and Upadhyaya 2009). These are used to implement a nowcasting
tool for Manufacturing Value Added (MVA) to generate estimates for UNIDO publications.
Functions from the package for robust statistics robustbase (Rousseeuw, Croux, Todorov,
Ruckstuhl, Salibian-Barrera, Verbeke, and Maechler 2013) are used for this purpose.

UNIDO has developed several packages for internal use, but some of the packages are also
available online. The package Cltools provides tools for computation and evaluation of com-
posite indicators. It was developed for computing and analysis of the UNIDO’s Competi-
tiveness Industrial Performance Index (UNIDO 2013) and is available from R-Forge (https:
//r-forge.r-project.org/projects/cia/).

The World Input-Output Database (WIOD) (Timmer, Erumban, Gouma, Los, Temurshoev,
de Vries, Arto, Genty, Neuwahl, Rueda-Cantuche, Villanueva, Francois, Pindyuk, Poschl,
Stehrer, and Streicher 2012) is a new public data source which provides time-series of world
input-output tables for the period from 1995 to 2009. The package rwiot developed by UNIDO
provides analytical tools for exploration of the various dimensions of the internationalization
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of production through time and across countries using input-output analysis. The package
contains functions for basic (Leontief and Goshian inverse, backward and forward linkage,
impact analysis) as well as advanced (vertical specialization) input-output analysis. Compo-
sitional data analysis techniques (Facevicova, Hron, Todorov, Guo, and Templ 2014) can be
applied to study the interregional intermediate flows by sector and by region.

UNIDO’s technical assistance to developing countries and countries with economies in transi-
tion is aimed at either creating a new industrial database or improving the existing statistical
system. Through its technical support, UNIDO promotes the quality assurance of industrial
statistics by statistical projects that are designed to assist in producing accurate, complete
and internationally comparable statistical data. As a main statistical tool for data manage-
ment and analysis the R environment is promoted. Training materials, example data sets and
packages are prepared and courses are carried out, but still a lot of work is necessary to make
R the statistical software of choice in the developing countries.

5. Examples

In the following section we provide two examples of R in official statistics. The first one
illustrates the estimation of gender pay gap while the second one gives a short overview of
anonymization of data.

5.1. Indicators and models from SES

In the European Union the gender pay gap is estimated from the Structure of Farnings Survey
(SES) which is conducted in nearly all European countries. Similar surveys are collected all
over the world. SES data includes information on enterprise and employment level. Generally,
such linked employer-employee data are used to identify the determinants/differentials of
earnings, but some indicators are also directly derived from hourly earnings, like the gender
pay gap or the Gini coefficient (Gini 1912). SES is a complex survey of enterprises and
establishments with more than 10 employees (e.g. 11.600 enterprises in Austria), NACE (an
European industry standard classification system consisting of a 6 digit code) C-O, including
a large sample of employees (in Austria: 207.000). The sampling units can be selected using
the sampling (Tillé 2006) or the simFrame (Alfons et al. 2011b) package, for example. In
many countries, a two-stage design is used, whereby a stratified sample of enterprises and
establishments on the NACE 1-letter section level, NUTS! (Nomenclature of Territorial Units
for Statistics) and employment size range is used in the first stage, and large enterprises may
have higher inclusion probabilities. In stage 2, systematic sampling or simple random sampling
is applied on each enterprise to sample employees. Often, unequal inclusion probabilities
regarding employment size range categories are included here.

Unit non-responses can be considered by applying calibration through survey (Lumley 2010),
sampling or ReGenesees packages. It is also important to understand the behavior of non-
response items. To analyze the missing values structure using exploratory and visual tools,
the package VIM (Templ et al. 2012) can be used. VIM also provides model-based imputation
methods built on robust estimates that can deal with all kinds of variables. For example, one
of the functions irmi or kNN can be used to impute item non-responses in the data. Calibration
is applied to represent some population characteristics corresponding to NUTS 2 and NACE 1-
digit level, but calibration is also carried out for the gender characteristic (number of males
and females in the population). Here, the package survey, sampling or the calibWeights
function from the package laeken (Alfons and Templ 2013) or simPop can be used.

