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Abstract: In this paper, double acceptance sampling plans are developed for
a truncated life test, when the lifetime of an item follows the Marshall-Olkin
extended exponential distribution. The probability of acceptance is calculated
for different consumer’s confidence levels fixing the producer’s risk at 0.05.
The probability of acceptance and the producer’s risk are explained by means
of examples.

Zusammenfassung: In diesem Aufsatz werden doppelte Akzeptanz-Stich-
probenpläne für einen gestutzten Lifetest entwickelt wenn die Lebensdauer
eines Artikels der Marshall-Olkin erweiterten Exponentialverteilung folgt.
Die Wahrscheinlichkeit der Akzeptanz ist für verschiedene Konsumenten-
Konfidenzniveaus berechnet, wobei das Produzentenrisiko auf 0.05 fixiert
ist. Die Wahrscheinlichkeit der Akzeptanz und das Produzentenrisiko wer-
den mittels Beispiele erläutert.

Keywords: Marshall-Olkin Extended Exponential Distribution, Double Ac-
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1 Introduction
Acceptance sampling (AS) is an inspecting procedure applied in statistical quality con-
trol. AS is a part of operations management and services quality maintenance. It is im-
portant for industrial, but also for business purposes helping the decision-making process
for the purpose of quality management. Producers are very careful about the quality of
their products so that they do not face any difficulty in the acceptance when the consumer
comes to buy them. AS is most likely to be useful in the situations when testing is destruc-
tive, or when the cost of 100% inspection is extremely high, or when 100% inspection is
not technologically feasible or would require so much calendar time that the production
schedule would be seriously impacted. Sampling plans are hypothesis tests regarding the
product that has been submitted for an appraisal and subsequent acceptance or rejection.
The decision is based on the pre-specified criteria and the amount of defects or defective
units found in the sample. Accepting or rejecting a lot is analogous to not rejecting or
rejecting the null hypothesis in a hypothesis test.

A single acceptance sampling plan (SASP) is a specified plan that establishes the
minimum sample size to be used for testing. In most AS plans for a truncated life test, the
major issue is to determine the sample size from a lot under consideration. It is implicitly
assumed in the usual sampling plan that only a single item is put in a tester. On the
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basis of information obtained from this first sample, we accept or reject the lot. If a good
lot is rejected on the basis of this information, its probability is called the type-I error
probability (producer’s risk) and it is denoted by α. The probability of accepting the bad
lot is known as the type-II error probability (consumer’s risk) and it is denoted as β. If the
product is electronic components or having failure mechanism we put a random sample
on test and accept the entire lot if no more than c (AS number) failures occur during
the experiment time. More recently, Aslam (2007) proposed double acceptance sampling
plans (DASPs) based on truncated life tests when the lifetime of an item follows the
Rayleigh distribution and Srinivasa Rao, Ghitany, and Kantam (2009) developed DASPs
based on truncated life tests following a Marshall-Olkin extended Lomax distribution.

SASPs based on truncated life tests for a variety of distributions were discussed by
Epstein (1954), Sobel and Tischendorf (1959), Goode and Kao (1961), Gupta and Groll
(1961), Gupta (1962), Kantam and Rosaiah (1998), Kantam, Rosaiah, and Srinivasa
Rao (2001), Baklizi (2003), Baklizi and El Masri (2004), Rosaiah and Kantam (2005),
Rosaiah, Kantam, and Santosh Kumar (2006); Rosaiah, Kantam, and Pratapa Reddy
(2007); Rosaiah, Kantam, and Santosh Kumar (2007), Tsai and Wu (2006), Balakrishnan,
Leiva, and Lopez (2007), Aslam and Kantam (2008) and Srinivasa Rao et al. (2009).

The purpose of this paper is to propose a DASP based on truncated life tests when the
lifetime of a product follows the Marshall-Olkin extended exponential distribution intro-
duced by Ghitany, Al-Awadhi, and Alkhalfan (2007) with known shape parameter and to
find the probability of acceptance (PA). The probability density function and the cumu-
lative distribution function (cdf) of the Marshall-Olkin extended exponential distribution,
are given by

g(t; ν, σ) =
ν
σ
exp(−t/σ)

[1− (1− ν) exp(−t/σ)]2
, t > 0 , ν > 0 , σ > 0 , (1)

G(t; ν, σ) =
1− exp(−t/σ)

1− (1− ν) exp(−t/σ)
, t > 0 , ν > 0 , σ > 0 , (2)

where σ is the scale parameter and ν is the index parameter. The mean of this distribution
is given by µ = 1.3863σ when ν = 2. Srinivasa Rao et al. (2009) studied SASPs based on
the Marshall-Olkin extended exponential distribution. An introduction and some method-
ology for the proposed DASP for life test is given in Section 2. A description by means
of tables and examples is contained in Section 3, and finally some conclusions are given
in Section 4.

