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Abstract: The present paper discusses some classes of shrinkage estimators
for the variance of the exponential distribution in the presence of large true
observations when some a priori or guessed interval containing the variance
parameter is available from some past experiences. Empirical study shows
the high efficiency of the developed classes of shrinkage estimators when
compared with Pandey and Singh’s estimator, minimum MSE estimator and
special classes of shrinkage estimators.

Zusammenfassung: Dieser Aufsatz diskutiert einige Klassen von shrink-
age Schätzern für die Varianz der Exponentialverteilung falls große wahre
Beobachtungen vorhanden sind und falls ein priori oder mutmaßliches In-
tervall aus vergangener Erfahrung verfügbar ist, das diesen Varianzparam-
eter enthält. Eine empirische Studie zeigt die Effizienz dieser Klasse von
Schätzern verglichen mit dem Schätzer von Pandey und Singh, dem Mini-
mum MSE Schätzer und speziellen Klassen von shrinkage Schätzern.

Keywords: Bias, Guessed Interval, Mean Squared Error, Percent Relative
Efficiency.

1 Introduction
The exponential distribution has its significance due to its variety of applications in reli-
ability engineering and life testing problems. The exponential distribution would be an
adequate choice for a situation where failure rate appears to be more or less constant.
The problem considered in this paper can be illustrated by the question that a sampler
frequently asks himself, particularly if he is working with relatively small samples. The
question is, “what do I do with large or extreme observations in the sample?” The sam-
pler first attempt to answer this question by a careful review of the data to see if an outlier
has somehow appeared or if in fact the offending observation or observations are actu-
ally true observations. It is also noted that in practice the experimenter often possesses
some knowledge of the experimental conditions, based on awareness with the perfor-
mance of the system under investigation or from the past experience or from some extra-
neous source and thus in opinion to give an adequate guessed interval of the value of the
variance. In this paper we suggest some classes of shrinkage estimators for the variance
of exponential distribution in the presence of large true observations when some a priori
or guessed interval (θ2

1, θ
2
2), θ2

1 < θ2
2, containing the parameter θ2, say, is available from

some past experiences.
Let x1, . . . , xn be a random sample of size n, drawn from the exponential distribution.

The probability density function of which is given by

f(x; θ) =

{
1
θ
exp(−x/θ) x ≥ θ , θ > 0 ,

0 otherwise, (1)
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where θ is the mean and acts as a scale parameter and θ2 is the variance.
Pandey and Singh (1977) suggested the minimum mean squared error (MMSE) esti-

mator

θ̂MMSE =
n2

(n + 2)(n + 3)
x̄2 (2)

for θ2 in the class of estimators of the form Mx̄2, where M is a suitably chosen constant
and x̄ =

∑n
i=1 xi/n. The bias and mean squared error (MSE) of θ̂MMSE are

bias
(
θ̂MMSE

)
= − 2(2n + 3)θ2

(n + 2)(n + 3)

and

MSE
(
θ̂MMSE

)
=

2(2n + 3)θ4

(n + 2)(n + 3)
. (3)

Tracy et al. (1996) envisaged a class of shrinkage estimators for θ2 when some point prior
information θ2

0 of θ2 is available, and is given as

ξ(h) = θ2
0 + α(h)(x̄

2 − θ2
0) ,

where

α(h) = n2h Γ(n + 2h)

Γ(n + 4h)
(4)

and h is a non-zero real number. In particular, if h = 1 then ξ(h) reduces to the point
estimator for the variance, which is given as

ξ(1) = θ2
0 +

n2(x̄2 − θ2
0)

