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Abstract

We introduce the transmuted modified Inverse Rayleigh distribution by using quadratic rank
transmutation map (QRTM), which extends the modified Inverse Rayleigh distribution. A com-
prehensive account of the mathematical properties of the transmuted modified Inverse Rayleigh
distribution are discussed. We derive the quantile, moments, moment generating function, en-
tropy, mean deviation, Bonferroni and Lorenz curves, order statistics and maximum likelihood
estimation The usefulness of the new model is illustrated using real lifetime data.

Keywords: modified inverse Rayleigh distribution, moments, order statistics, maximum likelihood
estimation.

1. Introduction

The inverse Rayleigh (IR) distribution is the special case of the inverse Weibull (IW) distribution for
modeling lifetime data. Trayer (1964) introduced the (IR)distribution. Gharraph (1993), Mukarjee and
Maitim (1996) discussed some properties of the (IR) distribution. Voda (1972) also discussed some
properties of the maximum likelihood estimator for the IR distribution. Mohsin and Shahbaz (2005)
studied the comparison of the negative moment estimator with maximum likelihood estimator of the
IR distribution. Recently Khan (2014), studied the modified inverse Rayleigh (MIR) distribution and
discussed its theoretical properties. The cumulative distribution function (cdf) of the MIR distribution
is given by

2

where o > 0 and 8 > 0 are the scale parameters. The density function corresponding to (1.1) is

2 2
g(r;0,8) = <a+2ﬁ> <1> exp{—a—ﬁ<1> }, x> 0. (1.2)
X X X X

The behavior of instantaneous failure rate of the modified inverse Rayleigh distribution has increas-
ing and decreasing reliability patterns for engineering system or component failure rate for lifetime
data. The two parameter modified inverse Rayleigh distribution is the extended model of the inverse
Rayleigh distribution and has nice physical interpretation. The inverse Rayleigh (IR) distribution is the
special case of the modified inverse Rayleigh (MIR) distribution when o = 0 and the MIR distribution
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coincides with the inverse exponential distribution for 8 = 0.

Khan and King (2012), proposed the modified inverse Weibull distribution and presented compre-
hensive description of the mathematical properties along with its reliability behavior. Khan et al.
(2008), studied the flexibility of the inverse Weibull distribution. Aryal et al. (2009) studied the trans-
muted extreme value distribution with application to climate data. Aryal et al. (2011), proposed the
transmuted Weibull distribution and studied various structural properties of this model for analyzing
reliability data. More recently Khan and King (2013), proposed the transmuted modified Weibull dis-
tribution and studied its mathematical properties. Khan and King (2013) also proposed the transmuted
generalized inverse Weibull distribution with application to reliability data. Khan, King and Hudson
(2013), studied the transmuted generalized exponential distribution and studied its various structural
properties with an application to survival data. More recently Merovci (2013), studied the transmuted
Rayleigh distribution. In this research article, we propose the three parameter transmuted modified in-
verse Rayleigh distribution denoted as the TMIR which is a new generalization of the modified inverse
Rayleigh distribution and discuss its statistical properties and applications. The new extended distri-
bution contains five submodels such as the TIR (transmuted inverse Rayleigh), TIE (transmuted inverse
exponential), modified inverse Rayleigh, inverse Rayleigh and inverse exponential distributions.

A random variable X is said to have transmuted distribution if its distribution function is given by

F(z) = (14X Gz)—\G(x)? (1.3)

where G(x) is the CDF of the base distribution. It is important to note that at A = 0 we have the
distribution of the base random variable, Shaw et al.(2009).

The article is organized as follows, In Section 2, we present the analytical shapes of the probability
density, distribution function, reliability function and hazard function of the subject model. A range of
mathematical properties are considered in Section 3, we demonstrate the quantile functions, moment
estimation, moment generating function. In Section 4, we derived the entropies, mean deviation,
Bonferroni and Lorenz curves. In Section 5, we derive density functions of the pdf of rth order
statistics and the rth moment of order statistics X ;.. In Section 6, Maximum likelihood estimates
(MLE;) of the unknown parameters and the asymptotic confidence intervals of the TMIR distribution
are discussed. In Section 7. we fit the TMIR distribution to illustrate its usefulness. Concluding
remarks are addressed in Section 8.

