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Abstract: In the paper a change detection procedure is introduced for integer-
valued autoregressive processes which are inspired by the ordinary autore-
gressive model. The power of the test is investigated in a simulation study to
determine how effectively it can detect changes in the key parameters of the
process.

Zusammenfassung: In diesem Artikel schlagen wir eine Methode vor, die
für das Erkennen von Veränderungen in einem ganzzahligen autoregressiven
Prozess gebraucht werden kann. Dann wird eine Simulationsstudie ausgeführt,
um zu bestimmen, wie oft der Test eine Veränderung in den verschiedenen
Parametern ermitteln kann.
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ulation.

1 Introduction

Detecting a change of a parameter in a stochastic model is an important task, and one that
has been investigated since decades. In econometrics, medicine or population dynamics,
failing to notice a change in a parameter will lead to unreliable estimates of the parame-
ters, and, ultimately, false predictions. Several statistics have been constructed for a wide
range of stochastic models to test for parameter change. For a review of these techniques
we refer to Csörgő and Horváth (1997).

In this paper we will consider the integer-valued autoregressive process of order p,
abbreviated INAR(p) and test for a change in several crucial parameters. The INAR(p)
model, introduced by Alzaid and Al-Osh (1987) and Alzaid and Al-Osh (1990) is an
integer analogue of the AR(p) model that is extensively used in time series analysis. Its
main advantage is that it is nonnegative and integer-valued, therefore more applicable in
situations where we have data of this type – most frequently count data.

The approach we will use to test for a parameter change is similar to the CUSUM
approach described in Kang and Lee (2009) and Lee and Na (2005). After introducing
the test statistics we will describe an empirical simulation study which investigates the
power of the test as the function of several parameters of the process.

In this first section we will introduce the INAR(p) model and describe the statistical
problem that has motivated this paper. The second section contains the details of the
calculation of the test statistics. The fourth section is dedicated to the simulation study.
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1.1 The INAR(p) Model
Definition. An INAR(p) time series model is a stochastic process (Xk)k≥−p+1, k ∈ Z,
given by

Xk =

Xk−1∑
j=1

ξ1,k(j) +

Xk−2∑
j=1

ξ2,k(j) + · · ·+
Xk−p∑
j=1

ξp,k(j) + εk , k ∈ N , (1)

where for all i ∈ N, {ξi,k(j)}j∈N is a sequence of i.i.d. Bernoulli random variables with
mean αi,k and (εk)k∈N is a sequence of independent nonnegative integer-valued random
variables with mean µk and variance σ2

k, such that all these sequences are independent
of each other. For technical reasons, we will suppose that X0, X−1, . . . , X−p+1 are deter-
ministic throughout the paper. The α’s are called the coefficients, the distribution of the
εk’s is called the innovation distribution. We will also call the distributions of the ξi,k(j)’s
the offspring distribution.

Remark. Using the binomial thinning operator due to Steutel and Harn (1979) we can
also write the process in the following form:

Xk = α1,k ◦Xk−1 + α2,k ◦Xk−2 + · · ·+ αp,k ◦Xk−p + εk .

The meaning of ◦ is the following: if X is a nonnegative integer-valued random variable
and 0 ≤ α ≤ 1, then

α ◦X :=

{
0, if X = 0 ,∑X

j=1 ξj , otherwise,

where (ξj)j∈N is a sequence of i.i.d. Bernoulli random variables with mean α.

Remark. The ◦ operator emphasizes the similarity to the AR(p) model – indeed, many of
our results were inspired by analogous results for AR(p) processes. There are, however,
two very important differences. The first is the innovation. In the AR(p) model this is
assumed to have zero mean. Here it is nonnegative. The second is that the deterministic
regression (not counting the innovation) in AR(p) is replaced here by a stochastic regres-
sion, which makes it more fruitful to consider the INAR(p) model as a special multitype
branching process with immigration. We will also use this approach later on.

Remark. The motivation of the process is easy to understand: let us take a population in
which every member has 0 or 1 offspring at p consequent time steps and then deceases.
The number of offspring is independent in the different time steps and the members act
independently of each other. If we augment this process with a stochastic immigration we
obtain the INAR(p) model.

