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Abstract

In this article, we introduce the novel GCPM package, which represents a generalized
credit portfolio model framework. The package includes two of the most popular model-
ing approaches in the banking industry, namely the CreditRiskt and the CreditMetrics
model, and allows to perform several sensitivity analyses with respect to distributional or
functional forms assumptions. Therefore, besides the pure quantification of credit port-
folio risk, the package can be used to explore certain aspects of model risk individually
for every arbitrary credit portfolio. The way the package is implemented combines a high
level of flexibility and performance together with a maximum of usability. Furthermore,
the package offers the possibility to apply simple pooling techniques to speed up calcula-
tions for large portfolios as well as the opportunity to combine simulation models with a
user specified importance sampling approach. The article concludes with a comprehensive
example demonstrating the flexibility of the package.

Keywords: credit risk, portfolio model, model risk, R, Monte Carlo simulation, pooling,
CreditRisk™, CreditMetrics.

1. Introduction

Banks apply credit portfolio models in order to quantify the amount of economic capital
which must be withheld in order to cover unexpected losses caused by credit defaults. As
the financial crisis had shown very impressively, the use of quantitative models is always
accompanied by a certain amount of model risk which has to be taken into account whenever
decisions or price evaluations are based on them. Nowadays, banks are explicitly requested
by supervisors to validate their quantitative models and to quantify model risk (see Board
of Governors of the Federal Reserve System 2011). Ignoring model risk can lead to wrong
management decisions and an underestimation of the true risk. The GCPM package addresses
both of these issues — quantification of credit risk and an analysis of the underlying model
risk.

A great advantage of GCPM over other available packages for R (R Core Team 2014), like
QRM (Pfaff and McNeil 2014) or CreditMetrics (Wittmann 2007), is that it utilizes an object
oriented approach, where one object consists of a specified model together with all portfolio
information and risk figures (once the portfolio loss distribution was estimated). Therefore,
it is easy to handle different models (or portfolios) simultaneously without jeopardizing their


http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v45i1.87
www.osg.or.at

26 GCPM: A Flexible Package to Explore Credit Portfolio Risk

consistency. As the example in Section 5 will show, performing comparison or sensitivity
studies is very simple. In addition, the package is able to deal with large portfolios. On the
one hand, portfolios with several thousands of counterparties can be used, whereas in our tests
the CreditMetrics package was unable to handle more than one hundred portfolio positions.
On the other hand, and in contrast to the QRM package®, risk parameters like the probability
of default, the loss ratio in case of a default, the exposure and the assignment to a specific
industry sector and country affecting the default dependencies can be defined individually
for each counterparty. Together with a C4+-+ implementation of the simulation framework,
which takes advantage of modern multi-core systems, the package combines flexibility regard-
ing counterparty characteristics and distributional assumptions with good performance and
makes it suitable for practical applications. Moreover, for advanced users, simulation models
can be combined with self-defined importance sampling techniques and counterparty pooling
approaches in order to stabilize simulation results and to increase performance furthermore.

Please note that we will not address any questions regarding the parametrization of the
models. In contrast, in order to guarantee a maximum flexibility regarding the distributional
assumptions, we have to leave this task up to the user. However, we will provide several
examples and demonstrate how already existing packages and basic R functions can be used
to construct a parametrization (i.e. a sample from the multivariate sector distribution). For
those who are interested in this topic, we refer to Hamerle and Résch (2006). Please also note
that the package focuses on credit risk only with respect to default events, i.e. migration risk
is not considered.

The article is organized as follows. A short overview of credit portfolio models together with
common notation is given in Section 2. Afterwards, we present the simulation framework and
the derivation of risk contributions. The last section contains a hypothetical example, explain-
ing how the package GCPM can be used to quantify credit and model risk. Here, starting
from the basic CreditRisk™ model (see Credit Suisse First Boston International 1997), which
is characterized by certain distributional assumptions, we show how risk figures might change
if these assumptions are modified. Along with this, the available functions of the package
are introduced including a simple pooling technique which will be useful for homogeneous
portfolios (e.g. retail portfolios).

2. Credit portfolio modeling

2.1. Input data, loss distribution and risk figures

The key function of a classical bank is to hand out loans to enterprises or private persons.
For reason of simplicity, let us assume that the loan portfolio consists of M loans given to M
different counterparties or obligors. In this situation the bank faces the risk that one or more
obligors default which means that they are not able or willing to pay back the out-standing
amounts (principal and interests) which, in turn, leads to financial losses. The main purpose
of a credit portfolio model is to forecast the portfolio loss distribution for the underlying
loan portfolio and a fixed time interval, usually one year. Regardless of the specific modeling
approach (two of them are introduced in the subsequent sections), every model requires the
following set of information on each counterparty :

e The exposure at the time of default (EAD;),
e the probability of default (PD;) for the given time horizon, usually one year,

e the loss given default rate (LGD;) or recovery rate (RR;= 1 — LGD;, amount recovered

'The QRM package also provides the possibility to evaluate so-called Bernoulli mixture models but only
with respect to the number of defaults. Therefore, analyzing a portfolio with different default probabilities,
exposures and sector affiliations is not possible.
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through foreclosure or bankruptcy procedures in the event of default, expressed as a
percentage of EAD;) and

e the assignment of the obligor to predefined industry and/or country sectors in order to
rebuild the dependence structure of the portfolio.

With this notation, the overall portfolio loss L reads as

M M
L:=) Li=)» D;-LGD; EAD;,

i=1 =1

where D; ~ Ber(PD;) is the default indicator? for obligor i (i.e. PD; = P(D; = 1)).

Under the assumption that the parameters LGD and EAD are deterministic and the loss
distribution F7, has already been derived, the following key figures are required for the bank’s
risk reporting and management information (see also Figure 1 for a graphical representation):

e Expected loss E(L) = Zz]\il PD, - LGD, - EAD;.

