Empirical Density Estimation for Interval Censored Data

Authors

  • Eugenia Stoimenova Bulgarian Academy of Sciences, Sofia

DOI:

https://doi.org/10.17713/ajs.v37i1.293

Abstract

This paper is concerned with the nonparametric estimation of a density function when the data are incomplete due to interval censoring. The Nadaraya-Watson kernel density estimator is modified to allow description of such interval data. An interactive R application is developed to explore different estimates.

References

Aerts, M., Augustyns, I., and Janssen, P. (1997). Smoothing sparse multinomial data using local polynomial fitting. Journal of Nonparametric Statistics, 8, 127-147.

Baek, J. (1998). A local linear kernel estimator for sparse multinomial data. Journal of the Korean Statistical Society, 27, 515-529.

Goutis, C. (1997). Nonparametric estimation of a mixing density via the kernel method. Journal of the American Statistical Association, 92, 1445-1450.

Hall, P. (1982). The influence of rounding errors on some nonparametric estimators of a density and its derivatives. IAM Journal of Applied Mathematics, 42, 390-399.

Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the American Statistical Association, 73, 805-811.

Liu, L., and Zhu, Y. (2007). Partially projected gradient algorithms for computing nonparametric maximum likelihood estimates of mixing distributions. Journal of Statistical Planning and Inference, 137, 2509-2522.

Nadaraya, E. A. (1964). On estimating regression. Teor. Veroyatn. Primen., 9, 157-159.

Revesz, P. (1972). On empirical density function. Period. Math. Hung., 2, 85-110.

Revesz, P. (1974). On empirical density function. In A. Obretenov (Ed.), Verojatn. stat. metody; mezdunar. letn. sk. teor. verojatn. mat. stat. (p. 63-88). Varna: Bulgarian

Academy of Sciences.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics, 27, 832-837.

Schweitzer, M. E., and Severance-Lossin, E. K. (1996). Rounding in earnings data. (Working Paper 9612, Federal Reserve Bank of Cleveland)

Simonoff, J. S. (1983). A penalty function approach to smoothing large sparse contingency tables. Annals of Statistics, 11, 208–218.

Simonoff, J. S. (1995). Smoothing categorical data. Journal of Statistical Planning and Inference, 47, 41-69.

Simonoff, J. S. (1996). Smoothing Methods in Statistics. New York: Springer.

Stoimenova, E., Mateev, P., and Dobreva, M. (2006). Outlier detection as a method for knowledge extraction from digital resources. Rev. Nat. Center Digitization, 9, 1-11.

Downloads

Published

2016-04-03

How to Cite

Stoimenova, E. (2016). Empirical Density Estimation for Interval Censored Data. Austrian Journal of Statistics, 37(1), 119–128. https://doi.org/10.17713/ajs.v37i1.293

Issue

Section

Articles