1.2 The Goal of the Analysis
The parameters of the process are contained in the parameter vector θk defined by

θk := [α1,k, . . . , αp,k, µεk ]
⊤ .
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The variance of the innovation, denoted by σ2
k, is not included in θk because we will not

test for change in that quantity. The reason that a notation was introduced for it is that its
estimation is necessary to calculate the test statistics.

Let us split θk = (ϕk, ηk) into parameter vectors of interest ϕk and nuisance vectors
ηk. We want to test the following hypothesis:

H0 : θ1 = θ2 = . . . = θn and ε1, ε2, . . . , εn are i.i.d.

against

HA : ∃k∗ ∈ {1, . . . , n− 1} : ϕ1 = ϕ2 = · · · = ϕk∗ ̸= ϕk∗+1 = · · · = ϕnbut
η1 = η2 = · · · = ηn , ε1, · · · , εk∗are i.i.d andεk∗+1, · · · εnare i.i.d.

2 Calculation of the Test Statistics
In this section we will work under the null hypothesis and derive test statistics whose
limiting distribution is a well-known process. Under the null hypothesis, the process
takes the following form:

Xk =

p∑
i=1

Xk−i∑
j=1

ξi(k, j) + ε(k) , k ∈ N , (2)

where for all i ∈ N, {ξi(k, j)}j∈N is a sequence of i.i.d. Bernoulli random variables with
mean αi and (ε(ℓ))ℓ∈N is a sequence of i.i.d. nonnegative integer-valued random variables
with mean µε and variance σ2

ε , such that all these sequences are independent of each other.

Remark. Note that the index k has moved from subscript to within parentheses for each
variable. This emphasizes the fact that their distribution is no longer dependent of k.

We can distinguish three types of INAR(p) processes:

• stable: α1 + · · ·+ αp < 1

• unstable: α1 + · · ·+ αp = 1

• explosive: α1 + · · ·+ αp > 1.

In the paper we will only consider the stable case, i.e., when under the null hypothesis
α1 + · · ·+ αp < 1.

First we calculate the estimates of the parameters using the conditional least squares
(CLS) method. This method, first proposed by Klimko and Nelson (1978) relies on the
sequence

Mn = Xn − E(Xn|Fn−1) = Xn − α1Xn−1 − · · · − αpXn−p − µε} ,

where Fn is the σ-algebra generated by X1, . . . , Xn. Given an observed trajectory X1,
. . . , Xn, the sequence (Mk)

n
k=1 depends only on the parameters. The conditional least
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squares estimates of the parameters are the values for which the sum of squares
∑n

k=1M
2
k

is minimal. After simple calculations the estimates are

θ̂(n) :=


α̂
(n)
1
...

α̂
(n)
p

µ̂
(n)
ε

 =

[∑n
k=1Xk−1X

⊤
k−1

∑n
k=1Xk−1∑n

k=1X
⊤
k−1 n

]−1 n∑
k=1

Xk

[
Xk−1

1

]
(3)

with

Xk =


Xk

Xk−1
...

Xk−p+1

 .

Replacing the parameters in the Mk with their estimates we obtain the sequence M̂ (n)
k .

The test statistics will be based on the stochastic process

M̂n(t) := În(θ̂
(n))−1/2

⌊nt⌋∑
k=1


M̂

(n)
k Xk−1

...
M̂

(n)
k Xk−p

M̂
(n)
k

 , n ∈ N, t ∈ [0, 1] ,

where ⌊x⌋ denotes the integer part of a real number x ∈ R, A−1/2 denotes the unique
symmetric positive definite square root of the inverse of a symmetric positive definite
matrix A, and În(θ̂

(n)) is a strongly consistent estimator of an analogue of the Fisher
information matrix.

Using techniques similar to those of Lee and Na (2005) we can prove the following
theorem, essentially similar to Theorem 2.1 of that paper:

Theorem 2.1. Suppose that (Xk)k≥−p+1 is an INAR(p) process, H0 holds, E(ε41) < ∞,
α1+ · · ·+αp < 1, and Var(ε1) > 0. Then there is a standard p+1-dimensional Brownian
bridge (B(t))0≤t≤1 such that

M̂n
D−→ B as n → ∞ .