1/2

Standard deviation SD(L) = |3"_ EAD; - EAD; - LGD; - LGD, - Cov (D;, D) | .

Value at Risk VaR,, := inf{l|FL(I) > a} for a specified level a € (0,1).

e Economic capital EC,, := VaR, — E(L).

Expected shortfall or expected tail loss ES,, := E(L|L > VaRy,).

N, _economic
capital
=
‘0
c
o}
©
T
portfolio loss
EL VaR, ES,

Figure 1: General portfolio loss distribution with risk figures.

In practice, VaR, and EC,, constitute the relevant risk measures. For example, in the regula-
tory framework of Basel II (see Basel Committee on Banking Supervision 2006), a loss level
of a =0.999 is used to quantify the economic capital.

Whereas the expected loss can be calculated directly from the raw portfolio data, the cal-
culation of the loss distribution in general is a crucial issue. It requires the knowledge of
the dependence structure (so-called “default correlations”) between the M default indicators
Dq,...,Dy;, where M is typically large. To simplify this problem and reduce the dimen-
sion, every counterparty is assigned to one or more out of K < M industry and/or country
sectors such that dependence between obligors can be traced back to the belonging to same
sectors and to the dependence structure between them. The sectors themselves are modeled
via a (multivariate) latent variable S which is distributed according to some K-dimensional
distribution® on R¥.
?Ber(p) denotes the Bernoulli distribution with success probability p € (0,1).

3How the concrete sector distribution looks like depends on the type of portfolio model (i.e. on the link
function) and the calibration, which will be discussed on the following pages.
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The GCPM package deals with two of the most popular credit portfolio models, namely
CreditRisk* and CreditMetrics, which are briefly summarized in the following subsections.
Whereas CreditRisk™ and its generalizations provide an analytic solution under certain re-
strictive distributional assumptions, CreditMetrics calculates the portfolio loss distribution
within a simulation framework which is more flexible but also more time-consuming. For
further details on these portfolio models we also refer to Crouhy, Galai, and Mark (2000) or
Gordy (2000) who provide an excellent comparative analysis of these models.

2.2. The CreditRisk™ model

The CreditRisk™ model was developed by the Financial Products division of Credit Suisse
in 1997, see Credit Suisse First Boston International (1997) for a detailed documentation. It
belongs to the class of so-called Poisson mixture models where the intensity of the Poisson
distribution (which approximates the Bernoulli distribution of the default indicator D;) it-
self is driven by Gamma-distributed random variables. Relying on these specific stochastic
assumptions and a discretization of the exposures, it is possible to express the probability
mass function of the portfolio loss (or, equivalently, its probability generating function*) in
a closed analytical form, which is a great advantage of CreditRisk™ and its major difference
to its competitors. Hence, even for larger portfolios the risk figures can be obtained within a
reasonable run-time.

More formally, the basic idea of the model can be summarized as follows: In a first step, a

discretization parameter Lg, called loss unit is introduced. All exposures are approximated

EAD,;-LGD;
Lo

nearest integer value to x. The default probabilities are adjusted such that the discretization
does not affect the expected loss. The adjusted PD is given by

ﬁ)z‘ _ EAD; - LGD; - PDi.

by an integer multiple of this unit via v; = max {{ J ,1}, where [z]| denotes the

(1)

As for the calculation of the loss distribution, the loss unit represents the width of the expo-
sure bands on which the marginal probabilities are calculated. For more details, please see
Credit Suisse First Boston International (1997, para A 3.2).

VZ'-L()

Secondly, a further key assumption is to replace the default indicator D; (naturally Bernoulli
distributed) with a Poisson distributed random variable D, with intensity parameter \;. This
assumption is necessary in order to compute the portfolio loss distribution analytically. Be-
cause, in most cases, A\; will be very small, the approximation error is not substantial. But if
credit quality decreases, the effect of multiple defaults becomes crucial.

Finally, the intensity parameter of each obligor is mapped onto one or more (economic) sectors
in order to introduce dependence between the counterparties belonging to the same sector
via sector weights. Given a sector realization s = (s1,...,sx)? of S, the conditional default

intensity reads as:
K
A == PD; (le‘,O +) wl;ks;g) : (2)

k=1
with

e the individual adjusted ﬁ)i,

e individual sector weights w; ; € [0, 1] for obligor ¢ with respect to sector k such that
Zszl w; p < 1 and the idiosyncratic weight w; o =1 — 22\7:1 Wi ks

“For a discrete random variable X with values in N, the probability generating function (PGF) is defined
as G(2) :=E (2%).
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e sector variables S, ..., Sk which are assumed to be mutually independent and Gamma
distributed with variance® o7 and E (Sg) = 1 such that E(Af) =PD; = \;.

Under these assumptions, the default correlation between obligor ¢ and j reads as:

L \/PD; - PD; K
COT <D1,Dj> = ]N Zwi,kw%kO’%.

/(1= PDy)(1 - PD;) i1

In order to calculate the probability mass function (PMF) of the portfolio loss, a modified®
version of the algorithm given in Haaf, Reiss, and Schoenmakers (2003) is used. The algorithm
calculates the marginal probabilities that the portfolio loss is equal to v - Ly with v € Ny. It
stops if a desired level of the cumulative distribution function (CDF) has been reached.

In order to keep the notation simple and comparable to the CreditMetrics model, we will
denote the adjusted PD with PD; as well, instead of PD;, in the remainder of this article.
Switching back to the original notation does not imply that this approximation is unimportant.
Please bear in mind that, if an inappropriately large loss unit Lg is used, the discretized PDs
and hence also the risk figures may be changed noticeably.

