Shrinkage Testimators for the Inverse Dispersion of the Inverse Gaussian Distribution under the LINEX Loss Function

Authors

  • Gyan Prakash Harishchandra P. G. College, Varanasi, India
  • D.C. Singh Harishchandra P. G. College, Varanasi, India

DOI:

https://doi.org/10.17713/ajs.v35i4.356

Abstract

In this paper, shrinkage testimators for the inverse dispersion for inverse Gaussian distribution when its prior information is available in the form of a guess value have been considered. The proposed testimators have been compared with the minimum risk estimator in the class of unbiased estimators under the LINEX loss function.

References

Bancroft, T. A. (1944). On biases in estimation due to the use of preliminary test of significance. The Annals of Mathematical Statistics, 15, 190-204.

Folks, J. L., and Chhikara, R. S. (1978). The inverse gaussian distribution and its statistical application – a review. Journal of the Royal Statistical Society, B, 40, 263-289.

Muniruzzaman, A. N. M. (1957). On measures of location and dispersion and test of hypothesis on a Pareto distribution. Calcutta Statistical Association Bulletin, 7,

-123.

Pandey, B. N. (1997). Testimator of the scale parameter of the exponential distribution using LINEX loss function. Communications in Statistics – Theory and Methods,

, 2191-2200.

Pandey, B. N., and Malik, H. J. (1988). Some improved estimators for a measure of dispersion of an inverse gaussian distribution. Communications in Statistics – Theory

and Methods, 17, 3935-3949.

Pandey, B. N., and Srivastava, A. K. (2001). Estimation of variance using asymmetric loss function. IAPQR Transactions, 26, 109-123.

Pandey, B. N., Srivastava, A. K., and Mishra, G. C. (2004). Invariant version of LINEX loss function and its applications in exponential type II censored data. Aligarh Journal of Statistics, 24, 1-22.

Seshadri, V. (1998). The Inverse Gaussian Distribution: Statistical Theory and Applications. New York: Springer Verlag.

Thompson, J. R. (1968). Some shrinkage techniques for estimating the mean. Journal of the American Statistical Association, 63, 113-122.

Tweedie, M. C. K. (1957a). Statistical properties of inverse gaussian distribution – I. The Annals of Mathematical Statistic, 28, 362-377.

Tweedie, M. C. K. (1957b). Statistical properties of inverse gaussian distribution – II. The Annals of Mathematical Statistic, 28, 696-705.

Varian, H. R. (1975). A bayesian approach to real estate assessment. In S. E. Feinberge and A. Zellner (Eds.), Studies in Bayesian Econometrics and Statistics in honor of

L.J. Savage (p. 195-208). Amsterdam: North Holland.

Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss function. Journal of the American Statistical Association, 81, 446-451.

Downloads

Published

2016-04-03

Issue

Section

Articles

How to Cite

Shrinkage Testimators for the Inverse Dispersion of the Inverse Gaussian Distribution under the LINEX Loss Function. (2016). Austrian Journal of Statistics, 35(4), 463–470. https://doi.org/10.17713/ajs.v35i4.356