Using Theorem 2.1 we can prove the following result:

Theorem 2.2. Let us denote the i-th component of (M̂n(t))0≤t≤1 by (M̂(i)
n (t))0≤t≤1 (i =

1, . . . , p + 1), and let (B(t))0≤t≤1 a standard one-dimensional Brownian bridge. Then
under the conditions of Theorem 2.1

sup
0≤t≤1

M̂(i)
n (t)

D−→ sup
0≤t≤1

B(t)

sup
0≤t≤1

|M̂(i)
n (t)| D−→ sup

0≤t≤1
|B(t)|

sup
0≤t≤1

M̂(i)
n (t)− inf

0≤t≤1
M̂(i)

n (t)
D−→ sup

0≤t≤1
B(t)− inf

0≤t≤1
B(t)

as n → ∞.
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Using Theorem 2.2 we can construct three tests for a change in any parameter, simi-
larly to Berkes, Gombay, and Horváth (2009). The components of the Brownian bridge
(B(t))0≤t≤1 in Theorem 2.1 are independent, therefore we can test for change in several
parameters simultaneously. If we perform d tests together, all of which have a significance
level of 1 − α∗, then under H0 each test accepts H0 with probability 1 − α∗. We accept
H0 if and only if all tests accept it, and the tests are independent, therefore the probability
of the simultaneous test accepting H0 is (1 − α∗)d. Hence, for the simultaneous test to
have a significance level of α, we have to put

α∗ = 1− (1− α)1/d .

Test 1. (one-sided): if
sup
0≤t≤1

M̂(i)
n (t) > Q1(1− α∗) ,

then we reject H0 and conclude that there was a downward change in the i-th parameter.
Similarly, if

inf
0≤t≤1

M̂(i)
n (t) < −Q1(1− α∗) ,

then we reject H0 and conclude that there was an upward change in the i-th parameter.
Here Q1(1− α∗) is the (1− α∗)-quantile of sup0≤t≤1 B(t).

Test 2. (two-sided): if
sup
0≤t≤1

|M̂(i)
n (t)| > Q2(1− α∗) ,

then we reject H0 and conclude that there was a change in the i-th parameter. Here
Q2(1− α∗) is the (1− α∗)-quantile of sup0≤t≤1 |B(t)|.

Test 3. (temporary change): if

sup
0≤t≤1

M̂(i)
n (t)− inf

0≤t≤1
M̂(i)

n (t) > Q3(1− α∗) ,

then we reject H0 and conclude that there was a temporary change (also called epidemic
alternative) in the i-th parameter, as defined in Csörgő and Horváth (1997), 1.7.4. Here
Q3(1− α∗) is the (1− α∗)-quantile of sup0≤t≤1 B(t)− inf0≤t≤1B(t).

The cumulative distribution functions to compute the appropriate quantiles are the
following:

P

(
sup
0≤t≤1

B(t) > x

)
= e−2x2

, x ≥ 0

P

(
sup
0≤t≤1

|B(t)| > x

)
= 2

∞∑
k=1

(−1)k+1e−2k2x2

, x ≥ 0

P

(
sup
0≤t≤1

B(t)− inf
0≤t≤1

B(t) > x

)
= 2

∞∑
k=1

(4k2x2 − 1)e−2k2x2

, x ≥ 0 .

The first two results are well-known, the third is due to Kuiper (1960).
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3 Calculation of the Information Matrix
The heuristic reasoning behind the definition of (M̂n(t))0≤t≤1 is the following: due to the
martingale central limit theorem,

1√
n

⌈nt⌉∑
k=1

Mk
D−→

√
cWt , t ∈ [0, 1] ,

where c is a constant dependent on θ and σ2
ε , and (Wt)0≤t≤1 is a standard Brownian

motion. Therefore, by a rough approximation

1√
n
(M1, . . . ,Mn) ∼ N(0, cIn) ,

where In is the n× n identity matrix. The likelihood function is

− 1

(2πc)n/2
exp

{
− 1

2c2n

n∑
k=1

M2
k

}
.

