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Abstract

We introduce a new type of graphical log-linear model called restricted graphical log-
linear model. This model is obtained by imposing equality restrictions on subsets of main
effects and of first-order interactions. These restrictions are obtained through partitions
of the variable and first-order interaction sets. The vertices or variables in the same class
have the same main effects in all their categories, and the first-order interactions in the
same class are equal. We study its properties and derive its associated likelihood equations
and provide some applications. A graphical representation is possible through a coloured
graph.

Keywords: graph colourings, graphical Gaussian models with symmetries, graphical log-linear
models, iterative proportional fitting, log-linear models, symmetry and quasi-symmetry mod-
els.

1. Introduction

In this paper we introduce a new type of model for discrete variables called restricted or
coloured graphical log-linear model (RGLL model), which combines symmetry with discrete
graphical models. Symmetry is considered through specific parameter restrictions not used
before, but inspired by those used in the continuous case. It can be seen as a tool to model
symmetry and could help to get a better understanding of the data. In a specific model we
may obtain improved knowledge about the distribution; for instance, conditional indepen-
dences as in graphical models or the relationship between cells in a contingency table. RGLL
can be fitted to different kinds of data such as panel data, where the variables have the same
categories. The model may be useful for researchers of linear models, symmetry, and graphical
models.

RGLL models are special cases of hierarchical log-linear models and can be represented graph-
ically, including equality restrictions between certain parameters. Restrictions are imposed
on two kind of parameters: the first ones correspond to main effects terms and the second
ones to first-order interactions. For the former, restriction classes consist of variables; for the
latter, the classes are defined by the parameters themselves. At the same time, marginal and
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conditional independences derived from a graph are considered. A graphical representation
involves colouring the associated graph.

Symmetry and quasi-symmetry models for square contingency tables were introduced by
Bowker (1948) and Caussinus (1965), respectively; and afterwards they were further studied
by other authors; for instance, Agresti (2002, p. 423-431). For the same type of tables,
Tahata, Yamamoto, Nagatani, and Tomizawa (2009) defined a measure and three types of
symmetry through it and distinguished departures from usual symmetry assuming condi-
tional symmetry, and Yamamoto, Iwashita, and Tomizawa (2007) studied alternative ways to
decompose symmetry into models that include quasi-symmetry. More recently, Kateri, Mo-
hammadi, and Sturmfels (2014) defined one model in the same two-dimensional case in which
algebraic and graphical concepts are used, particular cases corresponding to quasi-symmetry
and the Pearsonian quasi-symmetry model, the latter defined through a divergence measure.
Lovison (2000) introduced generalized symmetry models (GS models), which are defined for
any dimension when the same variable is observed several times and where some or even all
interaction parameters of any order are invariant under any permutation of the associated
index. The other parameters are free to vary and restrictions on the main effects as the ones
derived from RGLL models are allowed. However, only GS models for the three-dimensional
case are presented.

The relationship between graphical models and symmetry has not been studied as extensively
in the discrete case. In the continuous case, Højsgaard and Lauritzen (2008) introduced
Gaussian graphical models with symmetries; in one of them (RCON model), equalities are
set among elements of the concentration matrix. In the discrete case, quasi-symmetric (QS )
and symmetric and quasi-symmetric (SQS ) graphical models were introduced by Gottard,
Marchetti, and Agresti (2011) and Gottard (2009), respectively.

Symmetry and quasi-symmetry models for square contingency tables can be expressed as
RGLL models with two variables. In this sense, RGLL models can be considered as a general-
ization of symmetry models. Any graphical log-linear model (e.g., Lauritzen 1996, ch. 4 and
Edwards 2000, ch. 2) can be expressed as an RGLL model by considering that all parameters
are unrestricted. Conditional symmetry (Andersen 1991, p. 328-329) is also a particular case
of an RGLL model.

RGLL and RCON models are similar though they are defined for different data types. There
is also a relationship between RGLL models and QS and SQS graphical models. Let uXY (ij)
represent the first-order interaction between variables X and Y when they take the values
i and j, respectively, and uX(i) a main effect. In SQS graphical models, the main effects
restrictions are similar to those for RGLL models, and in SQS and QS models there are re-
strictions of the kind uXY (ij) = uRS(ij) for all i, j = 1, ..., L (considering L levels in each
variable), for elements in the same class; including restrictions uXY (ij) = uXY (ji) for all
i, j = 1, ..., L, and uRS(ij) = uRS(ji) for all i, j = 1, ..., L; and implying specific restrictions
on the second-order interactions, i.e. on the parameters uXY Z(ijk). QS graphical models
are similarly defined, but they allow even higher-order interactions. Unlike RGLL models,
interactions of second or higher order are restricted. The first-order interaction restrictions
in any SQS or QS graphical model are a particular case of the kind of restrictions defined for
those terms in RGLL models. When these are the highest-order interactions, QS and SQS
graphical models are RGLL models.

RGLL, SQS, and GS models are different and related as follows. In SQS models, restric-
tions of the kind uXY (ij)= uRS(ij) are allowed besides invariance under permutation of the
indexes, which are the only kind of restrictions allowed in GS models. However, in RGLL
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models we allow any restriction on the indexes corresponding to first-order interactions, which
do not necessarily have to be permutations or the kind of restriction given in SQS models,
and higher-order interactions are not restricted. Hence, the three models are equivalent when
(1) a model includes at most first order interactions, (2) the restrictions are of the kind
uXY (ij) = uXY (ji), and (3) there are no other first-order interaction restrictions.