(n + 2)(n + 3)
,

and is due to Tracy et al. (1996).
The distribution (1) is positive valued and positive skewed. It has positive probability

that the sample may contain one or more observations from right tail of the distribution
leading to a larger estimate of the parameter using unbiased estimator. In such a situation,
where some “extremely large” values xi > t are present in the sample, Searls (1966) sug-
gested an estimation procedure suitable to estimate the population mean θ, which reduces
the effect of such large true observations for the distribution which is unimodal, positive
valued, and positively skewed. Searls (1966) defined the estimator for θ as

x̄t =
1

n

(
m∑

j=1

xj + (n−m)t

)
, m = 0, 1, . . . , n , xj ≤ t , (5)

which is formulated by replacing all the observations greater than a predetermined cutoff
point t by the value of t itself. Searls (1966) has shown that there exists a wide range of t
values for which the MSE of x̄t is less than the variance of the usual unbiased estimator x̄.
We also refer to Bartholomew (1957), Ojha and Srivastava (1979), Ojha (1982), Srivastava
et al. (1985), Srivastava (1986), Singh (1987), Srivastava and Kumar (1990), Upadhyaya
et al. (1997), and Singh and Shukla (2002) in this context.
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The estimation problem using some a priori information regarding some population
parameters has been investigated by various authors, for example see Mehta and Srini-
vasan (1971), Jani (1991), Singh and Saxena (2003), Saxena and Singh (2004), Singh et
al. (2004), Singh and Saxena (2005), Saxena (2006), Saxena and Singh (2006), and also
Singh and Chander (2007).

Thompson (1968) considered the problem of shrinking an unbiased estimator ψ̂ of ψ
towards an interval (ψ1, ψ2) and suggested a shrinkage estimator ψ̂ +(1− p)(ψ1 +ψ2)/2,
where 0 ≤ p ≤ 1 is constant. The objective is to propose a class of shrinkage estimators
of θ2, when a prior or guessed interval of θ2 is available in the form of (θ2

1, θ
2
2), θ2

1 < θ2
2.

2 The Suggested Classes of Shrinkage Estimators
Let the prior information on θ2 be available in form of an interval with end points θ2

1

and θ2
2, where θ2

1 < θ2
2. The arithmetic mean (AM), the geometric mean (GM), and the

harmonic mean (HM) are measures of location, which are used for suggesting different
classes of shrinkage estimators for θ2 in model (1). We define the family

ξ̃
(i)
(h) = AGH(a, b) + α(h)

(
x̄2 − AGH(a, b)

)
, (6)

where α(h) is given by (4) and h is a non-zero real number. Moreover,

AGH(a, b) = (θ2
1θ

2
2)

a

(
1

2
(θ2

1 + θ2
2)

)b

,

and i = 1, 2, 3 corresponds to pairs (a, b) respectively taken as (0, 1), (1/2, 0), or (1,−1)
in AGH(a, b).

It is interesting to note that

• for (a, b) = (0, 1) in (6) we get a class of shrinkage estimators based on the arith-
metic mean (θ2

1 + θ2
2)/2, defined as

ξ̃
(1)
(h) =

1

2
(θ2

1 + θ2
2) + α(h)

(
x̄2 − 1

2

(
θ2
1 + θ2

2

))
,

• for (a, b) = (1/2, 0) we get a class of shrinkage estimators based on the geometric
mean

√
θ2
1θ

2
2, given as

ξ̃
(2)
(h) =

√
θ2
1θ

2
2 + α(h)

(
x̄2 −

√
θ2
1θ

2
2

)
,

• for (a, b) = (1,−1) we get a class of shrinkage estimators based on the harmonic
mean 2θ2

1θ
2
2/(θ

2
1 + θ2

2), defined as

ξ̃
(3)
(h) = 2

θ2
1θ

2
2

θ2
1 + θ2

2

+ α(h)

(
x̄2 − 2

θ2
1θ

2
2

θ2
1 + θ2

2

)
.
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Bias and MSE of these estimates are

bias
(
ξ̃

(i)
(h)

)
= θ2

(
r
(
1− α(h)

)
+

α(h)

n

)

and
MSE

(
ξ̃

(i)
(h)

)
= θ4

(
r2 + α2

(h)ζ
∗
1 + 2rα(h)ζ

∗
2

)
, (7)

where

ζ∗1 =
1

n3
(n + 1)(n + 2)(n + 3)− 2

n
(r + 1)(n + 1) + (r + 1)2 , ζ∗2 =

1

n
− r ,

r =
AGH(a, b)

θ2
− 1 .