We will take the derivative of the loglikelihood function and work with that quantity. The
first term will be regarded as constant. This is a simplification because c actually depends
on the parameters but taking this into account leads to calculations that are difficult to
handle. Also, we will not take into account the constant factor before the sum of the Mk

but will rather work with the analogue of the information matrix. Therefore, the analogue
of the loglikelihood function that we will consider will be

Qn(α1, . . . , αp, µε) = −2−1

n∑
k=1

M2
k .

Using this function we are developing similar results to those of the likelihood ratio tests
described in Csörgő and Horváth (1997). The proof that this heuristic reasoning leads to
valid results is Theorem 2.1. Based on Qn, the analogue of the efficient score vector is

∇Qk(θ̂
(n)) =


∑k

j=1 M̂
(n)
j Xj−1

...∑k
j=1 M̂

(n)
j Xj−p∑k

j=1 M̂
(n)
j

 .

The gradient of Qk(θ) is

∇Qk(θ) =


∑k

j=1 MjXj−1

...∑k
j=1MjXj−p∑k

j=1Mj

 .
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The appropriate analogue of the Fisher information matrix is

In(θ) :=
n∑

k=1

E
[
{∇Qk(θ)−∇Qk−1(θ)}{∇Qk(θ)−∇Qk−1(θ)}⊤ | Fk−1

]
. (4)

We can write In(θ) in the form

In(θ) =
n∑

k=1

E

([
M2

kXk−1X
⊤
k−1 M2

kXk−1

M2
kX

⊤
k−1 M2

k

]∣∣∣∣Fk−1

)
.

The vector Xk−1 is measurable with respect to Fk−1, therefore

In(θ) =
n∑

k=1

E(M2
k |Fk−1)

[
Xk−1X

⊤
k−1 Xk−1

X⊤
k−1 1

]
.

By simple calculation

In(θ) =
n∑

k=1

(
α1(1− α1)Xk−1 + · · ·+ αp(1− αp)Xk−p + σ2

ε

) [Xk−1X
⊤
k−1 Xk−1

X⊤
k−1 1

]
.

Since σ2
ε appears in In(θ) we have to provide an estimator for it. To do this, we

introduce the sequence of martingale differences

Nk = M2
k−E(M2

k |Fk−1) = M2
k−α1(1−α1)Xk−1−· · ·−αp(1−αp)Xk−p−σ2

ε , k ≥ 0 .

Replacing the α coefficients and µε both in the formula and in M2
k by their estimates we

have

Ñk :=
(
M̂

(n)
k

)2

− α̂
(n)
1

(
1− α̂

(n)
1

)
Xk−1 − α̂(n)

p

(
1− α̂(n)

p

)
Xk−1 − σ2

ε , k ≥ 0 .

For the conditional least squares estimation we need to minimize the sum of squares
n∑

k=1

Ñ2
k .

Taking the derivative with respect to σ2
ε we obtain the CLS estimate

(̂σ2
ε)

(n)
=

1

n

n∑
k=1

((
M̂

(n)
k

)2

− α̂
(n)
1

(
1− α̂

(n)
1

)
Xk−1 − α̂(n)

p

(
1− α̂(n)

p

)
Xk−1

)
.

The matrix În(θ) is defined by replacing in In(θ) the variance σ2
ε by its CLS estimate.

Remark. Using the ergodic theorem for Markov chains it can be proved that

În(θ̂
(n))

n
→ I(θ) a.s.

for some matrix I(θ). The entries of I(θ) are increasing functions of the variances of the
offspring and innovation distributions. This will explain some of the phenomena arising
later.
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4 Simulation Study
The second part of the paper deals with a simulation study that was carried out using
Octave 2.3.4. Both the recursive generation of the trajectories and the calculation of the
test statistics are given explicitly in the previous sections, therefore the implementation
was straightforward and no further details are needed here.

4.1 Technical Details
The simulations were run on dual-core Intel processors under Windows XP. The gener-
ation of a trajectory with length 400 and the analysis of that case lasted approximately
0.4 seconds—therefore the typical experiment of 1000 simulations took approximately
400 seconds. The running time increased approximately linearly with trajectory length.
Higher order cases also required significantly more time due to the higher dimension ma-
trix calculations.

