Robust Shift Detection in Time-Varying Autoregressive Processes

Authors

  • Roland Fried Dortmund University of Technology, Germany

DOI:

https://doi.org/10.17713/ajs.v37i1.285

Abstract

Tests for shift detection in locally-stationary autoregressive time series are constructed which resist contamination by a substantial amount of outliers. Tests based on a comparison of local medians standardized by a highly robust estimate of the variability show reliable performance in a broad variety of situations if the thresholds are adjusted for possible autocorrelations.

References

Fried, R. (2007a). On robust shift detection in time series. Computational Statistics and Data Analysis, 52, 1063-1074.

Fried, R. (2007b). Robust location estimation under dependence. Journal of Statistical Computation and Simulation, 77, 131-147.

Fried, R. (2007c). Robust shift detection in autoregressive models. In Y. K. S. Aivazian and P. Filzmoser (Eds.), Proceedings of the 8th international conference computer

data analysis and modeling (p. 60-67). Minsk: Publ. Center BSU.

Fried, R., and Gather, U. (2005). Robust trend estimation for ar(1) disturbances. Austrian Journal of Statistics, 34, pages=139-151.

Fried, R., and Gather, U. (2007). On rank tests for shift detection in time series. Computational Statistics and Data Analysis, 52, 221-233.

Ma, Y., and Genton, M. G. (2000). Highly robust estimation of the autocovariance function. Journal of Time Series Analysis, 21, 663-684.

Peña, D. (2000). A Course in Time Series Analysis. New York: Wiley.

Rousseeuw, P. J., and Croux, C. (1993). Alternatives to the median absolute deviation. Journal of the American Statistical Association, 88, 1273-1283.

Tukey, J. W. (1977). Exploratory Data Analysis. Reading, Mass.: Addison-Wesley. (preliminary edition 1971)

Downloads

Published

2016-04-03

How to Cite

Fried, R. (2016). Robust Shift Detection in Time-Varying Autoregressive Processes. Austrian Journal of Statistics, 37(1), 41–49. https://doi.org/10.17713/ajs.v37i1.285

Issue

Section

Articles