2 The Double Acceptance Sampling Plan for Life Tests
The DASP is used to minimize the risk of the producer, because it provides another op-
portunity for acceptance of the product. In the DASP a sample with n1 items is taken
from the lot which is called the first sample. This first sample is put on test. Let c1 and c2
be the acceptance numbers for the first and the second sample, respectively. We terminate
the experiment if no more than c1 failures occur during the experiment time t0, i.e. we
reject or accept the lot on the basis of sample 1 if more than c2 failures occur or the time
of experiment has ended (whichever occurs earlier). If (c1 + 1) failures occur in the first
sample then all possibilities for the second sample are given as:



G. Srinivasa Rao 171

First Sample Second Sample
(c1 + 1) failures occur in sample 1 < (c2 − 1) failures in sample 2 are required to accept
(c1 + 2) failures occur in sample 1 < (c2 − 2) failures must occur in sample 2 to accept

and so on.
Let µ represent the true average life of a product and µ0 denote the specified life of

an item, under the assumption that the lifetime of an item follows the Marshall-Olkin
extended exponential distribution. A product is considered as good and accepted for
consumer’s use if the sample information supports the hypothesis H0 : µ ≥ µ0. Otherwise
the lot of the product is rejected. In AS schemes, this hypothesis is tested based on the
number of failures from a sample in a pre-fixed time. If the number of failures exceeds the
action limit c we reject the lot. We accept the lot if there is enough evidence that µ ≥ µ0

at a certain level of consumer’s risk. Otherwise we reject the lot. In order to determine
the parameters of the proposed sampling plan we use the consumer’s risk. Often the
consumer’s risk is expressed by the consumer’s confidence level. If the confidence level
is p∗, then the consumer’s risk is β = 1−p∗. In this study we fix the consumer’s risk such
that

Pr(number of failures ≤ c|p) =
c∑

i=0

(
n

i

)
pi(1− p)n−i ≤ 1− p∗ , (3)

where p is the probability that an item fails before termination time.
Consider a life testing experiment having n1 items in the first sample put on test, with

an acceptance number of c1 = 0 in this first sample, and n2 items in the second sample put
on test and we accept the lots if no more than two failures occur in the second sample, i.e.
c2 = 2. If no failure occurs in the first sample of n1 items put on test, we accept the lot.
If the true but unknown lifetime of the product deviates from the specified lifetime of the
product it should result in a considerable change in the PA of the lot based on the sampling
plan. Hence the PA can be regarded as a function of the deviation of the specified average
from the true average. This function is called the operating characteristic (OC) function
of the sampling plan. Values of the PA for the first sample using the Marshall-Olkin
extended exponential distribution with ν = 2 are given in Table 1. Denote the PAs as
L(p1) and L(p2) for sampling plans (n1, c1, t/σ0) and (n2, c2, t/σ0), respectively, then

L(p1) =

c1=0∑
i=0

(
n1

i

)
pi(1− p)n−i , (4)

L(p2) =

c2=2∑
i=0

(
n2

i

)
pi(1− p)n−i , (5)

where, p = GT (t; σ) = GT ((t/σ0) · (σ0/σ)) is given in (2).
The PA for a DASP can be obtained by using (4) and (5) and is

Pr(A) = Pr(no failure occurs in sample 1)
+Pr(1 failure occurs in sample 1 and 0 or 1 failure occurs in sample 2)
+Pr(2 failures occur in sample 1 and 0 failure occurs in sample 2) .

Values of the PA for a DASP are determined at p∗ = 0.75, 0.90, 0.95, 0.99 and t/σ0 =
0.628, 0.942, 1.257, 1.571, 2.356, 3.142, 3.927, 4.712 with ν = 2 and are given in Table 2.
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It is important to note that in the first sample and in the second sample p is a function
of the cdf of the Marshall-Olkin extended exponential distribution. These choices are
consistent with Gupta and Groll (1961), Gupta (1962), Kantam et al. (2001), Baklizi and
El Masri (2004), Balakrishnan et al. (2007).