Twins data. In order to motivate RGLL models, consider the data analyzed by Drton and
Richardson (2008) (Table 1). The data consist of 597 observations for monozygotic twins
indicating whether twin i (i = 1, 2) suffers from major depression (variable Di, for i = 1, 2)
or alcoholism (variable Ai, for i = 1, 2). The values associated with Di and Ai correspond to
0 (no) and 1 (yes). Consider a model in which the parameters are obtained from the set

A = {{A1, A2} , {A1, D1} , {A2, D2} , {D1, D2}} , (1)

called the generating class. Hence, the expected frequency mA1A2D1D2(a1, a2, d1, d2) for a
specific cell in the table (a1, a2, d1, d2) has the following log-linear expansion

logm(a1, a2, d1, d2) =u+ uA1(a1) + uA2(a2) + uD1(d1) + uD2(d2)+

uA1A2(a1a2) + uA1D1(a1d1) + uA2D2(a2d2) + uD1D2(d1d2).
(2)

Let V be the set of variables or vertex set and E the set of first-order interactions. A model
in which the values of variables A1 and D1 are permuted with those of variables A2 and D2,
respectively, in such a way that the distribution is preserved corresponds to an RGLL model.
It is the model with generating class A and graph G=(V , E) where V is partitioned into two
sets V = (V1, V2) and E= (E1, E2, ..., E10). Here, V1 = {A1, A2} and V2 = {D1, D2}; and
E1= {uA1D1(00), uA2D2(00)}, E2= {uA1D1(01), uA2D2(01)}, E3= {uA1D1(10), uA2D2(10)},
E4= {uA1D1(11), uA2D2(11)}, E5= {uA1A2(01), uA1A2(10)}, E6= {uD2D1(01), uD2D1(10)},
E7= {uA1A2(00)}, E8= {uA1A2(11)}, E9= {uD2D1(00)}, and E10= {uD2D1(11)}. The parti-
tion in V means that the main effects for all the values taken by the variables in each set V1
and V2 are the same, whereas the partition in E means that the first-order interactions in
each class are the same. The associated graph G is given in Figure 1, in which the partitions
are represented by using colours; for instance, variables A1 and A2 have the same colour.
Observe that one edge of the graph is associated with each first-order interaction. To avoid
using too many colours, lines in black represent unrestricted first-order interactions.

The distribution is preserved after the permutation of the values of the variables because the
expected frequency mA1A2D1D2(a1, a2, d1, d2), given the log-linear expansion in equation (2)
and the equality restrictions given by the partitions, is equal to the expected frequency for
the cell (a2, a1, d2, d1); thus mA1A2D1D2(a1, a2, d1, d2)= mA1A2D1D2(a2, a1, d2, d1). The model
also implies that A1 and D2 are conditionally independent given D1 and A2, A1⊥D2|D1, A2,
and A2⊥D1|A1, D2.

The remainder of the paper is organized as follows. In Section 2 we formally define RGLL
models. Section 3 is devoted to symmetry and quasi-symmetry models and their representa-
tion as RGLL models including an example. In Section 4 we derive the likelihood equations
and consider model selection. Finally, in the Appendix we provide a method for getting a
numerical solution.
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Table 1: Alcohol dependence and major depression for 597 pairs of female twins. Left panel:
Observed counts. Right panel: Fitted frequencies under an RGLL model.

A2 A2

0 1 0 1
D2 D2

A1 D1 0 1 0 1 0 1 0 1
0 0 288 80 15 9 285.29 84.87 12.60 11.24

1 92 51 7 10 84.87 55.97 3.75 7.41
1 0 8 4 3 2 12.60 3.75 3.52 3.14

1 8 9 4 7 11.24 7.41 3.14 6.21
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Figure 1: An RGLL model with generating class A= {{A1, A2}, {A1, D1}, {A2, D2},
{D1, D2}} associated with the twins data.

2. Preliminaries and definition

Consider V as a set of variable labels or a set of vertices. For each element δ in V we associate
a discrete random variable Iδ, so that the set of random variables can be expressed as a vector
I = (Iδ)δ∈V . The values taken by those variables, known as levels or categories, are included
in a set Iδ. Then all possible values that I takes are given by I, with I = ×δ∈V Iδ. A cell i
corresponds to one of these values, i.e. i ∈ I. Seen as a q-way contingency table, a specific
cell can be denoted as i = (i1, i2, ..., iq). A subvector of I is denoted as Ia, where a ⊆ V , and
a value taken by it is denoted as ia, where ia ∈ Ia = ×δ∈aIδ.

We denote a parameter associated with a set a, a ⊆ V , which depends on the corresponding
values ia, as ua(ia). When a = ∅ it corresponds to a constant term, when |a| = 1 to a main
effect, and when |a| > 1 to an interaction. We also denote m(i) as the expected frequency in
a cell i ∈ I, for instance in a two-way contingency table it is m(i1, i2).