2. Transmuted modified inverse Rayleigh distribution

A positive random variable x has the three parameters TMIR distribution with scale parameters «, 8 >
0 and the transmuted parameter |A| < 1 is given by

2 2
f(l‘;Oé,,B,A) = (O{+ 25) (i) €xp {_C; _IB <£1l?> }UQ(:U)) (21)
« 1\2
ug(az):{1+)\—g)\exp{—x—ﬁ<x> }}, g=1,2, (2.2)

The cumulative distribution function CDF corresponding to (2.1) is given by

1\ 2
F(x;a,B8,\) = exp{—a—ﬁ <> }ul(w) (2.3)
x x
Here o and (5 are the scale parameters and A is the transmuting parameter representing the different

patterns of the TMIR distribution. The probability density function given in (2.1) with their associated
reliability function, hazard function and cumulative hazard function are given in (2.4-2.6) respectively

2
R(z;0, B,N\) = 1—exp{—j—ﬂ<> }ul(az), (2.4)
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2
H(z;a,0,A) = —In [1 —exp{—z - B <i) }ul(x)] ) (2.6)

Fig. 1 shows the different patterns of the density function (pdf) and hazard function (hf) of the TMIR
distribution. It illustrate that the behavior of instantaneous failure rate of the TMIR distribution has
upside-down bathtub shape curves.

3. Moments and quantiles

In this section we obtain some statistical properties of the TMIR distribution.

3.1. Quantile and median
The quantile F~!(u) of the TMIR distribution is the real solution of the following equation
20

Fﬁl(u) = 9
(14N —/(TEN?—2ra
a+\/oz24ﬁln< ) >

3.1
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where u has the uniform U (0, 1) distribution.
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Figure 2: Median and coefficient of quantile deviation of the TMIRD.

The random number for the TMIR distribution is performed by generating uniform numbers and then
applying the quantile function using equation (3.1). By substituting © = 0.5 in (3.1) we obtain the
median of the TMIR distribution. Fig. 2 shows the median and quartile deviation life of the TMIR
distribution when o = 2 and 8 = 3. To illustrate the skewness and kurtosis we consider the measure
based on quantiles. The skewness and kurtosis measures can now be calculated from quantiles using
Bowley and Percentile coefficient of kurtosis. The Bowley Skewness and Percentile coeffficient of
kurtosis when o« = 2, A = 0.5 as a function of (3 are illustrated in Fig. 3 respectively. It is important to
note that as the parameter 3 increases the behavior of the Bowley Skewness and Percentile coeffficient

of kurtosis are decreases asymptotically.

3.2. Moments

Theorem 1. If X has the TMIR (z; o, B, X) with |\| < 1, then the kth moment of X is given by

pﬁpak 2p

o0 > 2a k—2p
p=0 p=0

zg(k,p)—[F@p—k—i—l) ﬂF(2p k—|—2)} g=1,2.

Proof. By definition

= /Oooxk—Q (a + 25) exp {—i‘ By <i>2} us(z)dz.

0o 2
- e [ D)5 (2) )
00 2
—2)\/ k2 <a+2ﬁ>exp{—2a—26<1> }dw.
0 x T x

so that

The above expression can be obtained by using

p=0 P!
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the above integral yields the following kth moment,
o0
(—1)pgrat-2 23
= (1+A)ZT P@Ep—k+1)+ 5T (2 —k+2) (3.2)

5211(2]9—143—{-2)}

_ Ai (—1)P(2B)P (2a) =2 [F p—k+1) 4

p!
UJ

Theorem 2. If X is a random variable that has the TMIR(x; o, 3, \) with |\| < 1, then the moment
generating function (mgf) of X is given by