Replacing x̄ by x̄t in (6), we define the class of estimators

ξ̂
(i)
(h,t) = AGH(a, b) + α(h)

{
x̄2

t − AGH(a, b)
}

, (8)

for the variance in the presence of large true observations, where α(h) and x̄t are respec-
tively given by (4) and (5). Also here m denotes the number of observations less than a
predetermined cutoff point t and follows a binomial distribution with parameters n and p,
where p = P (x < t) = 1− exp(−t/θ) and q = 1− p = exp(−t/θ).

The necessary expectations are

E(x̄t) = pθ , E(x̄2
t ) =

θ2

n

(
λ + np2

)
, E(x̄4

t ) =
θ4

n3
(η1 + η2) , (9)

where

η1 = 3λ2(n− 2) + 6λ(n2p2 + 2npq + 2) ,

η2 = np3(n2p + 4q + 8)− 12npq(t/θ)2 − 4q(t/θ)3 ,

λ = 1− 2qt/θ − q2 .

Bias and MSE of the estimates defined in (8) are

bias
(
ξ̂

(i)
(h,t)

)
= θ2

(
r
(
1− α(h)

)
+

α(h)

n

(
λ + np2 − n

))

and

MSE
(
ξ̂

(i)
(h,t)

)
= r2θ4 + α2

(h)

(
E(x̄4

t ) + AGH2(a, b)− 2AGH(a, b)E(x̄2
t )

)

+2rθ2α(h)

(
E(x̄2

t )− AGH(a, b)
)

. (10)

Substituting (9) in (10) gives

MSE
(
ξ̂

(i)
(h,t)

)
= θ4

(
r2 + α2

(h)ε1 + 2rα(h)ε2

)
, (11)

where

ε1 =
1

n3
(η1 + η2) + (r + 1)2 − 2

n
(r + 1)(λ + np2)

ε2 =
1

n
(λ + np2)− (r + 1) .
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As t → ∞, we get p → 1, q → 0, and thus MSE
(
ξ̂

(i)
(h,t)

)
→ MSE

(
ξ̃

(i)
(h)

)
. From (7)

and (10) we have

MSE
(
ξ̂

(i)
(h,t)

)
−MSE

(
ξ̃

(i)
(h)

)
= θ4

(
α2

(h)(ε1 − ζ∗1 ) + 2rα(h)(ε2 − ζ∗2 )
)

=
θ4α(h)

n3

(
α(h)(X + 2n2X∗)− 2rX∗(1− α(h))n

2
)

< 0 ,

if

r ≥ α(h)(2n
2X∗ + X)

2X∗(1− α(h))n2
,

or if
AGH(a, b)

θ2
≥ α(h)(2n

2X∗ + X)

2n2X∗(1− α(h))
,

or if

0 ≤ θ2 ≤ AGH(a, b)2n2X∗(1− α(h))

α(h)(2n2X∗ + X)
,

where

X = (η1 + η2)− (n + 1)(n + 2)(n + 3) , X∗ = n(1− p2)− λ + 1 .

Thus we established the following theorem:

Theorem 2.1: The classes of shrinkage estimators ξ̂
(i)
(h,t) are more efficient than ξ̃

(i)
(h), i =

1, 2, 3, if θ2 is between 0 and 2n2X∗AGH(a, b)(1− α(h))/(α(h)(2n
2X∗ + X)).

3 Special Cases

For h = 1 in (6) we get classes of shrinkage estimators ψ̃
(i)
(1), i = 1, 2, 3, for θ2 as

ψ̃
(i)
(1) = AGH(a, b) + α(1)

(
x̄2 − AGH(a, b)

)
, (12)

where α(1) = n2/(n + 2)(n + 3). The MSE of ψ̃
(i)
(1) can be easily obtained by putting

h = 1 in (10) and is given as

MSE
(
ψ̃

(i)
(1)

)
= θ4

(
r2 + α2

(1)ζ
∗
1 + 2rα(1)ζ

∗
2

)
. (13)

For h = 1 in (8) we get shrinkage estimators in the presence of large true observations as

ψ̂
(i)
(1,t) = AGH(a, b) + α(1)

(
x̄2

t − AGH(a, b)
)

. (14)

Putting h = 1 in (11), we get

MSE
(
ψ̂

(i)
(1,t)

)
= θ4

(
r2 + α2

(1)ε1 + 2rα(1)ε2

)
. (15)

