Cramér-Rao Lower Bound for Fuzzy-Valued Random Variables

Authors

  • Hamzeh Torabi Department of Statistics, Yazd University, Yazd, Iran

DOI:

https://doi.org/10.17713/ajs.v35i4.357

Abstract

In some point estimation problems, we may confront imprecise (fuzzy) concepts. One important case is a situation where all observations are fuzzy rather than crisp. In this paper, using fuzzy set theory, we define a fuzzy-valued random variable, a fuzzy unbiased estimator, a fuzzy exponential family, and then we state and prove a Cramér-Rao lower bound for such fuzzy estimators. Finally, we give some examples.

References

Ash, R. B., and Doleans-Dade, C. A. (2000). Probability and Measure Theory (2nd ed.). Academic Press.

Billingsley, P. (1995). Probability and Measure (3rd ed.). John Wiley & Sons.

Buckley, J. J. (1985). Fuzzy decision making with data: Applications to statistics. Fuzzy Sets and Systems, 16, 139-147.

Casals, M. R., Gil, M. R., and Gil, P. (1986). On the use of Zadeh’s probabilistic definition for testing statistical hypotheses from fuzzy information. Fuzzy Sets and Systems, 20, 175-190.

Casella, G., and Berger, R. L. (2002). Statistical Inference (2nd ed.). Duxbury Press.

Chung, K. L. (2000). A Course in Probability Theory (2nd ed.). Academic Press.

Coral, N., and Gil, M. A. (1984). The minimum inaccuracy fuzzy estimation: An extension of the maximum likelihood principle. Stochastica, 6, 63-81.

Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Volume I (3rd ed.). John Wiley & Sons.

Freund, J. E. (1992). Mathematical Statistics (5th ed.). Prentice Hall.

Gertner, G. Z., and Zhu, H. (1996). Bayesian estimation in forest surveys when samples or prior information are fuzzy. Fuzzy Sets and Systems, 77, 277-290.

Gil, M. A., Corral, N., and Gil, P. (1985). The fuzzy decision problem: An approach to the point estimation problem with fuzzy information. European Journal of Operation

Research, 22, 26-34.

Hogg, R. V., and Craig, A. T. (1995). Introduction to Mathematical Statistics (5th ed.). Eaglewood Cliffs, NJ: Prentice-Hall.

Juninig, O., and Wang, G. (1989). Fuzzy random variables and their probability characters. Journal of Harbin Architectural and Civil Engineering Institute, 12, 1-10.

Kruse, R. (1984). Statistical estimation with linguistic data. Information Sciences, 33, 197-207.

Kruse, R., and Meyer, K. D. (1987). Statistics with Vague Data. Dordrech, Netherlands: Reidel Pub. Comp.

Kwakernaak, H. (1978). Fuzzy random variables: Definition and theorems. Information Sciences, 15, 1-29.

Lehmann, E. L., and Casella, G. (1998). Theory of Point Estimation. Springer-Verlag.

Liu, B. (2004). Uncertainty Theory: An Introduction to Its Axiomatic Foundation. Heidelberg: Physica-Verlag.

López-Díaz, M., and Gil, M. A. (1997). Constructive definitions of fuzzy random variables. Statistics and Probability Letters, 36, 135-144.

M. López-Díaz, M. A. G. (1998). Approximately integrable bounded fuzzy random variable in terms of the “generalized” Hausdorff metric. Information Sciences, 104, 279-291.

Mood, A. M., Graybill, F. A., and Boes, D. C. (1974). Introduction to the Theory of Statistics (3rd ed.). McGraw-Hill.

Okuda, T. (1987). A statistical treatment of fuzzy observations: Estimation problems. 51-55. (Preprints of the Second IFSA Congress)

Puri, M. L., and Ralescu, D. A. (1986). Fuzzy random variables. Journal of Mathematical Analysis and Applications, 114, 409-422.

Ralescu, D. A. (1995). Fuzzy random variable revisited. In Proc. IFES’ 95, Vol. 2 (p. 993-1000).

Ross, S. M. (2002). A First Course in Probability (6th ed.). Prentice-Hall.

Shao, J. (1998). Mathematical Statistics. New York: Springer-Verlag.

Yao, J. S., and Hwang, C. M. (1996). Point estimation for the n sizes of random sample with one vague data. Fuzzy Sets and Systems, 80, 205-215.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.

Zadeh, L. A. (1968). Probability measure of fuzzy events. Journal of Mathematical Analysis and Applications, 23, 421-427.

Downloads

Published

2016-04-03

Issue

Section

Articles

How to Cite

Cramér-Rao Lower Bound for Fuzzy-Valued Random Variables. (2016). Austrian Journal of Statistics, 35(4), 471–482. https://doi.org/10.17713/ajs.v35i4.357