- - (LAt SN CLresye
M,(t) = (1+2) 22 g T2(p, ) A%q_zo Goy-ayigr (P 0):

h
F(2p—q+1)+ gl_‘(Qp—q—l-Q)], h=1,2.
[0

Proof. By definition

M,(t) = /Ooo (a + 25) (;)Zexp {t:c - % —B (i)Q} us(z)dz.

o 2 1\° 1\’
M,(t) = (l—l—)\)/ (oz—f—ﬁ) () exp {tx—a—ﬁ<) }dl’
0 x x x x
o 2 1\’ 2 1\°
—2)\/ (a + B) <) exp {tﬂc e 26 () }da:.
0 x x x x
Using the Taylor series expansions the above integral reduces to
XL td [ 2 1\?
M,(t) = (1—1—/\)2'/ z?? <a+ﬁ>exp{—a—ﬁ(> }daz
= Jo x x x
XL td [ 2 2 1\?
—2)\2'/ zd2 <a+ﬁ> exp{—a—Zﬂ <> }da:,
= Jo x x x

the above integral yields the following moment generating function

so that

My(t) = (1+)\)sz[F(?p—q+1)+2§f‘(2p—q+2)] (3.3)
p:(]qzo pq «
o (—1)P(2B)P1 B
_APZ::();W’W[F(2p_q+1)+a2r(2p_Q+2)]
0

Based on Theorem 1, the coefficient of skewness and coefficient of kurtosis of the TMIR(z; av, 8, \)

3
are obtained from the well known relations 31 = p3/p2 and B2 = 4/ 113, respectively.

4. Entropy and mean deviation
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Figure 3: Bowley skewness and percentile kurtosis of the TMIRD.

The entropy of a random variable X with probability density TMIR (z; cv, 3, \) is a measure of variation
of the uncertainty. A large value of entropy indicates the greater uncertainty in the data. The Rényi
entropy (1960), Ir(p), for X is a measure of variation of uncertainty and is defined as

inp) = o toud [ fapas ), @.1)

where p > 0 and p # 1. Suppose X has the TMIR(x; o, 5, A) then by substituting (2.1) and (2.2) in
(4.1), we obtain

In(p) = 1iplog{/oo° (a+2f> (x> ep{—i”—ﬁp(if}m@)pdw},

the TMIR Rényi entropy reduces to

Ir(p) = log ii 1+)\po/’<[;><j><2(f> <1+)\>‘§z,g ;

&y = /OOO <i>2p+jexp{—(p+i) {2+5 (i)z}}dx.

The above integral can be calculated as

(DR (p i)k (T (4 20k +p) — 1)
& = Z X <[a(p+i)]j+2(k+p)+l).

k=0

and thus we obtain the TMIR Rényi entropy as

Ir(p) = pploga—l-lﬁ

N DB+ )V (TG +2(k +p) — 1)
o) & 2 (e et

where
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The S-or( g-entropy) was introduced by Havrda and Charvat (1967), and is defined as

o) = i fi- [T ). 42)

where ¢ > 0 and ¢ # 1. Suppose X has the TMIR(z; «, 3, \) then by substituting (2.1) and (2.2) in
(4.2), we obtain

In(q) = qil{l_/ooo <Oz+2:f>q<i>2qexp{—0;q—Bq<;>2}uQ(:U)qd:r},

the above integral yields the TMIR g-entropy is

X & +k5k(q+z)’“§” (G +2(k+q)—1)
Iu(q) = q—l ;Jvko ({ (q+i)]j+2(k+q)+1> ,

where

comston(1)(3) (2 (25

The degree of scatter in a population is widely measured by the totality of deviations from the mean
and median. If X has the TMIR(z; «, 3, A), then we derive the mean deviation about the mean and
about the median from the following equations of Gauss et al. (2013)

5 = /Ooo - plf(z)de  and 6 — /OOO @ — M|f(z)da

The mean p is given in equation (3.2) and the median M is obtained from equation (3.1). These
measures are calculated using the relationships:

0p =2[pF(p) —¢(w)]  and G =p—2¢(M).