Our example focuses on the gender pay gap as implemented in the R-package laeken (Alfons,
Holzer, and Templ 2011a; Alfons and Templ 2013). The classical estimates — presented
here as breakdown by education — are obtained by the gpg() function, assuming that the
analyzed data are stored as a data frame. The print method for the resulting objects displays
the estimates — the overall estimate and the estimates from the chosen breakdown. Not
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surprisingly, the sampling weights were specified by the weights argument. The code for
estimation of the Gender Pay Gap using the package laeken is as follows:

> library("laeken")
> data("ses")

> gl <- gpg(inc = "earningsHour", method = "median",
gender = "sex", weigths = "GrossingUpFactor.x",
breakdown = "education", data = ses)

> gl

gl

Value:

[1] 0.1938192

Value by stratum:

stratum value
1 ISCED O and 1 0.2086474
2 ISCED 2 0.1487547
3 ISCED 3 and 4 0.1695580
4 ISCED bA 0.2974547
5 ISCED 5B 0.2198194

The variance of these point estimates are estimated using the syntax below. Here, a calibrated
bootstrap is applied for variance estimation (Alfons and Templ 2013).

variance("earningsHour", weights = "GrossingUpFactor.x",
gender="Sex", data = x, indicator = gil,
X = calibVars(x$Location), breakdown="education", seed = 123)

Value:
[1] 0.1938192

Variance:
[1] 2.078831e-05

Confidence interval:
lower upper

0.2253051 0.2439922

Value by stratum:

stratum value
1 ISCED O and 1 0.2086474
2 ISCED 2 0.1487547
3 ISCED 3 and 4 0.1695580
4 ISCED b5A 0.2974547
5 ISCED 5B 0.2198194

Variance by stratum:

stratum var
1 ISCED O and 1 1.362429e-03
2 ISCED 2 9.451208e-05
3 ISCED 3 and 4 2.191488e-05
4 ISCED 5A 2.218666e-04
5 ISCED 5B 2.475571e-04
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Confidence interval by stratum:

stratum lower upper
1 ISCED O and 1 0.1772622 0.3200365
2 ISCED 2 0.1525004 0.1888864
3 ISCED 3 and 4 0.1951637 0.2142648
4 ISCED 5A 0.3024255 0.3652755
5 ISCED 5B 0.1728143 0.2363946

However, since the gender pay gap is very sensitive to outliers, it is recommended to apply
robust methods (Hulliger, Alfons, Filzmoser, Meraner, Schoch, and Templ 2011). The follow-
ing code snippet shows how to estimate robustly the gender pay gap using semi-parametric
modeling (for details, see, Alfons, Templ, Filzmoser, and Holzer 2011c; Hulliger et al. 2011)
and replacing the outliers in the tail with estimates from the modeled Pareto distribution.

ts <- paretoScale(x$earningsHour, w = x$GrossingUpFactor.x)

# estimate shape parameter
fit <- paretoTail(x$earningsHour, k
w = x$GrossingUpFactor.x)

ts$k,

# replacement of outliers
earningsHour <- replaceQut(fit)

# fit of the gender pay gap
gpg(earningsHour, weights = x$GrossingUpFactor.x)

To illustrate model-based estimations and to show (a very simple) model-fitting functionality
of R, we choose a model described in Marsden (2010) which was applied in the PiEP Lissy
project (http://cordis.europa.eu/docs/publications/8260/82608181-6_ en.pdf). This model is
also used in Dybczak and Galuscak (2010). OLS regression models are fitted and the gross
log hourly earnings of workers in enterprises are modeled, see below.

1ml <- 1m(log(earningsHour) ~ Sex + age + I(age™2) + education +
Occupation, data=x)
summary (1m1)

The predicted values for the hourly earnings can then be used to estimate the gender pay
gap. With the summary () method, the effect of gender, age, education and occupation on the
hourly earnings can be displayed. A bunch of diagnostic plots are available with plot (1m1).