As t → ∞, we get p → 1, q → 0, and MSE
(
ψ̂

(i)
(1,t)

)
→ MSE

(
ψ̃

(i)
(1)

)
. Thus we proved

the following theorem:

Theorem 2.2: The classes of shrinkage estimators ψ̂
(i)
(1,t) are more efficient than ψ̃

(i)
(1),

i = 1, 2, 3, if θ2 is between 0 and 2X∗AGH(a, b)(5n + 6)/(2(n + 2)(n + 3)X∗ + X).
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4 Numerical Illustrations and Comparisons

To have a concrete idea about the performance of the proposed estimators ψ̂
(i)
(1,t), we have

computed their percentage relative efficiency (PRE) with respect to θ̂MMSE given in (2) and
ψ̃

(i)
(1) given by (12) for various values of n, θ2

1/θ
2, θ2

2/θ
2, and for different cutoff points t.

The following formulae are used for this calculation:

PRE
(
ψ̂

(i)
(1,t), θ̂MMSE

)
= 100

MSE
(
θ̂MMSE

)

MSE
(
ψ̂

(i)
(1,t)

) , PRE
(
ψ̂

(i)
(1,t), ψ̃

(i)
(1)

)
= 100

MSE
(
ψ̃

(i)
(1)

)

MSE
(
ψ̂

(i)
(1,t)

) ,

where MSE
(
θ̂MMSE

)
, MSE

(
ψ̃

(i)
(1)

)
, and MSE

(
ψ̂

(i)
(1,t)

)
are given by (3), (13) and (15).

From Table 1 we observe that the suggested classes of estimators show better effi-
ciency than θ̂MMSE if

• t/θ = 1, n ≤ 11, and ∆ ∈ [0.7, 2.7], where ∆ = AGH(0, 1)/θ2,

• 2 ≤ t/θ ≤ 10, n ≤ 30, and ∆ ∈ [0.3, 2.0].

From extended computation and from Table 1, we further observe that

• for ∆ < 1, ψ̂
(1)
(1,t) (based on the AM) is more efficient than θ̂MMSE, ψ̂

(2)
(1,t), and ψ̂

(3)
(1,t),

• for ∆ > 1, ψ̂
(3)
(1,t) (based on the HM) is more efficient than θ̂MMSE, ψ̂

(2)
(1,t), and ψ̂

(1)
(1,t),

• for ∆ = 1 and 1 ≤ t/θ ≤ 3, ψ̂
(1)
(1,t) shows higher efficiency than θ̂MMSE, ψ̂

(2)
(1,t), and

ψ̂
(3)
(1,t), whereas for ∆ = 1 and 3 < t/θ ≤ 10, ψ̂

(3)
(1,t) is better than θ̂MMSE, ψ̂

(2)
(1,t), and

ψ̂
(1)
(1,t).

Further, it reveals from Table 2 that ψ̂
(i)
(1,t) shows better efficiency than ψ̃

(i)
(1) if

• t/θ = 1, n ≤ 5, and ∆ ∈ [0.7, 2.0], where ∆ = AGH(0, 1)/θ2,

• t/θ = 1, 5 < n ≤ 25, and ∆ ∈ [1.2, 2.5],

• 2 ≤ t/θ < 6, n ≤ 25, and ∆ ∈ [0.7, 2.0].

It is also observed that

• for ∆ ≤ 1, the estimator ψ̂
(1)
(1,t) (based on the AM) is more efficient than ψ̃

(i)
(1), ψ̂

(2)
(1,t),

and ψ̂
(3)
(1,t),

• for ∆ > 1, the estimator ψ̂
(3)
(1,t) (based on the HM) is more efficient than ψ̃

(i)
(1), ψ̂

(2)
(1,t),

and ψ̂
(1)
(1,t),

• for t/θ ≥ 6, the classes of estimators ψ̂
(i)
(1,t) and ψ̃

(i)
(1) are equally efficient.
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Table 1: Percentage relative efficiencies, PRE, of the estimators ψ̂
(i)
(1,t), i = 1, 2, 3, with

respect to θ̂MMSE for different n, θ2
1/θ

2, θ2
2/θ

2, t/θ.