4.2 Rate of Convergence and the Optimal Trajectory Length
Theorem 2.2 provides the asymptotic distribution of the test statistics but says nothing
about the rate of convergence. First we investigated this issue by performing Test 2 both
individually and simultaneously for INAR(1) processes with no change. For a trajectory
length of 400, an asymptotic significance level of 95 % resulted in typical Type I error
rates of 3.4–3.8 %. This effect disappeared slowly, the Type I error being between 4.7 %
and 5.1 % for a trajectory length of 4000. A natural conclusion would be to perform the
simulation study for a trajectory length of 4000. Apart from a tenfold increase in running
time, there were two major problems with this. Firstly, the average researcher is quite
unlikely to have a time series with 4000 data points, and therefore a study like this would
say little to prospective users of the method. Secondly, for a trajectory length of 4000,
the empirical power is larger than 0.9 for almost any change and therefore the phenomena
described below cannot be observed. Based on these reasons, we decided to investigate
trajectories with 400 data points, with the caveat that in these cases for significance level
1− α the Type I error rate may differ from α by a few percents.

4.3 The First-order Case – General Observations
The first investigated case was an INAR(1) process where the innovation was Poisson
distributed. We performed Test 2 for both parameters simultaneously with overall signif-
icance 0.95. The length of a trajectory was n = 400, change occurred at k = 200. Before
the change, the coefficient α1 was 0.5 and the innovation was Poisson distributed with
mean µε = 1. After the change, both parameters took different values: α1 was selected
from the set {0, 0.1, 0.2, . . . , 0.9}, and µε was selected from {0, 0.2, 0.4, . . . , 2}. For all
such possible pairs of after-change parameters, a Monte-Carlo experiment with 1000 rep-
etitions was run to determine the empirical power of the simultaneous two-sided test for
both parameters. The result can be seen in Figure 1. Tables 1 and 2 are also provided for
the cases when there was only a change in one of the two parameters.
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Figure 1: Empirical power of the test for INAR(1)

It is important to note that the power is significantly lower along the line

µε

1− α1

= 2 .

The explanation is that this formula provides the mean of the unique stationary distribu-
tion, which initially is equal to 2. Apparently, the test is very sensitive to a change in this
quantity. Figure 2 illustrates this effect with two typical trajectories. In the first one, the
mean of the stationary distribution remains the same, in the second one, it decreases. The
change can be detected by eye. Another shortcoming of the test is that the power drops
steeply along α1 = 0.9 when there is an increase in µε. This is due to the fact that in this
case α1 is slightly overestimated (if α1 changes to 0.9 and µε to 1.2 then the mean of the
CLS estimates for α1 was 0.975) and for α1 values close to 1 the behavior of the process
changes drastically. This is is the nearly unstable case, and in the unstable case the process
loses its stationarity, E(Xk) → ∞ linearly and Theorem 2.2 is no longer valid—see e.g.
Barczy, Ispány, and Pap (2011) This case is illustrated by Figure 3, where we can see that
a small change in the coefficient can be accompanied by a large change in the innovation
without any visible change occurring. In Figure 3 the coefficient and the innovation mean
are constant throughout the trajectory.

Tables 1 and 2 are provided for the cases where there was a change in only on param-
eter.
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Figure 2: Typical trajectories: α1 changes to 0.8 and 0.6, respectively, µε changes to 0.4
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Figure 3: Typical trajectories: α1 is 0.92 and 0.95, respectively, µε is 1.6 and 1, respec-
tively

4.4 The Effect of Different Trajectory Lengths and Change Points
The above anomalies can be avoided by investigating longer trajectories. We did this for
three different cases. The first one was the nearly unstable case of α1 = 0.9 and µε = 2
after the change. Here the power increased rapidly and reached 0.985 at the trajectory
length of 1400. The second case was α1 = 0.4 and µε = 1.2 after the change. Here both
changes are very small and in opposite directions, partly cancelling each other out. It is
no surprise that the test performed very poorly for a trajectory length of 400, and longer
trajectories repaired this problem only slowly, with the power reaching 0.9 only at the
trajectory length of 6600. However, the third case demonstrated that this is mostly due to
the small change in the values and not the fact that the mean of the stationary distribution
remained constant. Here, the mean of the stationary distribution remained constant again
but the changes were greater in value – α1 changed to 0.8 and µε to 0.4. The power
reached 0.9 for a trajectory length of only 600. Tables 3, 4 and 5 summarize these results.