The quantity 1(q) used to determine the Bonferroni and Lorenz curves, which have applications in
econometrics and finance, reliability and survival analysis, demography, insurance and biomedical
sciences is given by

) = (1+ /\)}i% [a’y <2h+ 1, Z) + %’y (2h +2, j)] 4.3)
SO [ (1) 2 (2 2]

By using (4.3), one obtains the Bonferroni and the Lorenz curve as

B(P) = %D(Z)’ and L(P) = wg‘])

5. Order statistics

The density of the rth order statistic X,y of a random sample drawn from the TMIR (z; o, B, \) dis-
tribution with [A| < 1, follows from Arnold et al. (1), with the density function of X, is given
by

(F(2)" ™ (1= F(2))"™" f(x)
B(r,n—r+1) ’

fr:n(x) x> 0. (5.1

23
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By setting § = exp {—% -8 (%)2} substituting (2.1) and (2.3) into (5.1), we obtain

) = n(PT)VS() C0a,

k=0

where

Ve(z) = (06+2f> (i)zul(w)r+k_IU2(w).

This leads to the combining terms of the order statistics of the TMIR distribution, given by

) = 0 (021)Y 5 S (a+ %) () Ba(n),(52)

k=0 m=0

where

N B n—r r+k—=1\, L \ktm T AN W
S = n (") (TR ) asr (25

Zhm = exp{—(r+k+m) <Z+ﬁ <i>2> }

Using (5.2), the sth moment of the rth order statistics X, is given by

nro n—1 an i S 1 +A i ﬁ Ti,;s0 = ﬁ \— L) P Ts,1
Hs o = r—1 k,m — C—4! C+1 —ig!

k=0 m=0 =0

and

where c =r + k + m,

Tisg = a((c+9)) 2 T (2 —s+1)+28((c+g9)a) 22T (2i —s +2).

6. Maximum likelihood estimation

Consider the random samples x1, 2, ..., T, consisting of n observations from the TMIR distribution
and © = (a, 3, \)T be the parameter vector. The likelihood function of (2.1)is given by

- 2 «o 1\?
L« - = — 6.1
- 11 3) () el 2 ) &
o 1\?
{1—|—)\—2)\exp{— -8 () }}
Z; ZT;
By taking the logarithm of (6.1), we have the log-likelihood function

log, = Zlog(a—i— >+Zlog< ) —i(j) 6.2)

i=1

—612;(%) -l-;log{l—i-)\ 2Aexp{——5< >2}}
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Differentiating (6.2) with respect to «, 8 and A, then equating it to zero, we obtain the estimating
equations are

dlogL 26170 &K /1
e = Z{cwr%} —Z<x> 6.3)

ﬂ.
—
—_
+
>
\

[\
>
]

"
ho]
—N
\
8o
\

610gL . n 25 -1 9 n 1 2
% H{Mwi} <$>Z<az) (64)

and

dlog L - f: 1—2eXp{_g—B<;>2}
O\ i=1 {1+/\—2x\exp{—§i_ﬁ<;)2}}’

It is more convenient to use quasi Newton algorithm to numerically maximize the log-likelihood
function given in equation (6.2) to yield the ML estimators &, B and \ respectively. For finding
the interval estimation and testing the hypothesis of the subject model, we required the observed
information matrix is given by

(6.5)

cﬁf a ‘:/11 ‘:/12 ‘:/13
@ ~ N B |, ‘{21 ‘{22 ‘{23 )
A A Va1 V3o Vi3

the expected information matrix is given by

9%logL  8%logL 9%logL

28(12 gaaﬁ (2018)\
-1 _ 0“loglL 0%logL 0“loglL
V=-F 0f0« 0p2 OBON : (6.6)
0%logL.  9%logL 9%logL
OO PRNCI] X

Solving the inverse matrix for the observed information matrix (6.6), yields the asymptotic variance
and co-variances of the ML estimators &, 3, and \. By using (6.6) approximate 100(1 — a))% asymp-
totic confidence intervals for «, 8 and A are

OAéiZ%\/Vn, BiZ%\/ Vas, S\iZ%V Vas,

where Z g is the upper ath percentile of the standard normal distribution.