2.3. The CreditMetrics model

The CreditMetrics model, described in Gupton, Finger, and Bhatia (1997), is a typical rep-
resentative of so-called threshold models. The fundamental idea grounds on the firm value
model of Merton (1974). For each counterparty ¢ an asset value variable is defined as

A; = RIS +/1 - RI'SR;e;, (3)

where R; € {[-1,1] |R] R, < 1} determines the correlation of i’s asset value to the sys-
temic factors § ~ Nk (0,%)7. The idiosyncratic risk is expressed by ¢; ~ N(0,1) which are
independent from each other as well as from S. A default occurs if the asset value A; falls
below the default threshold, defined by ®~!(PD;) where ® denotes the distribution function
of a standard normal variable. Conditioning on a realization s of the systemic factor S the
probability of default is given by

&~ Y(PD;) — Rl's

\/1- RI'SR;

Using formula (3), the default correlation between two counterparties reads as:

PD = (4)

Cor (D;, Dj) = @5 (7 1(PD;), @ ' (PD;), R} R;),

where ®9(x1,x9,7) denotes the distribution function of a bivariate normal distribution with
correlation parameter r € [—1,1] and standard normal margins. The loss distribution is
achieved via a Monte Carlo simulation, as described in the next section.

3. Simulation models

Alternatively to the analytical version of the CreditRisk™ model, one can also use a simulation
setting. In this case, several distributional assumptions can be modified in order to analyze
model sensitivities. By changing the link function (i.e. replacing (2) by (4)), one can also

5The variance o7 can either be estimated from historical default data or using analytical approximations
based on the rating specific standard deviation of the PD, see Gundlach (2003).

5The loop-structure of the algorithm has been changed to calculate the CDF and the PMF simultaneously.

"Nk (a,X) denotes the K dimensional normal distribution with mean a and correlation matrix .
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switch to a CreditMetrics-like model. Consequently, an analysis of the risk figure sensitivities
with respect to the specific link function is also possible. Please take care that the sector
drawings (argument random.numbers of the init() function, see Table 1) meet the correct
distributional assumptions of the chosen model, defined via the link function, described in Sec-
tions 2.2 and 2.3. E.g. normally distributed sectors are not compatible with the CreditRisk™
setting. For each counterparty, the distribution of the default indicator D; can be chosen
individually between “Bernoulli” (natural choice) or “Poisson” (CreditRisk™- setting) within
the portfolio data (see Table 2). Depending on these three elements (sector distribution, link
function and default distribution), the basic idea of the simulation framework is to simulate
N different portfolio losses. Given these losses, the portfolio loss distribution and risk figures
can be estimated via the empirical loss distribution.

3.1. General simulation framework

Given a set of N € N5 (multivariate) sector drawings s . s e REK and a portfolio of
M counterparties, the general simulation framework of the GCPM package is as follows:

Algorithm 1 Basic simulation algorithm

For n =1,..., N #(simulation loop)
For i = 1,..., M #(counterparty loop)
Calculate conditional PD:
If 1ink.function == "CRP” then
ﬁﬁ”) =PD, - (wi,o + wiTs(”))
If 1ink.function == "CM” then

5™ _ &1 (PD;)-R}'s(™)
PD;" =@ < V1-RTSR;
Draw default:

If default; == "Bernoulli” then
D; ~ Bern(ﬁgn))
If default; == "Poisson” then
D; ~ Pois(PD™)
Determine counterparty loss:
L\ = D, - EAD, - LGD;
Determine portfolio loss:
LM = sz\il Lgn)

After the simulation, the portfolio losses L(™ are discretized with respect to the loss unit Lo,
in order to group losses for the calculation of the probability mass function. The distribution

. - - T
is estimated based on the discretized simulated portfolio losses L = (L(l), A )) , l.e.

N

FiL=)=+ > L) pem—p (), (5)

where 14 denotes the indicator function on set A. For reasons of performance, the simulation
algorithm is implemented in C++ and linked to the package via the Rcpp package (see
Eddelbuettel and Frangois 2011). In order to show the progress status, the ReppProgress
package (see Forner 2013) is needed as well. In order to avoid errors during the simulation,
please ensure that R can allocate enough memory from your operating system, by using the
R functions memory.size() and memory.limit(). In order to increase performance within
simulation models, one can also take advantage of multi-core systems. For this purpose, the
parallel package is required (see Section 5.3.4).
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3.2. Adaption of importance sampling techniques

In most cases, the risk figures are based on extreme scenarios with a low probability of oc-
currence. For instance, if the ESg g9 should be estimated on a basis of 10°® relevant scenarios
(in order to achieve a reliable estimation), one has to perform 107 simulations. If portfolios
include thousands of counterparties, the simulation will be very time-consuming and it will
need lots of memory. With the help of importance sampling techniques, one can “manipu-
late” the simulation such that extreme scenarios occur more often and tail measures can be
calculated on a higher number of simulated losses. Mathematically, importance sampling is
just a change of the probability measure from P to Pig. Instead of drawing random numbers
from P, one can draw from Pg where the probability of relevant scenarios is higher. The only
restriction is that

supp(f) C supp (fis) and fis(x) > 0, Ve € A,

where supp( f(IS)) denotes the support of the corresponding density functions and A is the
set of scenarios the risk measure is calculated on. In order to get an estimator with respect
to original measure P, the standard estimator (e.g. for the mean) has to be adjusted by the
so-called likelihood ratio

LHR(«'FIS) = LIS) with x5 ~ Ps.

 fis(zis)’

In our case, the standard estimator of the density function (5) changes to

1 (n)
FL=1= o0 2. LHR(L). (6)
SoL LHR(LE) |

Since a credit portfolio model in general contains a lot of different distributions, also the
range of application for an importance sampling algorithm is very wide. For example, one
could concentrate on the sector copula. Here, different approaches are possible. For instance,
one can simply strengthen the overall level of dependence by increasing the entries of the
dispersion matrix of a t-copula or by rising the degrees of freedom (e.g. see Mai and Scherer
2012). Another approach could be to concentrate on those sector drawings where extreme
scenarios (e.g. exceeding the 95%-quantile) occur jointly across different sectors (see Arbenz,
Cambou, and Hofert 2014). Additionally, one can also use importance sampling on the
marginal distributions by shifting the mean or increasing the variance and higher moments
or use a more sophisticated approach, see Glasserman and Li (2005).