t/θ = 1 t/θ = 5 t/θ = 10(
θ2
1

θ2 ,
θ2
2

θ2

)
n = 5 n = 15 n = 25 n = 5 n = 15 n = 25 n = 5 n = 15 n = 25

(0.2, 1.0)
i = 1 196.25 71.86 43.70 199.45 137.90 125.67 175.00 125.33 115.22
i = 2 143.04 62.42 39.92 175.65 131.75 122.03 157.48 120.94 112.78
i = 3 116.22 56.53 37.40 156.25 125.93 118.53 142.36 116.51 110.24

(0.4, 1.2)
i = 1 324.66 87.80 49.52 217.85 142.09 128.24 187.01 127.72 116.48
i = 2 244.23 78.67 46.27 210.45 140.45 127.19 182.54 126.95 116.09
i = 3 196.25 71.86 43.70 199.45 137.90 125.67 175.00 125.33 115.22

(0.5, 1.3)
i = 1 440.46 97.81 52.88 218.50 142.28 128.49 186.50 127.36 116.25
i = 2 330.49 88.38 49.72 218.07 142.14 128.27 187.11 127.73 116.48
i = 3 263.08 81.03 47.13 213.11 141.04 127.56 184.25 127.28 116.26

(0.6, 1.4)
i = 1 627.90 109.61 56.58 213.00 141.17 128.04 181.53 125.95 115.44
i = 2 465.26 99.62 53.46 218.00 142.19 128.47 185.97 127.20 116.15
i = 3 364.91 91.61 50.83 218.86 142.33 128.42 187.36 127.70 116.46

(0.7, 1.5)
i = 1 955.23 123.64 60.68 202.22 138.81 126.90 172.79 123.58 114.09
i = 2 691.77 112.84 57.55 210.77 140.70 127.82 179.69 125.45 115.16
i = 3 530.70 104.00 54.85 216.23 141.84 128.33 184.31 126.72 115.88

(0.8, 1.6)
i = 1 1579.4 140.51 65.25 187.71 135.33 125.11 161.34 120.34 112.22
i = 2 1107.6 128.59 62.06 197.99 137.83 126.41 169.44 122.65 113.55
i = 3 823.6 118.68 59.27 206.31 139.73 127.36 176.06 124.47 114.60

(0.9, 1.7)
i = 1 2845.7 160.99 70.34 171.18 130.89 122.71 148.36 116.39 109.89
i = 2 1946.6 147.60 67.06 181.75 133.79 124.29 156.67 118.96 111.41
i = 3 1394.9 136.32 64.15 191.30 136.22 125.58 164.16 121.16 112.69

(1.0, 2.2)
i = 1 3352.8 257.45 89.71 122.30 113.88 112.69 109.16 101.74 100.78
i = 2 5626.4 211.84 81.33 140.32 120.96 117.02 123.80 107.78 104.64
i = 3 4410.2 179.38 74.55 158.38 127.06 120.57 138.23 113.04 107.88

(1.0, 2.8)
i = 1 697.80 466.93 118.19 85.47 95.18 100.16 78.32 85.83 89.84
i = 2 2146.2 293.75 95.65 140.32 120.96 117.02 100.68 97.84 98.21
i = 3 5687.1 208.65 80.69 141.87 121.52 117.35 125.05 108.26 104.94
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Table 2: Percentage relative efficiencies, PRE, of the estimators ψ̂
(i)
(1,t) with respect to ψ̃

(i)
(1),

i = 1, 2, 3, for different n, θ2
1/θ

2, θ2
2/θ

2, t/θ.

t/θ = 1 t/θ = 5 t/θ = 10(
θ2
1

θ2 ,
θ2
2

θ2

)
n = 5 n = 15 n = 25 n = 5 n = 15 n = 25 n = 5 n = 15 n = 25

(0.2, 1.0)
i = 1 112.51 57.44 37.98 114.35 110.22 109.22 100.33 100.17 100.14
i = 2 91.10 51.70 35.44 111.87 109.12 108.34 100.29 100.16 100.14
i = 3 81.85 48.60 33.97 110.05 108.25 107.66 100.26 100.15 100.13