7. Application

This section illustrates the usefulness of the TMIR distribution with real data. The data consist of thirty
successive values of March precipitation (in inches) given by Hinkley (1977) and given below
0.77, 1.74, 0.81, 1.2, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32, 0.59,
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0.81,2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05.

Four distributions are fitted to the precipitation data using maximum likelihood estimation. The es-
timated parameters for the TMIR distribution with their corresponding 95% C.I are given in Table 2.
The summary statistics of the fitted TMIR, TIR, MIR and IR distributions are given in Table 1.

— TMIR - -
TIR
— MR -
7 IR S
w
- <
=
=
i s —— Empirical
= — TMIR
— TR
| o y — MIR
- S / IR
| ‘||||I| Ca____j
o
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Figure 4: Estimated Reliability and Survival functions for four fitted models.

Table 1: Summary Statistics for TMIR, TIR, MIR and IR distributions

Distribution  Quartile deviation Bowley Skewness Percentile kurtosis

TMIR 0.1378 -0.0881 0.2866
TIR 0.1361 -0.0898 0.2864
MIR 0.4672 0.3928 0.1726

IR 0.3741 0.3069 0.2096

Table 2: Estimated Parameters of the TMIR distribution

95% confidence Interval

Parameter ML Estimate Standard Error Lower Upper
o 0.0212 0.2388 -0.4469 0.4893
I6; 0.6472 0.2654 0.1268 1.16758
A -0.6703 0.2612 —1.1825* -0.1581

The MLE; of the parameters (with their standard errors) and their corresponding values of the Coefficient
of determination, mean square error (MSE) and Kolmogorov-Smirnov (K-S) test values are displayed
in Table 3. The likelihood ratio (LR) statistic for testing the hypothesis Hg IR v.s H,: TMIR is 4.0786
with their corresponding p-value 0.04343. Hence we reject the null hypothesis in favour of the TMIR
distribution, because the p-value is small. Fig. 4 illustrates the four fitted models with empirical func-
tions for the precipitation data. These graphs illustrate that the TMIR distribution fits well. The hazard
plot of the estimated TMIR distribution has increasing and then decreasing instantaneous failure rate.
As we can see from these numerical results in Table 3, the Coefficient of determination of the TMIR
distribution is higher than the other three sub-models and the values of mean square error (MSE) and
Kolmogorov-Smirnov (K-S) test of the TMIR distribution are the smallest among those of the four
fitted distribution. Therefore the TMIR distribution can be chosen as the best model for lifetime data
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Table 3: Estimates of the model parameters for precipitation data and the X-S test, Coefficient of
determination and associated MSE values

Distribution =~ TMIR TIR MIR IR
o 0.0212 - 0.3598 -
(0.2388) (0.3745)
B 0.6472  0.6285 0.5881 0.8588
(0.2654) (0.1583) (0.2975) (0.1568)
A -0.6703  -0.6701 - -
(0.2613) (0.2661)
K-S 0.1395 0.1626  0.1641 0.2206
R? 0.9442 09199 09137  0.8382
MSE 0.0726  0.0862  0.0801 0.1212

analysis. Fig. 4 also illustrate that the TMIR distribution gives a better fit than the other three sub-
models.

8. Conclusion

We proposed a new distribution, named the TMIR distribution, which is an extension of the MIR
distribution. The TMIR distribution provides better results than the MIR, TIR and IR distributions. In
this model the new parameter A provides more flexibility in modeling reliability data. We derive the
quantile function, moments, moment generating function, entropies, mean deviation, Bonferroni and
Lorenz curves. We also derive the Sth moment of rth order statistics and the kth moment of rth median
order statistics. We discuss the maximum likelihood estimation and obtain the fisher information
matrix. The usefulness of the new model is illustrated in an application to real data using MLE. We
hope that the proposed model may attract wider application in the analysis of reliability data.
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