It can also be expected that the test would perform poorly when the change occurs
near the beginning or the end of the trajectory. The simulation confirmed this conjecture.
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Table 1: First-order process, change in the coefficient
Empirical power for constant µε = 1, α1 changes from 0.5

α1 to 0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9
Power 1 0.996 0.928 0.635 0.204 0.190 0.806 0.969 0.055

Table 2: First-order process, change in the innovation
Empirical power for constant α1 = 0.5, µε changes from 1

µ to 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2
Power 1 1 0.995 0.802 0.198 0.175 0.534 0.839 0.978 0.998

Table 3: Effect of trajectory length for the nearly unstable case
Empirical power, µε from 1 to 2, α1 changes from 0.5 to 0.9

n 800 900 1000 1100 1200 1300 1400
Power 0.037 0.141 0.378 0.632 0.843 0.931 0.985

Table 4: Effect of trajectory length for small change
Empirical power, µε from 1 to 1.2, α1 changes from 0.5 to 0.4

n 400 1000 1800 2600 3400 4200 5000 5800 6600
Power 0.092 0.229 0.349 0.552 0.631 0.762 0.806 0.874 0.914

Table 5: Effect of trajectory length when the mean of the stationary distribution is constant
Empirical power, µε from 1 to 0.4, α1 changes from 0.5 to 0.8

n 200 300 400 500 600 700 800 900 1000
Power 0.379 0.595 0.75 0.863 0.914 0.961 0.988 0.993 0.996

However, it also showed that the test performed well in a broader range near the middle of
the trajectory than would have been expected. The results can be found in Tables 6 and 7.
Trajectory length was again 400 for comparison with the previous subsection, α1 changed
to 0.3 and 0.7 and µε to 0.8 and 1.2 for a downward and upward change, respectively.

The simulation also revealed an interesting phenomenon: the power was significantly
greater if the change occurred at the beginning of the trajectory for a downward change.
However, an upward change was detected with greater probability near the end of the
trajectory.

One heuristic reasoning for this is the following: large values of the test process ap-
pear because the parameters are misestimated. The effect is that in every step M̂k differs
from Mk largely. These deviations sum up and result in large absolute values of the
test process—and, ultimately, the rejection of the null hypothesis. However, this effect
is partly canceled out by the smaller values of (În(θ̂(n)))−1/2. The values of În(θ̂(n)) in-
crease with the increasing estimated variance of the innovation and offspring distributions.
In this case, all these variances increase with the respective means increasing. For a down-
ward change near the beginning of the trajectory, the smaller mean is dominant and the
estimate will be close to it, therefore În(θ̂

(n)) will have smaller values and will decrease
extreme values of the process to a smaller extent. If the change occurs near the end of
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Table 6: Effect of the change point for downward change
Empirical power, µε from 1 to 0.8, α1 changes from 0.5 to 0.3

Change point 40 80 120 160 200 240 280 320 360
Power 0.389 0.695 0.846 0.899 0.875 0.780 0.585 0.335 0.086

Table 7: Effect of the change point for upward change
Empirical power, µε from 1 to 1.2, α1 changes from 0.5 to 0.7

Change point 40 80 120 160 200 240 280 320 360
Power 0.151 0.468 0.668 0.807 0.935 0.980 0.980 0.931 0.652

the trajectory, then the larger mean is dominant and larger values of În(θ̂(n)) will decrease
the extreme values to a greater extent, therefore the null hypothesis will be accepted with
a greater probability. For an upward change, these phenomena occur similarly, only for
opposite ends of the trajectory.

4.5 Individual Tests
The next area of investigation was the performance of the individual tests. First we
checked whether a change in one of the parameters caused a false detection for the other
one. For this we applied Test 2 for each parameter and changed only the other one. The
range of after-change parameters and every other parameter was the same as in 4.3. The
results are contained in Tables 8 and 9.