Please note that, since the sector distribution itself can be defined arbitrarily by the user
and the possibilities of importance sampling are manifold, the package does not perform any
kind of importance sampling on its own. Instead, the sector drawings (random.numbers, see
Table 1) can be simulated with a user defined importance sampling approach and passed to a
portfolio model together with a vector of likelihood ratios, which will be respected when the
loss distribution is calculated. In this way, as in case of the random.numbers matrix, the user
has maximum flexibility to choose which approach is suitable in his or her situation.

For a more detailed introduction to importance sampling in general we refer to Rubino and
Tuffin (2009).

4. Identification of risk drivers

For a portfolio manager, it is important to know which obligors within the portfolio are riskier
than others. In order to identify such risk drivers, we briefly introduce different measures
which are available in the package for counterparty risk contributions, i.e. contributions
to standard deviation o of the portfolio loss, value at risk, economic capital and expected
shortfall. For a detailed derivation of the corresponding formulas in case of the analytical

31
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CreditRisk™ model, please refer to Credit Suisse First Boston International (1997) and Haaf
and Tasche (2002).

4.1. Analytical CreditRisk™ model

On counterparty level the following risk contributions (RC) can be calculated:

e standard deviation: RC] = % (PLi + Zszl azwi,k£k>, with o} denoting the
standard deviation of sector k and ¢ := >, w; j, - PD; - PL; denoting the expected loss
with respect to sector k,

K _ - '
e VaR,: RCZVaRO‘ = PD; -PLiZ’“=1 w’fé“(li(i@agj;% PLZ), where Lj, denotes the loss in sector
k, and
oz —PL; 25:1 wy kP(Lp=l)

. ESa .. . l=VaRq P
e ES,: RC,”* = PD;-PL; S B
loss a probability is calculated on (depending on alpha.max, see Table 1).

, where M is the maximum portfolio

Please note that depending on the loss unit Ly used for exposure discretization and the num-
ber of obligors within the portfolio, VaR contributions may be zero for some counterparties
because they do not default in the single VaR-event. Therefore, it is reasonable to consider
contributions to ES rather than VaR. Because ES is based on the upper tail of the loss
distribution rather than a single loss level, the mentioned problem does not occur using ES
contributions.

Finally, for all these measures it holds that the individual contributions sum up to the measure
calculated on portfolio level. Therefore, one can also analyze contributions, for example
on sector level (e.g. business lines or countries) by simply aggregating the corresponding
counterparty contributions.

4.2. Simulation models

Within the simulation framework, expected shortfall contributions can be calculated. For
this purpose, one has to define a loss threshold loss.thr>0, which should be lower to the

corresponding VaR but not too low in order to stress memory usage not too much. If the
(n)

portfolio loss L™ in scenario n is above loss.thr, all counterparty losses L;" are stored.
Counterparty risk contributions to ES on level a € (0, 1) are then calculated as:
1
RCPS: = > LHR(LE) - Ly, (7)

> nen, LHR(LE) 55

where N, := {n =1, ...7N|L(") > VaRa} denotes the set of all ES,- relevant scenarios.
Similar to the analytical CreditRisk*model it holds that Zf\il RC;.ES" = ES,.

For other tail measures (VaR and EC) the risk contributions are calculated with the same
approach but with respect to another level 7 € (0,1) such that ES; = VaR,, or ES,; = EC,,
respectively. Therefore, risk contributions to VaR and EC are approximated by risk contri-
butions to ES but on a lower level 7. Using the ES approach instead of a direct calculation
with respect to VaR or EC, risk contributions are much more stable because of the higher
number of scenarios used for the calculation.

Since the portfolio loss distribution is not continuous, level 7 for VaR/EC contributions is
chosen such that ES; is as close as possible to VaR, or EC,, respectively. If deviations are
greater or equal to 0.01% an appropriate message comes up.
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5. The GCPM package

The main component of the package is the S4 class GCPM. Besides this class there are some
additional functions, in particular for object creation. The class represents the whole portfolio
model framework. It contains all model specifications as well as the portfolio and the loss
distribution once it is estimated. In case of a simulation model, losses on counterparty level
are also stored depending on a predefined threshold loss.thr (see Table 1)

In the next sections we give a detailed overview of the most important features. A complete list
of all slots is available in the help pages of the package (see 7GCPM). The following examples
are based on the CreditRisk™ framework. Please note that the same analysis can be also
performed within a CreditMetrics framework.

5.1. General structure

The overall structure of the package is very intuitive. At first, one has to initialize a new model
using the init () function. The process of creation is as follows. Passing the input parameters
for a new model to the function creates a new object of class GCPM with the specified settings
(after some plausibility checks). For example:

library("GCPM")

sec.var <- c(0.2, 0.3, 0.4)

names (sec.var) <- c("A", "B", "C")

CRP.classic <- init(model.type = "CRP", loss.unit = 50000, alpha.max = 0.9999,
sec.var = sec.var)

## Generalized Credit Portfolio Model
## Copyright (C) 2015 Kevin Jakob & Dr. Matthias Fischer

##

## Thtis program is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public License
## version 2 as published by the Free Software Foundation.