A saturated log-linear model can be written as

logm(i) =
∑
a⊆V

ua(ia). (3)

By setting specific parameters ua(ia), for all ia, to zero in (3), different models are obtained.
For example, a log-linear model is called hierarchical when the presence of an interaction ua(ia)
implies the presence of all those interactions ub(ib) with b ⊂ a. The parameters included in
this model depend on a generating class A, which is a set of subsets of V . The model can be
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written as

logm(i) =
∑
a∈K

ua(ia), (4)

where K is the set of subsets of the elements in the generating class A.

Definition 1. A hierarchical log-linear model,

logm(i) =
∑
a∈K

ua(ia),

is a restricted graphical log-linear model (RGLL model) with associated graph G = (V,E)
if it satisfies two properties: (a) its generating class is C, the cliques set in the associated
graph, and (b) the set of variables V and the set of first-order interactions E are partitioned
as follows: the set V is partitioned into V1, ..., VT , with T ∈ {1, 2, ..., |V |}, such that the main
effects of the variables in the subset Vt, for t=1,..., T , are equal in all their levels in IVt , where
IVt is the level set associated with IVt = (Iδ)δ∈Vt , for t=1,..., T . The set E is partitioned into
E1, ..., ES , with S ∈ {1, 2, ..., |E|}, such that the interactions in every subset Es, for s=1,...,
S, are equal.

RGLL models can be defined assuming that all variables have the same categories, i.e. the
level set Iδ is the same for all δ ∈ V or IVt is the same for all Vt, for t = 1, ..., T . This implies
that the number of categories is the same for any variable, i.e. |Iδ|= L, for all δ ∈ V . The
advantages of such a restriction are the following: (1) it allows for symmetry interpretations,
and (2) it simplifies some of the computational programming. This condition could have been
relaxed assuming that only those variables in the same vertex class Vt with |Vt| > 1 for every
t = 1, ..., T should have the same number of categories or even the same categories; however,
interpretation of such models might not be straightforward. The interpretation of an RGLL
model depends on the equality restrictions. Some RGLL models have a symmetry interpre-
tation; for instance, in Section 1 this was discussed through an example.

Even though RGLL models could be represented through a graph, this representation might
be too complex, for instance when there are six or more variables with three or more levels
each one. However, a graphical representation is optional, in the sense that it helps to rep-
resent a model but does not define it. In fact, this also happens for any graphical model, so
that concepts from graph theory are used, but a graphical representation is not necessary.

Consider an RGLL model with set of variables V and set of first-order interactions E. We
define the associated diagram G =(V,E∗) as a graph with vertex and edge set V and E∗,
respectively. The set E∗ is formed by elements {Xk, Yk}, for k= 1,..., |IX | |IY |, where |IX | |IY |
corresponds to all combination of categories of X and Y , considering that uXY (ij) ∈ E for
every (i, j), where i ∈ IX and j ∈ IY , for any {X,Y } ∈ V . By definition, there is a one-to-one
correspondence between the sets E∗ and E so that the graph (V,E) is the same as the graph
(V,E∗). As a consequence, the first graph is also denoted as G. For example, if we define a
model including two binary variables X and Y , so that IX = IY = {1, 2}, and the associated
first-order interactions uXY (ij); i, j =1, 2, then the set E contains the elements uXY (11),
uXY (12), uXY (21), uXY (22). As a consequence, E∗ contains the edges {X = 1, Y = 1},
{X = 1, Y = 2}, {X = 2, Y = 1}, and {X = 2, Y = 2}, which are multiple edges joining X
with Y . The graph G= (V,E) is a multigraph, a graph with multiple edges without loops,
which is determined by the first-order interactions. Clearly, there is a one-to-one correspon-
dence between the first-order interactions and the edges, so that it is equivalent to partition
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over the parameters or over the edges.

The representation of G= (V,E) consists of circles representing the variables, two of which
may be united with an edge when a first-order interaction including those variables is part of
the model. There are multiple edges between vertices according to the possible combinations
of values of the associated variables. We note that the underlying simple graph Gu associated
with the graph G obtained from an RGLL model is the independence graph associated with
a graphical log-linear model (e.g., Bondy and Murty 1976, p. 103).

Symbolically, X and Y are in the same vertex class if and only if uX(l) = uY (l), for all
l = 1, ..., L, where uX and uY are main effects and L is the number of categories for variables
X and Y . Similarly, two first-order interactions or their corresponding edges, one joining
variable X with variable Y at the values (i1, j1) and another joining variable Z with variable
R at the values (k1, l1), are in the same class if and only if uXY (i1j1) = uZR(k1l1), where
X,Y, Z,R ∈ V ; with i1 ∈ IX , j1 ∈ IY , k1 ∈ IZ , and l1 ∈ IR; and where uXY (i1j1) and
uZR(k1l1) are first-order interactions.

To represent an RGLL model, the graph G is coloured using a different colour for each class,
as in Figure 1, i.e. using a vertex and edge colouring. Given any coloured multigraph, we
can identify the parameter restrictions corresponding to the associated RGLL model. Then
all restrictions in an RGLL model can be identified with a vertex and edge colouring.