5.2. Anonymization of SES

Typically, statistical data are published on the web in tabular form. However, the tabulated
information may allow to identify individuals. To avoid the disclosure of individuals in tabular
data, primary and secondary suppressions can be made with the help of the package sdcTable
(Meindl 2014). Once the hierarchies are specified, the function protectTable() allows to
apply various algorithms to anonymize the tables.

However, researchers from various institutions often need microdata for more detailed analysis.
If linkage of the SES data with externally released data sources is successfully based on a
number of identifiers (key variables), the intruder will have access to all the information
related to a specific corresponding unit in the released data. This means that a subset of
critical variables can be exploited to disclose everything about a unit in the data set.

The code listed below shows how to set up the disclosure scenario for the SES data. First
an object of class sdcMicroObj is created by using function createSdcObj () (from package
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sdcMicro) that includes all information on the disclosure scenario. For example, the disclosure
risk of our data corresponding to the key variables is already available in the resulting object.
We selected categorical and continuous key variables as well as we specified the variable
holding information on the sampling weights.

library("sdcMicro")

sdc <- createSdcObj(x,
keyVars = c('Size', 'age', 'Location', 'economicActivity'),
numVars = c('earningsHour', 'earnings'),
weightVar = 'GrossingUpFactor.y')

print(sdc, "freq")

Number of observations violating

- 2-anonymity: 4979
- 3-anonymity: 11291

Percentage of observations violating
- 2-anonymity: 2.49 %
- 3-anonymity: 5.65 %

print(sdc, "risk")

0 obs. with higher risk than the main part
Expected no. of re-identifications:
4956.19 [ 2.48 %]

From this output it is easy to see the large number of unique combinations from cross-
tabulating the categorical key variables. However, relative to the size of the data (199909
observation) this number is not that large as it looks at the first view, it is about 2.5% of the
observations. Nevertheless, certain number of observations may have a considerable higher
individual risk, see the last line in the previous code snippet. For details on risk estimation
(also on other methods available in the package) we refer to Franconi and Polettini (2004) and
Templ et al. (2015). It is necessary to recode some categories of the key variables to receive
a lower number of uniqueness as well as to apply local suppression as well as anonymizing
the continuous key variables. Functions globalRecode and groupVars (for global recoding),
localSuppression (heuristic algorithm performing local suppression), microaggregation,
and many other methods can be directly applied on the object sdc.

As an example, below the code is shown how to add correlated noise (Brand 2004) to continu-
ously scaled key variables. The parameter noise determines how many noise (in percentages)
is added.

sdc <- addNoise(sdc, noise=100)

In the object sdc all information about disclosure risk and data utility is saved (see the
corresponding print methods from the manual). For further reading we refer to Templ et al.
(2015) and (Templ, Kowarik, and Meindl 2014a).
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5.3. Accessing international statistical databases with R

When conducting economics studies, like competitiveness analysis or benchmarking, it is
necessary to access different sources of data. Many international organizations maintain sta-
tistical databases which cover certain types of data: COMTRADE, UNCTAD and WTO for
international trade data, World Development Indicators (WDI) from the World bank, World
Economic Outlook (WEOQO) and International Financial statistics (IFS) from the International
Monetary Fund (IMF), the Industrial statistics databases (INDSTAT) by UNIDO and many
more. Some of these organizations already provide an application programming interface
(API) for accessing the data which tremendously facilitates the use of these databases. Here
we will consider several examples of accessing such databases using code written in R. For
some of these APIs R packages are already available, for others only examples of R code are
provided.