(0.4, 1.2)
i = 1 174.25 68.87 42.58 116.92 111.45 110.26 100.37 100.19 100.15
i = 2 134.27 62.08 39.92 115.70 110.83 109.73 100.35 100.18 100.15
i = 3 112.51 57.44 37.98 114.35 110.22 109.22 100.33 100.17 100.14

(0.5, 1.3)
i = 1 237.05 76.94 45.56 117.60 111.93 110.70 100.37 100.19 100.15
i = 2 177.28 69.32 42.75 116.98 111.49 110.29 100.37 100.19 100.15
i = 3 143.29 63.78 40.60 116.08 111.01 109.88 100.36 100.18 100.15

(0.6, 1.4)
i = 1 347.16 87.19 49.09 117.76 112.29 111.09 100.37 100.19 100.15
i = 2 251.11 78.47 46.10 117.66 112.00 110.77 100.37 100.19 100.15
i = 3 195.49 71.87 43.71 117.25 111.66 110.44 100.37 100.19 100.15

(0.7, 1.5)
i = 1 554.77 100.24 53.27 117.44 112.54 111.41 100.35 100.19 100.16
i = 2 386.38 90.12 50.06 117.73 112.36 111.17 100.36 100.19 100.16
i = 3 289.00 82.23 47.41 117.75 112.14 110.92 100.37 100.19 100.15

(0.8, 1.6)
i = 1 982.20 116.97 58.23 116.73 112.66 111.66 100.33 100.19 100.16
i = 2 655.96 105.05 54.74 117.26 112.59 111.49 100.35 100.19 100.16
i = 3 469.49 95.53 51.80 117.60 112.47 111.31 100.36 100.19 100.16

(0.9, 1.7)
i = 1 1924.3 138.58 64.10 115.75 112.67 111.84 100.31 100.18 100.16
i = 2 1246.6 124.31 60.29 116.39 112.68 111.73 100.33 100.19 100.16
i = 3 852.58 112.73 57.01 116.92 112.64 111.61 100.34 100.19 100.16

(1.0, 2.2)
i = 1 3078.7 253.49 89.15 112.30 112.13 111.99 100.24 100.17 100.15
i = 2 4556.9 196.90 77.84 113.64 112.42 112.00 100.27 100.18 100.15
i = 3 3199.9 158.98 69.21 114.91 112.61 111.93 100.29 100.18 100.16

(1.0, 2.8)
i = 1 892.52 544.85 131.73 109.33 111.06 111.64 100.18 100.15 100.14
i = 2 2136.5 300.72 97.54 111.50 111.90 111.94 100.22 100.17 100.15
i = 3 4560.1 193.07 77.01 113.76 112.44 111.99 100.27 100.18 100.15
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5 Conclusion
From the above we conclude that the developed classes of estimators ψ̂

(i)
(1,t), i = 1, 2, 3,

are to be preferred over θ̂MMSE and ψ̃
(i)
(1) in practice as they are more efficient than θ̂MMSE and

ψ̃
(i)
(1) with larger gain in efficiency.

We also note that ψ̂
(1)
(1,t) (based on the AM) performed better than θ̂MMSE, ψ̂

(2)
(1,t), ψ̂

(3)
(1,t),

and ψ̃
(i)
(1), i = 1, 2, 3, when t/θ ≤ 10, n ≤ 25, and 0.7 ≤ ∆ < 1.0, while for t/θ ≥ 6,

n ≤ 25, and 0.7 ≤ ∆ < 1.0, the proposed estimators ψ̂
(1)
(1,t) and ψ̃

(1)
(1) are equally efficient,

so one can choose any one of them. It is further observed that the suggested estimator
ψ̂

(3)
(1,t) (based on the HM) has smaller MSE than θ̂MMSE, ψ̂

(1)
(1,t), ψ̂

(2)
(1,t), and ψ̃

(i)
(1), i = 1, 2, 3,

when t/θ < 6, n ≤ 25, and 1 ≤ ∆ < 2. In such situations we suggest the use of the
estimator ψ̂

(3)
(1,t). On the other hand it is noted that for t/θ ≥ 6, n ≤ 25, and 0.7 ≤ ∆ < 1

the estimators ψ̂
(3)
(1,t) and ψ̃

(3)
(1) approximately have the same MSE and hence any one of

them can be chosen in such situation.
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