We have the following observations concerning Definition 1:

a) In the graphical representation of RGLL models, there are multiple edges between vari-
ables, so that if there is a clique, it is not important which edges are used to obtain it. For
instance, if there is a clique corresponding to a triangle and there are 4 multiples edges be-
tween each pair of edges on it, then there are 64 possible different cliques.

b) When |Vt| = 1 or |Es| = 1 for some s or t, where t = 1, ..., T and s = 1, ..., S, we have
atomic classes; otherwise, they are composite. Atomic classes are those where the correspond-
ing parameters are not restricted, and an RGLL model with only atomic classes is a graphical
log-linear model.

c) Independences between variables can be read off from the graph by using separator sets as
in graphical log-linear models.

d) Interactions of order higher than one are not restricted.

It is important to notice that we are not assuming any identification constraint on the pa-
rameters. As it is defined, any set of restrictions is possible even though they may generate
redundant equations among the likelihood equations. However, there are specific RGLL mod-
els that do not generate such redundant equations, for instance when the parameter restriction
do not change when the identification constraint is effect coding instead of using the parame-
ters without such a constraint. This occurs, for example, when the restrictions on the model
are of the form uXY (ij)=uZR(ij) or uXY (ij)=uZR(ji) or when the restrictions are imposed
on the main effects.

Example 1. Consider three binary variables A, C, and M with categories coded as 0 and 1
and the hierarchical log-linear model with generating class A={{A,C}, {A,M}}:

logm(i, j, k) = u+ uA(i) + uC(j) + uM (k) + uAC(ij) + uAM (ik), i, j, k = 0, 1; (5)
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and the equality restrictions

uA(0) = uM (0), uA(1) = uM (1),

uAM (0, 1) = uAM (1, 0), uAC(0, 1) = uAC(1, 0),

uAM (0, 0) = uAM (1, 1), uAC(0, 0) = uAC(1, 1).

Observe that model (5), without equality restrictions, is a graphical log-linear model with
graph Gu= (V u, Eu), where V u= {A,C,M} and Eu= {{A,C}, {A,M}}, shown in Figure
2(a).

M

CA
(a) Graphical model

(0, 1)

(1, 0)

(0, 0)

(1, 1)

(0, 1)

(1, 0)

(0, 0) (1, 1)

M

CA

(b) RGLL model

Figure 2: Two hierarchical log-linear models for Example 1: (a) a graphical log-linear model;
(b) an RGLL model.

According to the parameter restrictions, we see that the vertex set V = {A,C,M} in the
restricted model is partitioned as V = (V1, V2), with V1 = {A,M} and V2 = {C}. The set of
first-order interactions or its corresponding edge set E is partioned as (E1, E2, E3, E4), where

E = {uAM (00), uAM (01), uAM (10), uAM (11), uAC(00), uAC(01), uAC(10), uAC(11)} , and E1=
{uAM (01), uAM (10)}, E2={uAC(01), uAC(10)}, E3={uAM (00), uAM (11)}, andE4={uAC(00),
uAC(11)}.

We obtain the corresponding graph G= (V,E) shown in Figure 2(b) whose underlying simple
graph Gu= (V u, Eu) is shown in Figure 2(a). Using any of these graphs, we see that the
generating class corresponds to the cliques set, which together with the restrictions on the
parameters of the model define an RGLL model.

The following section shows symmetry and quasisymmetry as instances of RGLL models.

3. Symmetry and quasi-symmetry models as RGLL models

Symmetry and quasi-symmetry models were introduced to analyze square contingency tables
with a symmetrical pattern. A square table formed by cells (i, j); for i, j= 1, 2, ..., L, satisfies
symmetry if

m(i, j) = m(j, i), for all i 6= j.

If we consider two variables X and Y , symmetry can be represented using the log-linear model

logm(i, j) = u+ uX(i) + uY (j) + uXY (ij) (6)

with additional restrictions
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uX(i) = uY (i), i = 1, 2, ..., L;

uXY (ij) = uXY (ji), i, j = 1, 2, ..., L.

Quasi-symmetry is used to analyze cases where there is no symmetry due to marginal hetero-
geneity, which means that the main effects in the symmetry model differ. Such a model can
be written as (6) with restrictions

uXY (ij) = uXY (ji), i, j = 1, 2, ..., L.

The parameterization used to define these models is not unique (e.g., Meiser, von Eye, and
Spiel 1997), some parameterizations can be obtained through those log-linear models classified
as non-standard as discussed by Mair (2007).

Example 2. Migration patterns data. For a sample of U.S. residents, Agresti (Agresti
2002, p. 423) presents some data given in Table 2 based on data by the U.S. Census Bureau
that compare region of residence in 1985 with that of 1980. The variables involved are place
of residence in 1980 and 1985. Each variable has four possible values: Northeast, Midwest,
South and West. We can see from the observed counts that the table is more or less sym-
metric; however, the symmetry model is rejected because we get a deviance of 243.55 with
6 degrees of freedom so that the deviance is greater than the associated χ2 quantile at a
significance level α = 0.05.

A closer look at the table reveals that 366 people moved from Northeast to South whereas
only 172 people moved from South to Northeast. A model which fits well these data according
to the deviance is the quasi-symmetry model. It means that the lack of symmetry in the table
is caused by some marginal heterogeneity. In other words, the number of people emigrating
from region i in 1980 to region j in 1985 would be similar to the one entering to i in 1985
from j in 1980 if the number of people in each region for 1980 were the same as the number
of people in the same region in 1985. RGLL models fitted for these data are presented in
section 4.

Table 2: Observed counts1 and fitted expected frequencies under symmetry2 and quasi-
symmetry3 models for the data described in Example 2.