Table 8: First-order process, two-sided test for the unchanged coefficient
Accept rates of Test 2 for α1 for constant α1 = 0.5, µε changes from 1

µ to 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2
Rate 0.929 0.976 0.899 0.864 0.923 0.940 0.853 0.720 0.620 0.510

Table 9: First-order process, two-sided test for the unchanged innovation
Accept rates of Test 2 for µε for constant µε = 1, α1 changes from 0.5

α to 0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9
Power 0.405 0.533 0.754 0.854 0.939 0.921 0.810 0.725 0.993

The findings are the following: for the α1 coefficient the test performed poorly only
if there was a great upward change in µ. This is due to a fundamental shortcoming of
the application of CLS estimation to these processes. The CLS estimates are designed for
an INAR(p) process with no change and perform very well under those conditions. If,
however, the parameters change over time, the behavior of the CLS estimates cannot be
simply described. Especially if a drastic change occurs in the parameters and the variance
of the process is relatively large, the best-fitting model may well be one with relatively
small innovation but α1 close to 1. It was indeed found that for large changes of µε the
CLS estimate of α1 differed greatly from the real value even if there was no change in
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α1. This phenomenon was even more pronounced for larger innovations (see 4.6) and
also affected µε. It is important to note, however, that while the estimates for µε were
incorrect, the null hypothesis was accepted for µε with more probability than for α1.

Another point of interest can be the the value of the last two entries in Table 9. When
α changes to 0.8, a change is falsely detected in µε with 0.275 probability. However,
when α changes to 0.9, a larger value, the rate of false detections drops to 0.007. This is
again due to the nearly unstable phenomenon. The estimation of the parameters differs
from the real values, but this effect is countered by the increased variance, and therefore
the much smaller values of (În(θ̂(n)))−1/2. Therefore, the absolute value of the process
remains small and the null hypothesis is accepted.

Next, we investigated the power of the one-sided tests. For this, we used Test 1, which
was performed individually for both parameters with no change occurring in the other
parameter. As can be seen in Tables 10 and 11 the one-sided test did not perform notably
better than the simultaneous two-sided test.

Table 10: First-order process, one-sided test for the innovation
Empirical power for constant α1 = 0.5, µε changes from 1

µ to 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2
Power 1 1 0.999 0.846 0.245 0.222 0.582 0.873 0.974 0.993

Table 11: First-order process, one-sided test for the coefficient
Empirical power for constant µε = 1, α1 changes from 0.5

α to 0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9
Power 1 0.997 0.961 0.707 0.215 0.198 0.872 0.984 0.129

Here a little explanation may be needed on the design of Test 1. As noted in 4.4,
extreme values of the test statistics arise due to a misestimation in the parameters. An
upward change in one of the parameters means that the parameter will be overestimated
before the change and underestimated after it (this is not always the case as will be seen
in 4.6 but is generally true). Therefore the test statistics takes negative values before the
change and then begins to increase after it. Hence, if it takes a value outside the critical
interval, then that will be a negative value. Similarly, a downward change will result in
large positive values of the test statistics.

4.6 The Magnitude of the Innovation
In the next case, the innovation distribution was again Poisson, but this time with a mean
of µε = 100. The question here was whether the power was dependent on the absolute or
the relative value of change. The coefficient did not change, all other parameters were the
same as in 4.3 and the simultaneous two-sided test was carried out for both parameters.
The results can be found in Table 12.

There were two important findings: first, the Type II error rate seems to depend on the
absolute rather than the relative amount of change in the innovation mean, because here
the empirical power was 1 for almost every case. There were two important exceptions.
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Table 12: First-order process, large innovation
Empirical power for constant α1 = 0.5, µε changes from 100

Simultaneous two-sided test
µ to 0 20 40 60 80 120 140 160 180 200
Power 0 0.182 1 1 1 1 1 1 0.648 0

A large upward change in µε resulted in smaller power—this was similar to the nearly un-
stable case in 4.3. However, a large downward change also caused an empirical power of
0. The explanation is again connected with the CLS estimates and În(θ̂

(n)). As explained
in 4.5, the CLS estimates differ greatly from the real values and the fitted process has a
very high variance, which results in large entries in În(θ̂

(n)). As a consequence, the test
process has small values and stays almost always within the critical band.

4.7 The Second-Order Case

In the next phase we investigated the INAR(2) model and especially the question of how
much a change in one parameter can be separated from the others.

