Insensitivity Regions and Outliers in Mixed Models with Constraints

Authors

  • Eva Fišerová Palacký University, Olomouc, Czech Republic
  • Lubomír Kubáček Palacký University, Olomouc, Czech Republic

DOI:

https://doi.org/10.17713/ajs.v35i2&3.370

Abstract

A procedure for detecting outliers in regular linear regression models with constraints on mean value parameters is presented. A problem, how unknown variance components influence the optimum quality of used test statistics, is studied by sensitivity analysis. Explicit forms of insensitivity regions for testing hypotheses are given.

References

Gnanadesikan, R. (1977). Methods for Statistical Data Analysis of Multivariate Observations. New York: J. Wiley.

Kubáček, L., and Kubáčková, L. (2000). Nonsensitiveness regions in universal models. Math. Slovaca, 50, 219-240.

Kubáček, L., Kubáčková, L., and Volaufová, J. (1995). Statistical Models with Linear Structures. Bratislava: Veda.

Lešanská, E. (2001). Insensitivity regions for testing statistical hypotheses in mixed models with constraints. Mt. Math. Publ., 22, 209-222.

Lešanská, E. (2002). Optimization of the size of nonsensitiveness regions. Appl. Math., 47, 9-23.

Rao, C. R., and Mitra, S. K. (1971). Generalized Inverse of Matrices and its Applications. New York: J. Wiley.

Scheffé, H. (1959). The Analysis of Variance. New York: John Wiley & Sons.

Zvára, K. (1989). Regression Analysis. Praha: Academia. (in Czech)

Downloads

Published

2016-04-03

Issue

Section

Articles

How to Cite

Insensitivity Regions and Outliers in Mixed Models with Constraints. (2016). Austrian Journal of Statistics, 35(2&3), 245–252. https://doi.org/10.17713/ajs.v35i2&3.370