Residence Residence in 1985
in 1980 Northeast Midwest South West

Northeast
116071 100 366 124
116072 93.50 269.00 93.50
116073 95.79 370.44 123.77

Midwest
87 13677 515 302

93.50 13677 370.00 239.00
91.21 13677 501.68 311.11

South
172 225 17819 270

269.00 370.00 17819 278.00
167.56 238.32 17819 261.12

West
63 176 286 10192

93.50 239.00 278.00 10192
63.23 166.89 294.88 10192
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Symmetry and quasi-symmetry models can be expressed as RGLL models as follows. In the
symmetry model there is only one vertex colour class formed by both vertices and there are
L atomic edge colour classes, one for every uXY (ii) interaction, and

(
L
2

)
edge colour classes

for the interactions uXY (ij) = uXY (ji), for i 6= j. In the quasi-symmetry model there are
the same edge colour classes as in symmetry models, but every vertex belongs to a different
atomic class.

As an example, consider two binary variables X and Y with categories 0 and 1, and the
saturated log-linear model given in (6) for i,j= 0, 1.

Now consider the RGLL model with graph G = (V,E) given in Figure 3(a). From G,
we observe that E = (E1, E2, E3), where E1 = {uXY (00)}, E2 = {uXY (11)}, and E3 =
{uXY (01), uXY (10)}. Edges in E3 belong to the same class, indicating that the correspond-
ing interactions are identical. The remaining edges belong to different atomic colour classes.
The vertex set, V = {X,Y }, is not partitioned. Then, the main effects corresponding to X
and Y are the same for all the categories. The model associated with Figure 3(a) can be
expressed as (6), for i,j= 0, 1, with restrictions

uXY (ij) = uXY (ji), i, j = 0, 1;

uX(i) = uY (i), i = 0, 1.

� �
X Y

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(a) Symmetry mode(a) Symmetry model

� �
X Y

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(b) Quasi-symmetry mo(b) Quasi-symmetry model

Figure 3: Colourings for models with two binary variables: (a) symmetry model and (b)
quasi-symmetry model.

Hence, the symmetry model for V={X,Y } is the RGLL model generated by A= {{X,Y }}
with vertex class V and edge set E partitioned into E1 = {uXY (00)}, E2 = {uXY (11)}, and
E3 = {uXY (01), uXY (10)}, whose graph is given in Figure 3(a).

On the other hand, consider the RGLL model whose graph G = (V,E) is shown in Figure 3(b).
From G, we have the same edge or first-order interactions partition as in the symmetry model.
The vertex set V = {X,Y } is partitioned into V1 and V2, with V1 = {X} and V2 = {Y },
so that the main effects are not restricted. Then, the quasi-symmetry model for V={X,Y }
given in (6), for i,j= 0, 1, with restrictions

uXY (ij) = uXY (ji), i, j = 0, 1;

is the RGLL model generated by A= {{X,Y }} with vertex set V = (V1, V2), where V1 = {X}
and V2 = {Y }, and edge set E = (E1, E2, E3), where E1 = {uXY (00)}, E2 = {uXY (11)}, and
E3= {uXY (01), uXY (10)}, whose associated graph is given in Figure 3(b).
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4. Likelihood equations

There is some additional notation that has to be introduced before obtaining the likelihood
equations. We denote by n the vector of observed or cell counts n(i), for i ∈ I, and m cor-
responds to a vector containing the expected frequencies for each cell m(i), for i ∈ I, i.e.
m′ = (m(i))i∈I.

Consider an RGLL model with associated graph G = (V,E) in which V is partitioned into T
classes V= (V1, ..., VT ) with T ∈ {1, 2, ..., |V |}. It is useful to identify each variable within a
vertex class Vt, for t = 1, ..., T , as vtk, with k= 1,..., kver(t), where kver is a vector identifying

the number of vertices included in each class. Hence, Vt =
{
vt1, ..., v

t
kver(t)

}
. We assume that

each variable has L levels and define the associated parameters as

uvtk
(l): main effect for variable vtk in category l, for t=1,..., T ; k=1,..., kver(t), and l=1,..., L.

For each vertex class Vt, for t=1,...,T , we obtain the following equality restrictions

uvt1(l) = ... = uvt
kver(t)

(l) = uVt(l), for l = 1, ..., L;

where uVt(l) is the parameter representing all the equated parameters associated with colour
class Vt and level l.

We define the marginal total for the k-th variable in class Vt for level l, n(vtk = l), as the sum
of observed counts in all cells in which vtk takes value l:

n(vtk = l) =
∑

z:z
vt
k
=l

n(z), l = 1, ..., L; k = 1, ..., kver(t); t = 1, ..., T.

We similarly define the corresponding marginal total for the expected frequencies m(vtk = l).

Consider an RGLL model in which the first-order interactions set E is partitioned into S

classes E1,..., ES . Each class Es =
{
es1, ..., e

s
ked(s)

}
for s=1, 2,..., S, where esr corresponds

to the r-th element within class Es, for r = 1, 2, ..., ked(s), with s=1,..., S, where ked is a
vector consisting of the number of edges in each class. We denote ulsrms

r
(isrj

s
r) as the first-order

interaction associated with the edge esr, so that esr is an edge joining variable lsr to variable ms
r

at the values (isr, j
s
r). That is, lsr and ms

r are the r-th variables for the class Es in the first and
second entries, respectively, of ulsrms

r
(isrj

s
r), whose associated values are isr and jsr , respectively.