##

## This program ts distributed in the hope that tt will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

## GNU General Public License for more details.

##

## You should have received a copy of the GNU General Public License
## along with this program; <f not, write to the Free Software

## Foundation, Inc., 51 Franklin Street, Fifth Floor,

## Boston, MA 02110-1301, USA.

The above code generates a GCPM model, named CRP.classic with the given attributes. For
some slots of the GCPM class, default values (e.g. for alpha.max) are provided, but they are not
necessarily the best choice. Considering this, one should better choose them individually for
each portfolio according to exposures, number of counterparties, and hardware restrictions.
Depending on the model. type, different arguments have to be provided. A summary is given
in Table 1 below.

After creating a new portfolio model, one can analyze a credit portfolio using the analyze ()
method. In case of an analytical CreditRisk™ model, the loss distribution will be calculated
by using the algorithm described in Haaf et al. (2003). For simulation models, the simulation
described in Algorithm 1 is used. If loss levels are provided via the parameter alpha, tail
measures are calculated automatically with respect to those levels. Otherwise, one can cal-
culate those measures afterwards with the corresponding methods as shown in the following
examples. The portfolio data frame has to follow the structure described in Table 2.

33
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model

Parameter Description
type

...is a numeric value between 0 and 1 defining the maximum

1lpha.
alpha.max CDF-level which will be computed.

CRP

...is a named numeric vector defining the sector variances. The
sec.var : . .
names have to correspond to the sector names given in the portfolio.

. is a character value, specifying the type of the link function

link.f ti
T Tunetion ("CRP" corresponds to equation (2) and "CM" to (4)).

. is a numeric value, defining the number of simulations.
N If N is greater than the number of scenarios provided via
random.numbers, scenarios are reused.

. is a numeric value used to initialize the random number generator.
seed If seed is not provided, a value based on the current system time
will be used. Therefore, the results are truly random in this case.

1 h . is a numeric value specifying a lower bound for portfolio losses
oss.thr ) . . . o
simulative to be stored in order to derive counterparties’ risk contributions.

. is a matrix with sector drawings. The columns represent the dif-
random.numbers | ferent sectors, whereas the rows represent the scenarios. The column
names must correspond to the sector names used in the portfolio.

. is a numeric vector of length equal to nrow(random.numbers)
LHR defining the likelihood ratio of each scenario. If not provided, all
scenarios are assumed to be equally likely.

. is the number of scenarios stored to calculate risk
max.entries contributions. The value should be set in consideration
of the amount of available memory.

Table 1: Arguments for init () in case of a simulation and an analytical model.

Number | Name | Business ‘ Country ‘ EAD ‘ LGD ‘ PD ‘ Default ‘ A ‘ B ‘ C ‘

1 Name 1 Energy US 358475 | 0.989 | 0.001 | Bernoulli | 1 | 0 | O
2 Name 2 IT DE 1089819 | 0.608 | 0.003 | Bernoulli | O | 1 | O

Table 2: Structure of the portfolio data frame.

5.2. Analyzing credit risk: A first example

Based on a portfolio distributed with the package (in the package’s data folder) consisting of
3000 counterparties and three industrial sectors, we offer an example to show how the package
works. We start from the CRP.classic model defined in the previous section.

library("GCPM")
data("portfolios")

CRP.classic <- analyze(CRP.classic, portfolio.pois)

## Importing portfolio data....

## 3 sectors ...

## 3000 counterparties (0 removed due to EAD=0 (0), lgd=0 (0), pd<=0 (0) pd>=1 (0))
##

## Portfolio statistics....

## Loss unit: 50 K

## Portfolio EAD:1.5 B
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## Portfolio potential loss:772.28 M

## Portfolio expected loss:130.69 M(analytical)

## Diversifible risk: 7.67 M Systematic risk: 41.41 M

## Portfolio standad deviation:42.11 M(analytical)

## Calculate the loss distribution till 0.9999-confidence level <s reached.

##

## Calculation completed. ..

## Reached level of confidence: 0.9999001591125 ( iterations actually done: 7073 )
##

## Calculating risk measures from loss distribution....

## Ezpected loss from loss distribution: 130.65 M

(deviation from EL calculated from portfolio data: -0.03%)

## Exceedance Probability of the expected loss:0.454820959078588

## Portfolio mean expected loss exceedance: 167.18 M

## Portfolio loss standard deviation:42.04 M

After deriving (or simulating) the loss distribution, risk measures like VaR, EC or ES can be
calculated with the help of the corresponding methods.

alpha <- ¢(0.995, 0.999)
VaR(CRP.classic, alpha)

## [1] 266100000 303350000

The probability mass function for the loss distribution together with indicators for tail mea-
sures can be plotted by using the plot () function. The second argument defines the scale of
the horizontal axis.

plot (CRP.classic, 1le+06, alpha)

Portfolio Loss Distribution

— VaR
— ES

5e-04

4e-04

3e-04

195 0.999
289.13 M 32527 M

Probability

2e-04

le-04

0e+00
|
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Finally, one can calculate risk contributions in order to identify particular positions in the
portfolio driving EC, VaR or ES.
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RC.cont <- data.frame(Name = name(CRP.classic), EC.cont(CRP.classic, alpha),
VaR.cont (CRP.classic, alpha), ES.cont(CRP.classic, alpha))
RC.cont[1:3, ]

#it Name EC.0.995 EC.0.999 VaR.0.995 VaR.0.999 ES.0.995 ES.0.999
## 1 Name 1 125170.64 170476.28 312088.98 378068.30 352293.31 419188.26
## 2 Name 2 15620.00 18351.49 22802.99 23955.69 23547.25 24518.83
## 3 Name 3 15006.43 20350.73 37055.76 44838.89 41798.39 49689.53

5.3. Modifying distributional assumptions

Besides the pure quantification of credit risk, the package assists in analyzing different aspects
of model risk related to distributional or functional forms assumptions. Starting from the
classic CreditRisk™ model (example of Section 5.2) we will show how the package can be used
to build much more flexible models and how to quantify model risk similar to the analyses
done by Jakob and Fischer (2014), Fischer and Mertel (2012) or Fischer and Kaufmann (2014).