3 Description of Tables and Examples

Suppose that the lifetime of a product follows the Marshall-Olkin extended exponential
distribution with ν = 2 and an experimenter wants to establish that its true unknown
mean life is at least 1000 hours with confidence 0.90. The acceptance numbers for this
experiment are c1 = 0 and c2 = 2 with sample sizes n1 = 12 and n2 = 16. The lot is
accepted if during 628 hours no failure is observed in a sample of 12. The PA for this
SASP from Table 1 is 0.13117. The PA for the same setup using a DASP from Table 2
is 0.22724. In a DASP scheme as σ/σ0 increases the PA also increases. For the above
sampling plan, the PA is 0.96961 when the ratio of the unknown average lifetime to the
specified average lifetime is 12. When the time of the experiment increases, the PA for
a DASP also decreases. From Table 2 it is clear that when the time of the experiment is
4712 hours and the ratio σ/σ0 = 2, the PA is 0.05633. For the same experiment time,
when σ/σ0 increases the PA also increases. It is important to note that a DASP minimizes
the producer’s risk, but this scheme also exerts the pressure on the producer to improve
the quality level of his product. At 4712 hours and with σ/σ0 = 12 and p∗ = 0.90, the
PA is 0.64988. The producer’s risk for the first sample for p∗ = 0.90 are given in Table 3.
For σ/σ0 = 2 (if the unknown average lifetime is twice the specified average lifetime) the
producer’s risks when the times of an experiment are 628 and 4712 hours are 0.77276 and
0.94367, respectively. The producer’s risk decreases as the quality level of the product
increases with p∗ = 0.90. Table 3, Figure 1 and Figure 2 illustrate our idea.
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Figure 1: Operating characteristics curve with p∗ = 0.95 and t0 = 628 hours (left) and
with p∗ = 0.95 and t0 = 4712 hours (right)



G. Srinivasa Rao 173

Table 1: Operating characteristics for the first sample of the sampling plan (n1, c1, t/σ0)
when c1 = 0 for the Marshall-Olkin extended exponential distribution with ν = 2

p∗ n1 t/σ0
σ/σ0

2 4 6 8 10 12
0.75 8 0.628 0.25816 0.52068 0.65076 0.72603 0.77481 0.80891

6 0.942 0.20642 0.47331 0.61295 0.69514 0.74882 0.78653
4 1.257 0.23426 0.50780 0.64345 0.72139 0.77160 0.80656
4 1.571 0.15383 0.42226 0.57244 0.66232 0.72143 0.76308
3 2.356 0.10437 0.36358 0.52390 0.62241 0.68786 0.73423
2 3.142 0.11844 0.39222 0.55352 0.64982 0.71264 0.75660
2 3.927 0.06060 0.29712 0.46779 0.57665 0.64985 0.70194
2 4.712 0.02999 0.22168 0.39231 0.50941 0.59085 0.64988

0.90 12 0.628 0.13117 0.37571 0.52496 0.61863 0.68201 0.72752
8 0.942 0.12199 0.36886 0.52068 0.61579 0.68000 0.72603
6 1.257 0.11338 0.36186 0.51615 0.61271 0.67777 0.72435
5 1.571 0.09634 0.34039 0.49792 0.59750 0.66487 0.71320
3 2.356 0.10437 0.36358 0.52390 0.62241 0.68786 0.73423
3 3.142 0.04076 0.24563 0.41182 0.52382 0.60160 0.65811
2 3.927 0.06060 0.29712 0.46779 0.57665 0.64985 0.70194
2 4.712 0.02999 0.22168 0.39231 0.50941 0.59085 0.64988

0.95 14 0.628 0.09350 0.31915 0.47150 0.57105 0.63986 0.68996
9 0.942 0.09378 0.32563 0.47989 0.57957 0.64799 0.69755
7 1.257 0.07888 0.30546 0.46228 0.56467 0.63523 0.68645
6 1.571 0.06034 0.27439 0.43311 0.53902 0.61275 0.66658
4 2.356 0.04914 0.25950 0.42234 0.53142 0.60720 0.66238
3 3.142 0.04076 0.24563 0.41182 0.52382 0.60160 0.65811
3 3.927 0.01492 0.16196 0.31995 0.43789 0.52387 0.58810
2 4.712 0.02999 0.22168 0.39231 0.50941 0.59085 0.64988

0.99 19 0.628 0.04011 0.21225 0.36047 0.46749 0.54555 0.60431
13 0.942 0.03276 0.19777 0.34628 0.45480 0.53435 0.59437