For each class Es, for s = 1, ..., S, we obtain the following equality restrictions

uls1ms
1
(is1j

s
1) = ... = uls

ked(s)
ms

ked(s)
(isked(s)j

s
ked(s)) = uEs ,

where uEs denotes the parameter representing all parameters in class Es for levels isr and jsr ,
with r = 1, 2, ..., ked(s) and s = 1, ..., S.

The marginal total for esr is defined as the sum of observed counts in all cells in which lsr and
ms
r take the values isr and jsr , respectively:

n(lsr = isr,m
s
r = jsr) =

∑
z:(zlsr ,zms

r
)

=(isr,j
s
r)

n(z), r = 1, ..., ked(s); s = 1, ..., S.



Austrian Journal of Statistics 27

The corresponding marginal total for the expected frequencies m(lsr = isr,m
s
r = jsr) is similarly

defined. Finally, the marginal counts for a subset b of the set of variables V , b ⊂ V , for a
specific slice ib corresponds to

nb(ib) =
∑
j:jb=ib

n(j).

Cell counts n may follow a Poisson, multinomial, or multinomial with fixed marginals sam-
pling scheme. The first one corresponds to having independent Poisson-distributed random
variables for each cell i ∈ I. The second one corresponds to having a fixed sample size |n|,
random counts, and observations that independently belong to cell i with probability p(i),
for i ∈ I, where p(i) ≥ 0 and

∑
i∈I p(i) = 1. The third one corresponds to having counts in

specific slices ib which are independent and multinomially distributed.

Independently of the sampling scheme, the logarithm of the kernel of the likelihood function
L(m) is (e.g., Lauritzen 1996, p. 71)

∑
i∈I

n(i) logm(i)−
∑
i∈I

m(i). (7)

When a hierarchical log-linear model (4) is considered, expression (7) becomes

∑
a∈K

∑
ia

na(ia)ua(ia)−
∑
i∈I

exp

(∑
a∈K

ua(ia)

)
. (8)

This expression is used to obtain the likelihood equations corresponding to an RGLL model
by including the corresponding parameter restrictions.

For an RGLL model, expression (8) becomes

T∑
t=1

L∑
l=1

kver(t)∑
k=1

n(vtk = l)uVt(l)+
S∑
s=1

ked(s)∑
r=1

n(lsr = isr,m
s
r = jsr)uEs+∑

a∈K,|a|6=1,2

∑
ia

na(ia)ua(ia)−
∑
i∈I

exp(
∑
a∈K

ua(ia)). (9)

When expression (9) is differentiated with respect to each parameter and equated to zero, we
obtain an equation system as follows:

kver(t)∑
k=1

n(vtk = l) =

kver(t)∑
k=1

m(vtk = l), t = 1, ..., T ; l = 1, ..., L;

ked(s)∑
r=1

n(lsr = isr,m
s
r = jsr) =

ked(s)∑
r=1

m(lsr = isr,m
s
r = jsr), s = 1, 2, ...., S;

na(ia) = ma(ia), for all a ∈ K, |a| 6= 1, 2;

(10)

where, ma(ia) denotes the marginal expected frequency for the slice ia, i.e. ma(ia) =∑
j:ja=ia

m(j).

Redundant equations can be eliminated by replacing the last equation in (10) with
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na(ia) = ma(ia), for all a ∈ A, |a| 6= 1, 2.

Hence, the corresponding equation system is solved to obtain the maximum likelihood esti-
mators of the expected frequencies m.

4.1. Solution of likelihood equations

There is a closed expression that solves the likelihood equations for a symmetry model; how-
ever, for a general RGLL model an approximated solution through numerical methods is
necessary. Log-linear models are fitted using iterative proportional fitting, IPF (e.g., Bishop,
Fienberg, and Holland 1975, p. 83-102), or the Newton Raphson (Fisher scoring) method
(e.g., Agresti 2002, p. 143-146, p. 342-343). We have written programs to fit an RGLL model
based only on the IPF method. The Newton Raphson method can be directly used when the
restrictions can be equivalently used for parameters without identification constraints that
consider all possible values of the variables (full parameters) or for the parameters under a
parametrization. Instances of restrictions of such kind were described before Example 1 in
Section 2. In these cases, an RGLL model and its associated design matrix can be obtained
using such a parameterization, and the associated design matrix has full rank. This is straight-
forward on models with vertex colouring only (main effects restrictions), but when there is
an edge colouring (first-order interactions restrictions), equalities between parameters with
different parameterizations are not always represented in the same way by simply changing
the parameter. When we can not easily find such parametrization, we use the full parameters
to obtain a system of equations where some of them are redundant. Hence, we can solve a
subset corresponding to linearly independent equations and the rest are automatically solved.
The modified IPF method described in the Appendix depends on those equations and can
always be used.