A key element for this is the random.numbers matrix which represents the (multivariate)
sector distribution. Since the dimension of this matrix depends on the portfolio, i.e. on the
number of sectors used, the matrix has to be defined by the user. Additionally, the sector
distribution (expressed by random.numbers) also heavily depends on the economic sectors it
is associated with. L.e. the sector copula and the marginal distributions may be very different
across geographical regions and industries. Since this is a very crucial issue, which has also a
significant impact on the risk figures, this matrix must be defined by the user (i.e. no default
value is provided). Furthermore, in this way, the user has maximum flexibility to define the
sector distribution according to his or her needs. However, a few examples are given on the
following pages. For more information about the question of sector parametrization we refer
to Hamerle and Rosch (2006) or Dorfleitner, Fischer, and Geidosch (2012).

Checking for simulation error

At first we will check if the results of the simulation model correspond to the analytical
one. Therefore, we create a matrix of random numbers, which are independently Gamma
distributed with mean equals one and variance given by sec.var, which we can pass to the
argument random.numbers of the init () function.

N <- 1le+05

set.seed (1)

rn.indep.gamma <- matrix(NA, N, 3, dimnames = list(1:N, c("A", "B", "C")))

for (i in 1:3) rn.indep.gammal[, i] <- rgamma(N, shape=1/sec.var[i], scale=sec.var[i])

Now we switch to a simulation model but with the same distributional assumptions as in the
classic model.

CRP.pois <- init(model.type = "simulative", link.function = "CRP", N = N,
loss.unit = 1000, random.numbers = rn.indep.gamma, seed = 1)

## Warning in init(model.type = "simulative", link.function = "CRP", N = N,
No LHR provided for simulative model, assuming equally likelihood for all szenarios.

## Warning in init(model.type = "simulative", link.function = "CRP", N = N,
loss.thr is not finite. Risk contributions (to EC, VaR and ES) will be not available.

Because we did not provide a vector with likelihood ratios, a corresponding warning is dis-
played. Similarly, we get another warning because the parameter loss.thr was not set
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(default value: infinity). Hence no counterparty specific losses are stored, which means that
risk contributions will be not available. Since in this example we only want to calculate risk
figures on the overall portfolio level, we can proceed to analyze the given portfolio.

CRP.pois <- analyze(CRP.pois, portfolio.pois)

## Importing portfolio data....

## 3 sectors ...

## 3000 counterparties (0 removed due to EAD=0 (0), lgd=0 (0), pd<=0 (0) pd>=1 (0))
##

## Portfolio statistics....

## Loss unit: 1 K

## Portfolio EAD:1.5 B

## Portfolio potential loss:772.28 M

## Portfolio expected loss:130.69 M(analytical)

## Starting simulation (letO5simulations )

## Simulation finished

##

## Calculating loss distribution...

## Calculating risk measures from loss distribution....

## Ezpected loss from loss distribution: 130.6 M
(deviation from EL calculated from portfolio data: -0.067)
## Exceedance Probability of the expected loss:0.45422

## Portfolio mean expected loss exceedance: 167.06 M

## Portfolio loss standard deviation:41.97 M

A comparison of risk figures shows that the simulation error is less than 1% in our example.

VaR(CRP.classic, alpha) / VaR(CRP.pois, alpha)

## [1] 1.005308 1.008863

Quantifying the “Poisson effect”

Since the classic CreditRisk™ model assumes that counterparties’ defaults are Poisson and
not Bernoulli distributed, there is a tendency to overestimated risk figures, especially for
portfolios of bad quality®. To quantify this effect, we switch the default distribution within
the portfolio data frame.

portfolio.bern <- portfolio.pois
portfolio.bern$Default <- "Bernoulli"
CRP.bern <- CRP.pois

CRP.bern <- analyze(CRP.bern, portfolio.bern)

## Importing portfolio data....

## 3 sectors ...

## 3000 counterparties (0 removed due to EAD=0 (0), lgd=0 (0), pd<=0 (0) pd>=1 (0))
##

## Portfolio statistics....

## Loss unit: 1 K

## Portfolio EAD:1.5 B

## Portfolio potential loss:772.28 M

## Portfolio expected loss:130.69 M(analytical)

## Starting simulation (letO5simulations )

8In general, the Poisson distributions serves as a good approximation of the Bernoulli distribution only if
the intensity parameter is very low.
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## Simulation finished

##

## Calculating loss distribution...

## Calculating risk measures from loss distribution....

## Expected loss from loss distribution: 130.51 M
(deviation from EL calculated from portfolio data: -0.13%)
## Exceedance Probability of the expected 10ss:0.45437

## Portfolio mean expected loss exceedance: 166.67 M

## Portfolio loss standard deviation:41.5 M

In our case, the overestimation due to the Poisson effect is around 2% - 3%.
VaR(CRP.pois, alpha) / VaR(CRP.bern, alpha)

## [1] 1.017682 1.028880

Introducing sector dependencies

One of the most crucial assumptions of the classic CreditRisk’™ model is the assumption of
independent sectors. Within an analytical framework extensions to correlated sectors are
proposed by Fischer and Dietz (2011) and Giese (2003). Here, we use dependent random
variables (random.numbers matrix) to introduce dependence between sectors. Before we
continue with our examples, a brief introduction to the concept of copulas is given, which will
be used within the following example.