World Development Indicators

The flagship publication of the World Bank, World Development Indicators, presents a com-
prehensive collection of cross-country comparable development indicators, compiled from
officially-recognized international sources. The database contains more than 1300 time se-
ries for more than 200 economies. The countries and areas are presented in more than 30
groups, with data for many indicators going back more than 50 years. The statistical tables
are available online and are consistently updated based on revisions to the World Develop-
ment Indicators database. An API is provided by the World Bank which offers direct access
to information contained in the World Bank databases. The data can be accessed by country,
by type, by topic and more. The CRAN package WDI makes it easy to search and down-
load data from the WDI. The package contains essentially two functions — WDIsearch() for
searching for data and WDI() for downloading the selected data into a data frame. Let us
search for example for indicators related to CO2 emissions:

library ("WDI")
co2list <- WDIsearch("CO2 emissions")
head(co2list)

indicator name

] "EN.ATM.CO2E.CP.KT" "CO2 emissions from cement production (thousand metric tons)"
"EN.ATM.CO2E.FF.KT" "CO2 emissions from fossil-fuels, total (thousand metric tons)"
"EN.ATM.CO2E.FF.ZS" "CO02 emissions from fossil-fuels (% of total)"
"EN.ATM.CO2E.GF.KT" "CO2 emissions from gaseous fuel consumption (kt) "
"EN.ATM.CO2E.GF.ZS" "CO2 emissions from gaseous fuel consumption (% of total) "
"EN.ATM.CO2E.GL.KT" "CO2 emissions from gas flaring (thousand metric tons)"

e e e e

The function WDIsearch() uses grep, which allows to use (case-insensitive) regular expres-
sions. For example if searching for manufacturing value added at constant prices we could
write:

WDIsearch("manufacturing.*value.*constant")

indicator name
[1,] "NV.IND.MANF.KD" "Manufacturing, value added (constant 2005 US$)"
[2,] "NV.IND.MANF.KN" "Manufacturing, value added (constant LCU)"

Having identified the indicator we need, e.g. NV.IND.MANF.KD for Manufacturing, value added
(constant 2005 US$) we can download the data for one or more countries. Let us download
also the total population (indicator ’SP.POP.TOTL’) for the same countries and compute
MVA per capita.
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df .mva <- WDI("NV.IND.MANF.KD", country=c("IN","MY","ID"), start=1970, end=2013)
df .pop <- WDI("SP.POP.TOTL", country=c("IN","MY","ID"), start=1970, end=2013)

df <- merge(df.pop, df.mva)

names (df) [4:5] <- c("POP", "MVA")

df$MVACAP <- round(df$MVA/df$POP)

head (df)

iso2c country year POP MVA MVACAP
1 ID Indonesia 1970 114066887 2750076402 24
2 ID Indonesia 1971 116996006 2836927088 24
3 ID Indonesia 1972 119974444 3265345458 27
4 ID Indonesia 1973 123002081 3763262762 31
5 ID Indonesia 1974 126080548 4371172606 35
6 ID Indonesia 1975 129210098 4909605912 38

Figure 4 shows the MVA for the selected countries.
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Figure 4: Manufacturing value added (MVA) per capita in India, Indonesia and Malaysia,
using data from World Development Indicators.

UN COMTRADE

The United Nations Commodity Trade Statistics Database (UN COMTRADE) contains an-
nual international trade data for over 170 reporter countries, detailed by commodities and
partner countries. This is the largest repository of international trade data. All values are
converted from national currency into current US dollars using exchange rates supplied either
by the reporter countries, or derived from monthly market rates and volume of trade. The
data are reported in current classification and revision — Harmonized system (HS) in most
cases — and are converted all the way down to the earliest classification SITC revision 1.
The time series start as far back as 1962 and go up to the most recent completed year. The
data are available from Internet at http://comtrade.un.org/db/default.aspx, but recently a
new API was developed (still in beta version). A HTTP GET request is sent to the URL
http://comtrade.un.org/api/get?... and the output may be (currently) in comma-separated
values (CSV) or JSON format. In the following will be shown how to use this API for simple
data queries. First let us get the list of all reporting countries and areas and find the codes
of some countries — which we will use later for retrieving the data.