A group of Fortran programs has been written to fit and select RGLL models, we refer to
them as REGRAPH and are available upon request from the first author. The modified IPF
method was implemented using some subroutines from Haberman (1972, 1976) to fit log-linear
models, but most of the subroutines used were specifically written for RGLL models. Fitted
expected frequencies, deviance, the associated design matrix, and the number of degrees of
freedom for the associated asymptotic chi square distribution was also calculated. The number
of degrees of freedom is calculated from the design matrix and is corrected when necessary,
for instance, when an estimated expected frequency has a value of zero. Numerical results
obtained with REGRAPH have been compared with those obtained by using MIM 3.2.0.6
(Edwards 2000) or R for models in which the comparison is possible, e.g. quasi-symmetry
and symmetry models.

4.2. Model selection

In order to fit an RGLL model to some data, three components have to be considered: (1)
the graph structure given by the generating class, (2) the colouring or partition of the sets V
and E, and (3) the estimated expected frequencies. Usually, the generating class is obtained
performing a model search looking for a graphical log-linear model that fits the data using
software like MIM. Then we apply a model search method to get a colouring, defining in this
way an updated RGLL model. We obtained a method to see whether it is convenient to join
colour classes using the deviance. Two classes are joined whenever its p value is greater than
a significance level. With this method, we implemented an iterative search in REGRAPH
to get, from any initial RGLL or graphical log-linear model, a new RGLL model that fits
some data. Hence, only the last two components can be obtained through REGRAPH. The
iterative search consists of joining pairs of vertex (or edge) classes from an initial model. We
iteratively try to join all pairs of classes until a pair is significant according to its p value, ob-
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taining new updated classes. The process is repeated with the new classes and so on until it is
not possible to join more classes. We can first apply a model search for the vertex classes and
use the final model obtained through this process as an initial model to obtain the edge classes.

Example 2 (continued). First, we label residence in 1980 and residence in 1985 as vertices 1
and 2, respectively. The four possible values, Northeast, Midwest, South and West, are coded
as 1, 2, 3, and 4, respectively. The quasi-symmetry model fits these data and corresponds to
an RGLL model with generating class A={{1, 2}} with V=(V1, V2), E=(E1,...,E10), where

V1 = {1}, V2 = {2}; Ei = {u12(ii)}, i = 1, .., 4, E5 = {u12(12), u12(21)},

E6 = {u12(13), u12(31)}, E7 = {u12(14), u12(41)}, E8 = {u12(23), u12(32)},

E9 = {u12(24), u12(42)}, E10 = {u12(34), u12(43)}.

The deviance for this model obtained with REGRAPH is 2.99 with three degrees of freedom
and a p-value of 0.39, indicating that we do not reject the null hypothesis that the model fits
the data.

Starting from the quasi-symmetry model, we apply a selection method that preserves the
vertex colour classes using REGRAPH. Assuming a significance level of 0.05, we get an RGLL
model with generating class A={{1, 2}} with V = (V1, V2) and E=(E1,E2,...,E7), where

V1 = {1}, V2 = {2}; E1 = {u12(22)}, E2 = {u12(12), u12(21)}, E3 = {u12(13), u12(31)},

E4 = {u12(14), u12(41)}, E5 = {u12(23), u12(32)}, E6 = {u12(33), u12(11), u12(34), u12(43)},

E7 = {u12(44), u12(24), u12(42)}.

This model has a deviance of 2.98 with three degrees of freedom, p-value of 0.39, while the
value of the Pearson X2 statistic is 2.98. Of these classes, only two differ with respect to those
in the quasi-symmetry model. The class containing u12(34) and u12(43) now also contains
u12(11) and u12(33) and the class containing u12(24) and u12(42) now also contains u12(44).
The graphs associated with this and the quasi-symmetry model are not presented here be-
cause they involve too many edges and colours to be helpful.

Example 2 shows the fitting of a quasi-symmetry model as an RGLL model and offers a sec-
ond fitting of another RGLL model. Both indicate that the expected cell frequencies in the
same class would be equal if the marginal effects were not considered or that the variables
and values in the same class are equally associated.

Example 3 (twins data, continued). In Section 1 we defined an RGLL model with two
vertex and ten edge colour classes. The associated restrictions are as usual for the main effects
and of the kind uXY (ij)=uZR(ij) or uXY (ij)=uZR(ji) for the first-order interactions. This
allows us to equivalently apply the restrictions on the full parameters or on those under effect
coding as described in Section 4.1. Hence, the model can be fitted with R using the glm
function by generating the effect coding variables and summing those whose associated full
parameters are equal. Similar statistics were obtained with REGRAPH, which uses an IPF
algorithm, and R, where a Newton-Raphson algorithm is used. Using R we got a residual
deviance of 9.49 with 10 degrees of freedom, and p value of 0.49, while using REGRAPH the
statistic is 9.18 with the same degrees of freedom, and a p value of 0.51. When compared
with the graphical model (the unrestricted model defined only by the generating class) whose
deviance is 4.75 with seven degrees of freedom, the deviance between models is 4.74 (or 4.43
with REGRAPH) with three degrees of freedom and associated p value of 0.19 (or 0.21 with
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REGRAPH). Hence, the model fits the data well when compared with both the saturated or
graphical models. It improves the inference because it allows the symmetric interpretations
discussed earlier. The associated fitted expected values are shown in Table 1.