A copula is a multivariate distribution function on the d-dimensional unit hypercube with
uniform one-dimensional margins. By using copulas, an arbitrary multivariate distribution
can be decomposed into its one-dimensional margins and the dependence structure. Following
Sklar’s Theorem (see Sklar 1959) it holds that for any multivariate distribution function F'
on R? with univariate margins F; a unique function C' : x%_,Im(F;) — [0, 1] exists, such that
F(x) = C(Fi(z1), ..., Fy(zq)) for all x € R% In reverse, if F; are arbitrary univariate distri-
bution functions and C' is a copula function, then the function F' defines a valid multivariate
distribution function. Famous representatives of copulas are the Gaussian and the t-copula.
For further details on this topic we refer to Joe (1997) and Nelson (2006).

Within our next example, the copula package (see Hofert, Yan, Maechler, and Kojadinovic
2014) is used in order to create an exchangeable Gaussian copula for the sector drawings. The
margins are again Gamma distributed with parameters equal to the former example.

require("copula")

require ("methods")

gauss <- normalCopula(param = 0.7, dispstr = "ex", dim = 3)

paramMargins <- list()

for (i in 1:3) paramMargins[[i]] <- list(shape = 1/sec.var[i], scale = sec.var[i])

mvdf <- mvdc(copula = gauss, margins = rep("gamma", 3), paramMargins = paramMargins)
rn.gauss.gamma <- rMvdc(N, mvdc = mvdf)
colnames(rn.gauss.gamma) <- c("A", "B", "C")

With the help of the new matrix rn.gauss.gamma we can simulate a model with dependent
sectors.

CRP.bern.gauss <- init(model.type = "simulative", link.function = "CRP",
N = N, loss.unit = 1000, random.numbers = rn.gauss.gamma, seed = 1)
CRP.bern.gauss <- analyze(CRP.bern.gauss, portfolio.bern)
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As one would expect, the comparison of VaR figures shows that the risk clearly rises (by over
30% in our example) in case of dependent sectors.

VaR(CRP.bern.gauss, alpha) / VaR(CRP.bern, alpha) #compare risk figures

## [1] 1.330193 1.363756

A great advantage of the package is that one can use any arbitrary portfolio with any possible
dependence structure and quantify the markup in his or her special case.

Exchanging both the sector copula and the margins

In our next example, we demonstrate how the sensitivity of risk figures with respect to dis-
tributional assumptions (i.e. sector copula and margins) can be quantified. The possibilities
are only restricted by the set of distributions (univariate and multivariate) available in R.
In order to increase performance, we use multiple cores (i.e. 4 cores) for the Monte Carlo
simulation. Therefore, the package parallel is required.

# using a T-copula with Gamma margins

tcop <- tCopula(param = 0.7, dispstr = "ex", df = 4, dim = 3)

paramMargins <- list()

for (i in 1:3) paramMargins[[i]] <- list(shape = 1/sec.var[i], scale = sec.var[i])

mvdf <- mvdc(copula = tcop, margins = rep("gamma", 3), paramMargins = paramMargins)

rn.t.gamma <- rMvdc(N, mvdc = mvdf)

colnames(rn.t.gamma) <- c("A", "B", "C")

# initialize models and analyze portfolio

CRP.bern.t <- init(model.type = "simulative", link.function = "CRP", N = N,
loss.unit = 1000, random.numbers = rn.t.gamma, seed = 1)

CRP.bern.t <- analyze(CRP.bern.t, portfolio.bern, Ncores = 4)

Again, a comparison of both models shows that specific assumptions of the sector copula may
affect the risk figures. In our case, the markup is around 5% if a t-copula with 4 degrees of
freedom is used instead of a Gaussian copula.

VaR(CRP.bern.t, alpha) / VaR(CRP.bern.gauss, alpha) #compare risk figures

## [1] 1.032988 1.057561

For a more detailed analysis regarding the sector copula within the CreditRisk™ and the
CreditMetrics framework we also refer to Fischer and Jakob (2015). When exchanging sector
distributions, please take care of the specific model assumptions, e.g. that the mean equals
one within the CreditRisk™ framework or the quantification of the default threshold ®~1(PD)
in a CreditMetrics type model.

In the next step, we switch the marginal sector distributions from a Gamma distribution to
a log-normal distribution.

# using a T-copula with logN margins

paramMargins <- list()

for (i in 1:3) paramMargins[[i]] <- list(meanlog = -0.5 * log(l + sec.var[il),
sdlog = sqrt(log(l + sec.var[i])))

mvdf <- mvdc(copula = tcop, margins = rep("lnorm", 3), paramMargins = paramMargins)

rn.t.logN <- rMvdc(N, mvdc = mvdf)

colnames(rn.t.logN) <- c("A", "B", "C")

CRP.bern.t.logN <- init(model.type = "simulative", link.function = "CRP",
N = N, loss.unit = 1000, random.numbers = rn.t.logN, seed = 1)

CRP.bern.t.logN <- analyze(CRP.bern.t.logN, portfolio.bern, Ncores = 4)
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Figure 2: Loss distributions of example models together with indicators for VaRg.gg9.

Since in contrast to the Gamma distribution, the log-normal distribution is heavy tailed, the
values for VaRg 995 and VaRg 999 increase by approximately 7% and 10%, respectively.

VaR(CRP.bern.t.logN, alpha) / VaR(CRP.bern.t, alpha)

## [1] 1.068731 1.094763

Please note that the same analysis can be carried out within a CreditMetrics like default
model by using link.function="CM".

The loss distributions of the examples are shown in Figure 2. The x-axis of both charts
represent the loss percentile in the classic CreditRisk™ model. The right one exhibits the
upper tail of all distributions together with vertical lines indicating the value of VaRg gg9
in each model, clearly demonstrating how risk increases if assumptions related to the sector
distribution are modified.