To investigate false detections, the coefficients were 0.3–0.3 before the change. After
the change, one of the coefficients changed to a value from {0, 0.1, . . . , 0.6} with no
change occurring in the other coefficient. Test 2 was then performed for the unchanged
parameter. The innovation mean did not change. All other parameters were the same as
in 4.3.

The results were satisfactory: a change in either of the coefficients did not lead to false
detection in the other in more than 10 % of the cases. This result is in contrast with 4.5,
which shows that a large change in either the coefficients or the innovation mean can lead
to false detection in the other one. Tables 13 and 14 summarize these results.

On the other hand, the higher order of the process decreases the power of the indi-
vidual two-sided test. We tested with the following settings: the coefficients before the
change were 0.25–0.25 and the innovation mean 1. After the change, either one of the
coefficients changed to a value from {0.05, 0.15, . . . , 0.65} or the innovation mean to a
value from {0, 0.2, . . . , 1.8}. Test 2 was then performed for the changed parameter. All
the other settings were the same as in 4.3.

The results were not satisfactory: the empirical power was notably smaller for the
coefficients than in the first-order case. The innovation mean did not seem to be affected
by this phenomenon. The results for the coefficients are contained in Table 15. The
empirical powers increased with longer trajectories in the same manner as described in
4.4.

A final test was performed to see how accurately the test can detect a shift from α1

to α2. Here, initially we had α1 = α2 = 0.3. After the change α1 was chosen from
{0, 0.1, . . . , 0.6} and α2 = 0.6− α1. The innovation mean was µε = 1. All other param-
eters were the same as in 4.3. The finding here was that the shift in both directions was
detected with roughly equal probability and the power was smaller than in the case where
only one of the coefficients changed. It is, however, not very surprising that a smaller
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Table 13: Second-order process, change in the coefficient
Empirical power of Test 2 for all three parameters

α2 = 0.25, µε = 1, α1 changes from 0.25
α1 to 0.05 0.15 0.2 0.3 0.35 0.45 0.55 0.65
Power 0.593 0.171 0.066 0.05 0.17 0.501 0.519 0.194

Table 14: Second-order process, change in the innovation
Empirical power for constant α1 = α2 = 0.25, µε changes from 1

µ to 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8
Power 1 1 0.982 0.718 0.19 0.159 0.469 0.736 0.896

Table 15: Second-order process, two-sided test for the unchanged coefficient
Accept rates of Test 2 for α2

α1 changes from 0.3, α2 = 0.3, µε = 1
α1 to 0 0.1 0.2 0.4 0.5 0.6
Rate 0.900 0.924 0.946 0.958 0.960 0.988

Table 16: Second-order process, change in the structure
Empirical power for constant µ = 1

α1 and α2 both change from 0.3, α1 + α2 = 0.6 throughout
α1 to 0 0.05 0.1 0.15 0.2 0.25 0.35 0.4 0.45 0.5 0.55
Power 0.585 0.421 0.312 0.164 0.073 0.043 0.048 0.090 0.182 0.344 0.626

change in the structure of the process, like this, is detected with smaller probability. The
exact numbers can be found in Table 16.

5 Conclusions
From the described simulation we can draw the following conclusions: the test is able to
detect change in any of the described parameters. However, the power of the test decreases
for changes which occur very close to the beginning and the end of the trajectory. Larger
changes are detected with greater probability and a change in the mean of the stationary
distribution adds to the power of the test greatly. The absolute, rather than the relative
magnitude of the change in the innovation influences the power of the test. One-sided
tests are more powerful than their two-sided alternatives.

Unfortunately, the test also has several shortcomings. The individual test falsely de-
tects change if there is a large change in one of the other parameters. If the coefficient
is close to 1 or the change in the parameters is large enough, the CLS fitted process has
large variance and the test fails in almost every case. Therefore, the test is best applied if
the change in the parameters is moderate and the coefficient is not too close to 1.

These observations are valid for a trajectory length of 400 but longer trajectories in-
crease the power greatly, and for a trajectory with several thousand data points, changes
are almost always detected. For long trajectories the Type I error rate is approximately the
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same as can be expected from significance levels, while for shorter ones it may be a few
percents lower. With these limitations, however, the test can be used to detect parameter
change.
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