5. Discussion and perspectives

We have introduced RGLL models mainly as a way of generalizing symmetry in graphical
log-linear models. We have used both the parameterization and the kind of restrictions used
by Agresti (Agresti 2002, p. 423-426) for symmetry and quasi-symmetry models. We could
have used any other parameterization to define the parameter restrictions in RGLL models;
for example, parameters under effect coding. In some particular cases, the restrictions with
any kind of parameter are exactly the same. The graphical representation can be helpful
when there are few variables and levels. RGLL models can be fitted to specific panel data,
which can be represented using contingency tables as discussed by Lovison (2000).

RGLL models can be fitted using REGRAPH. Care should be taken with the interpretation of
a fitted model. Indeed, in some cases the fitted model could be too complex to be interpreted
in terms of the relationship between the cells. We have to be careful with which restrictions
are imposed, for instance if all first-order interactions are in one class, then the correspond-
ing parameter becomes a constant term and the model is non-hierachical. Even though we
proved in Ramı́rez-Aldana (2010) that the IPF method converges to the estimators, we have
to be careful with the initial values. The problem with this type of numerical methods is that
for higher-dimension contingency tables, the solution can slightly differ depending on those
values. This can be more evident on contingency tables in which there are cells with very
small counts and others with very large counts. Future work could include to improving the
computational algorithm in this sense.

There are two types of models defined in Ramı́rez-Aldana (2010) for graphical log-linear
models with associated triangle-free graphs called label and level invariant graphical log-
linear models. They represent four types of symmetry: (a) graph symmetry, (b) model and
distribution preservation after permuting subsets of variables, (c) expected frequencies equal-
ities, and (d) scale invariance. They can be expressed as RGLL models though they have
different properties. The RGLL model associated with a label invariant model can be easily
obtained using graphical and algebraic concepts. The example given in Section 1 corresponds
to a particular level invariant graphical log-linear model, which is almost equivalent to a
label invariant model but without scale invariance. The advantage of such a model is that
its associated RGLL model can be obtained using similar concepts as the ones used for a la-
bel invariant model. The classes for the RGLL model in Section 1 can be obtained in this way.

We could extend RGLL models by setting equality restrictions not only on the main effects
and first-order interactions, but also on higher-order interactions. This generalization requires
additional work in both computational and theoretical terms. A graphical representation of
these models, even with multi-graphs, is not possible, much less when we consider that the
equalities involve not only variables but also their values. If we obtained these generalizations,
more symmetry generalizations, for example complete symmetry or quasi-symmetry (Bishop
et al. 1975, p. 299-306), would be particular cases.
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A. Solution to the likelihood equations

The IPF method (e.g., Lauritzen 1996, p. 83-84) consists of three steps applied to every cell i,
for i ∈ I. For RGLL models, there are likelihood equations that have to be solved in addition
to the ones for the generating class A. These equations correspond to first-order interactions
and main effects, first and second equations in (10). The algorithm then solves RGLL models
similarly to the IPF method; however, in step 2 we add transformations corresponding to the
restrictions or colourings. The usual IPF method consists of the following steps:

1. Assign an initial value, m0(i), for i ∈ I. For instance, m0(i) can be one.

2. Take all the elements in the generating class A, and order them in a set (b1, b2, ..., bz).
Define the transformation Tv = Tbv , for v = 1, 2, ..., z, as

(Tbvm)(i) = m(i)
n(ibv)

m(ibv)
, i ∈ I.

Define recursively

mr+1(i) = (T1T2...Tz)mr(i), r = 0, 1, 2, ....

In every step, we adjust all the elements in the generating class, so that there are z
sub-steps for every step.

3. The process continues until the maximal difference between the marginal counts and
the marginal adjusted expected frequencies reaches a predetermined error δ.

For RGLL models, we add other transformations. Considering that all variables have the
same categories, L levels in each, we define for every vertex class Vt, where t = 1, 2, ..., T and
l = 1, ..., L, the following transformations

(TVt(l)m)(i) = m(i)

∑
vtk∈Vt

n(vtk = l)∑
vtk∈Vt

m(vtk = l)
, i ∈ {(i1, i2, ..., i|V |) ∈ I|ivtk = l, for some vtk ∈ Vt}.

For each edge or first-order interaction class Es, with s = 1, 2, ..., S, we define the following
transformations for i ∈ {(q1, q2, ..., q|V |) ∈ I|qlv = iv, qrv = jv, for some {lv = iv, rv = jv} ∈
Es}

(TEsm)(i) = m(i)

∑
{lv=iv ,rv=jv}∈Es

n(lv = iv, rv = jv)∑
{lv=iv ,rv=jv}∈Es

m(lv = iv, rv = jv)
.

We define 0/0 = 0. The element {lv = iv, rv = jv} ∈ Es denotes an edge on Es joining the
variable lv to rv for the value combination (iv, jv), for v = 1, ..., ked(s), where s = 1, ..., S.

Then, we define for r, where r = 0, 1, 2, ...

mr+1(i) = (T1T2...TzTV1(1)TV1(2)...TV1(L)...TVT (1)TVT (2)...TVT (L)TE1TE2 ....TES
)mr(i).

We emphasize that the transformation Tbv = Tv is applied for |bv| 6= 1, 2 and that not all
transformations associated with the colourings are applied to every cell, it depends on the
class and cell. For example, if we have a cell whose entries corresponding to all the variables
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in a colour class Vt are all different from l, then there is no sense in applying to this cell the
transformation TVt(l).
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