5.4. Pooling

Finally, we show how a simple pooling approach can be used in order to speed up calculations.
For this purpose, the package’s data folder contains a prepared portfolio containing three
pools (see Table 3). Here, all counterparties within the same sector and a potential loss
(PL= EAD - LGD) below 200,000 are grouped into one pool.

Let Mp,, denote the number of counterparties within one pool. Then for each pool, the
values for EAD, LGD and PD are determined via the following formulas:

e EADpyy = m > icPoot BAD; (average EAD per counterparty)

: EAD;LGD;
° LGDPQQ[ — ZzEPool

A N (weighted average LGD per counterparty)

i poot EAD;LGD;PD;
* PDPOOZ B EADpootLGD poor

(average number of defaults within the pool)

Since the pooling criteria (i.e. potential loss threshold, sector membership) depend on the
underlying portfolio as well as the desired accuracy, we have to leave this task up to the user.
Additionally, in order to achieve good approximation results for the risk figures, advanced
users may consider more sophisticated pooling techniques, for example based on certain PD
and PL ranges, the pool loss standard deviation or the well-known Herfindahl index regarding
the counterparty exposures as presented in Gordy (2003). Please note that in case of a
CreditMetrics-like link function (i.e. if 1ink.function="CM"), which includes the distribution
function of a standard normal distribution, default intensities greater or equal to one are not
supported.
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Nnmbmﬂ Nmne‘Buﬁmms Cmmny‘ EAD ‘LGD‘ PD ‘Ddhﬂt‘A‘I3‘C‘

100000 | Pool A misc misc 342298,63 | 0,246 | 91,44 | Poisson | 1 | 0 | O

200000 | Pool B misc misc 332533,03 | 0,243 | 90,29 | Poisson 1
300000 | Pool C misc misc 334227,25 | 0,237 | 87,76 | Poisson | 0 | 0 | 1

Table 3: Structure of the pooled portfolio data frame.

With the help of this technique, we can reduce the number of portfolio positions in our
example by over 50%. Using the model with a t-copula and Gamma distributed margins, we
check the accuracy of risk figures if the pooled portfolio is used.

CRP.bern.t.pool <- analyze(CRP.bern.t, portfolio.pool, Ncores = 4)

## Importing portfolio data....

## 3 sectors ...

## 1483 counterparties (0 removed due to EAD=0 (0), lgd=0 (0), pd<=0 (0) pd>=1 (0))
##

## Portfolio statistics....

## Loss unit: 1 K

## Portfolio EAD:991.99 M

## Portfolio potential lo0ss:648.54 M

## Portfolio expected loss:130.69 M(analytical)

## Starting simulation (le+Obsimulations )

## Parallel computing on 4 cores (no progress bar)

## Simulation finished

##

## Calculating loss distribution...

## Calculating risk measures from loss distribution....

## Expected loss from loss distribution: 130.78 M
(deviation from EL calculated from portfolio data: 0.077)
## Exceedance Probability of the expected 10ss:0.43296

## Portfolio mean expected loss exceedance: 187.4 M

## Portfolio loss standard deviation:63.37 M

Although the simulation of Poisson random variables is more time-consuming than those of
Bernoulli ones, the simulation time (using Ncores=1) can be reduced by around 50% on our
computer (Intel Core i7, 3.6GHz, calculation time: 7s to 3.8s). In combination with the option
Ncores=4 we can reduce the computation time by another 70% such that a simulation that
needs 7s (without pooling, single core) can be done in just 1s.

VaR(CRP.bern.t.pool, alpha) / VaR(CRP.bern.t, alpha)
## [1] 0.9974762 1.0047332

Comparing the risk figures of the pooled version with those of the ordinary simulation on two
loss levels, we observe that the deviations are not substantial (around 1%) for our hypothetical
portfolio.

Please note that the criteria and thresholds for the pooling have to be determined individually
for each portfolio and model in order obtain tolerable approximation errors.

6. Summary

Quantifying credit portfolio risk is an essential part of risk controlling of financial institutions.
For this purpose, the GCPM package offers the opportunity to choose between a CreditRisk™
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and a CreditMetrics-type model within a default framework. The examples show that, be-
cause of the flexible structure, the package helps to analyze the sensitivity of risk figures if
distributional assumptions are modified and therefore to quantify aspects of model risk as
well. In order to increase the performance further, simulation models can be combined with
user specific importance sampling techniques and pooling approaches. The combination of
these possibilities and a fast implementation of the simulation core in C4++ together with
the capability of parallel computing makes the package a powerful tool which also allows to
perform calculations on portfolios with a large number of counterparties.

For more information about the package, especially about the individual methods, please have
a look at the help pages provided in the package (e.g. 7init).

Session Info

## R version 3.2.1 (2015-06-18)

## Platform: x86_64-w64-mingw32/x64 (64-bit)

## Running under: Windows 7 x64 (build 7601) Service Pack 1

#i#

## locale:

## [1] LC_COLLATE=German_Germany.1252 LC_CTYPE=German_Germany.1252
## [3] LC_MONETARY=German_Germany.1252 LC_NUMERIC=C

## [5] LC_TIME=German_Germany.1252

##

## attached base packages:

## [1] methods stats graphics grDevices utils datasets Dbase
##

## other attached packages:

## [1] copula_0.999-13 GCPM_1.2 knitr_1.10.5

##

## loaded via a namespace (and not attached):

## [1] ADGofTest_0.3 Rcpp_0.11.6 lattice_0.20-31
## [4] mvtnorm_1.0-2 stabledist_0.7-0 pspline_1.0-16
## [7] grid_3.2.1 stats4_3.2.1 formatR_1.2

## [10] magrittr_1.5 evaluate_0.7 highr_0.5

## [13] stringi_0.5-2 Matrix_1.2-1 tools_3.2.1

## [16] stringr_1.0.0 RcppProgress_0.2.1 parallel_3.2.1

## [19] gsl_1.9-10
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