9 1.257 0.03818 0.21767 0.37082 0.47960 0.55799 0.61649
7 1.571 0.03779 0.22119 0.37673 0.48627 0.56472 0.62301
5 2.356 0.02314 0.18521 0.34047 0.45373 0.53601 0.59757
4 3.142 0.01403 0.15383 0.30639 0.42226 0.50786 0.57244
3 3.927 0.01492 0.16196 0.31995 0.43789 0.52387 0.58810
3 4.712 0.00519 0.10437 0.24572 0.36358 0.45416 0.52390

4 Conclusion

We find the AS plans for various values of σ/σ0 and different experiment times assum-
ing that the life test follows the Marshall-Olkin extended exponential distribution. This
distribution provides the high probability for σ/σ0 > 6.
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Table 2: Operating characteristics for the second sample of the sampling plan
(n2, c2, t/σ0) when c1 = 0 and c2 = 2 for the Marshall-Olkin extended exponential
distribution with ν = 2

p∗ n1 n2 t/σ0
σ/σ0

2 4 6 8 10 12
0.75 8 12 0.628 0.45096 0.82895 0.93048 0.96560 0.98062 0.98804

6 8 0.942 0.39539 0.80628 0.92098 0.96089 0.97797 0.98641
4 6 1.257 0.43317 0.83137 0.93356 0.96775 0.98206 0.98903
4 5 1.571 0.32643 0.77674 0.90904 0.95517 0.97484 0.98453
3 4 2.356 0.21884 0.70478 0.87543 0.93778 0.96485 0.97831
2 3 3.142 0.25957 0.74736 0.89933 0.95140 0.97315 0.98369
2 3 3.927 0.12549 0.61206 0.82982 0.91416 0.95142 0.97004
2 3 4.712 0.05633 0.47827 0.74747 0.86655 0.92250 0.95143

0.90 12 16 0.628 0.22724 0.66946 0.84673 0.91868 0.95216 0.96961
8 11 0.942 0.20922 0.65970 0.84288 0.91698 0.95132 0.96915
6 8 1.257 0.20470 0.66556 0.84839 0.92083 0.95394 0.97098
5 7 1.571 0.16554 0.62694 0.82734 0.90900 0.94679 0.96637
3 5 2.356 0.16742 0.63960 0.83823 0.91651 0.95189 0.96991
3 4 3.142 0.07518 0.51513 0.76617 0.87537 0.92692 0.95381
2 4 3.927 0.08075 0.50533 0.75912 0.87145 0.92470 0.95248
2 3 4.712 0.05633 0.47827 0.74747 0.86655 0.92250 0.95143

0.95 14 19 0.628 0.14872 0.57448 0.78747 0.88255 0.92912 0.95418
9 12 0.942 0.15666 0.59797 0.80539 0.89450 0.93714 0.95973
7 9 1.257 0.13649 0.58175 0.79765 0.89057 0.93494 0.95840
6 8 1.571 0.09748 0.52331 0.76080 0.86828 0.92086 0.94905
4 5 2.356 0.09159 0.53764 0.77683 0.88036 0.92945 0.95519
3 4 3.142 0.07518 0.51513 0.76617 0.87537 0.92692 0.95381
3 4 3.927 0.02313 0.34713 0.64125 0.79562 0.87541 0.91925
2 4 4.712 0.03578 0.37001 0.65774 0.80684 0.88314 0.92472

0.99 19 25 0.628 0.05495 0.38573 0.64428 0.78598 0.86364 0.90850
13 16 0.942 0.04727 0.37987 0.64398 0.78743 0.86536 0.91006

9 12 1.257 0.05363 0.40491 0.66761 0.80508 0.87804 0.91925
7 10 1.571 0.05062 0.39926 0.66493 0.80405 0.87770 0.91919
5 7 2.356 0.03055 0.34676 0.62707 0.78021 0.86246 0.90904
4 5 3.142 0.02094 0.32643 0.61752 0.77674 0.86148 0.90904
3 4 3.927 0.02313 0.34713 0.64125 0.79562 0.87541 0.91925
3 4 4.712 0.00686 0.21884 0.51528 0.70478 0.81272 0.87543

Table 3: Producer’s risk with respect to time of the experiment for double sampling with
p∗ = 0.90

c1 c2 n1 n2 t/σ0
σ/σ0

2 4 6 8 10 12
0 2 12 16 0.628 0.77276 0.33054 0.15327 0.08132 0.04784 0.03039
0 2 2 3 4.712 0.94367 0.52173 0.25253 0.13345 0.07750 0.04857
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