## Read the list of all reporting countries/areas
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library("rjson")

jsonFile <- "http://comtrade.un.org/data/cache/reporterAreas. json"
repCountry <- fromJSON(file=jsonFile)

repCountry <- as.data.frame(do.call(rbind, repCountry[[2]]))

colnames(repCountry) <- c("code", "name")

head (repCountry)
code name

1 all A1l

2 4 Afghanistan

3 8 Albania

4 12 Algeria

5 20 Andorra

6 24 Angola

subset (repCountry, name %in% c("Austria", "Bulgaria"))
code name

13 40 Austria
33 100 Bulgaria

The code of Bulgaria is 100 and of Austria is 40. Let us now build a query and retrieve all
trade flows (imports and exports) from Bulgaria to Austria in 2010. Only the total for all

commodities will be requested. All other parameters remain defaults.

comtradeURL <- "http://comtrade.un.org/api/get?"

ps <- "2010" # one year

r <- 100 # reporting country=Bulgaria
p <- 40 # partner = Austria

rg <- "all" # trade flow

cc <- "TOTAL" # total of all commodities

comtradeURL <- pasteO(comtradeURL,

"ps=", ps, "&", # time period
"r=", r, "&", # reporting area
"p=", p, "&", # partner country
"rg=", rg, "&", # trade flow
"cc=", cc, "&", # commodities
"fmt=csv", # format is CSV
Sep = n H)

dd <- read.csv(comtradeURL, header=TRUE)

dd

Classification Year Period Period.Desc. Aggregate.Level

1 H3 2010 2010 2010 0
2 H3 2010 2010 2010 0
Is.Leaf.Code Trade.Flow.Code Trade.Flow Reporter.Code Reporter
1 0 1 Import 100 Bulgaria
0 2 Export 100 Bulgaria
Reporter.ISO Partner.Code Partner Partner.ISO Commodity.Code
1 BGR 40 Austria AUT TOTAL
2 BGR 40 Austria AUT TOTAL

Commodity Qty.Unit.Code Qty.Unit Qty Netweight..kg.
1 A1l Commodities 1 No Quantity NA NA
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2 A1l Commodities 1 No Quantity NA NA
Trade.Value..US.. Flag

1 882147923 0

2 388469998 0

Similarly, data can be downloaded from COMTRADE using JSON. Other formats (Microsoft
Excel, SDMX) are planned. The maximum number of records is limited to 50.000 per data
query. For authorized users batch mode download through the API will be available. As
already mentioned, this is still an experimental API and for production is recommended to
us the legacy API.

6. Summary and conclusions

There is an increasing demand for statistical tools, which combine easy to use traditional
software packages with newest analytical methods and one very popular such tool is the
statistical programming language R. In this contribution, we briefly described its usefulness
in the daily work of statistical offices, listed and briefly presented the most popular R packages
for survey methodology.

The development of R packages for specific areas of official statistics is growing quickly. For
example, R provides many more methods for statistical disclosure control than any other
software package. The situation is similar in indicators methodologies and survey statistics,
especially new developments using robust methodology are available (see for example the
robust estimation of gender pay gap in the listing in Section 5). The development of such new
tools was strongly supported by international activities such as the AMELI project (Miinnich,
Alfons, Bruch, Filzmoser, Graf, Hulliger, Kolb, Lehtonen, Lussmann, Meraner, Nedyalkova,
Schoch, Templ, Valaste, Veijanen, and Zins 2011).

The usefulness and power of various R packages can be shown, whereas the field of application
is manifold. First, R can be used to work efficiently with data, either computing in memory
using new packages like dplyr and data.table or by connecting to databases. Specialized
packages allow the user-friendly application of R to many specific fields in official statistics and
survey methodology, as shown in the example section for survey statistics and remote access
to statistical databases. Infrastructure for R is provided in various national and international
statistical offices; this includes the distribution of R, the internal organizational support,
the development of packages and holding training courses on R. Our contribution gives an
outline of the usefulness of R for statisticians, methodologists, subject matter specialists and
statistical stakeholders in the area of official statistics and survey methodology.

And finally note that R is not only freeware, free software and open-source, one of the greatest
advantages of R is its online support (Tippmann 2015).
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