Asymmetric Loss Functions and Sample Size Determination: A Bayesian Approach

Authors

  • Hans Peter Stüger Institute of Applied Statistics, Joanneum Research, Austria

DOI:

https://doi.org/10.17713/ajs.v35i1.348

Abstract

In designing monitoring systems for public health tasks it can be important to give different weights to the cases of under- and overestimation of a binomial parameter. We show how asymmetric loss functions can be used for this aim. Bayesian interval-based approaches can be combined with these loss functions and with prior knowledge about diagnostic classification errors to determine optimal sample sizes.

References

Audige, L., and Beckett, S. (1999). A quantitative assessment of the validity of animalhealth surveys using stochastic modelling. Preventive Veterinary Medicine, 38,

-276.

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (2. ed.). New York: Springer.

French, S., and Insua, D. R. (2000). Statistical Decision Theory. London: Arnold.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian Data Analysis (2. ed.). Boca Raton: Chapman&Hall.

Gill, J. (2002). Bayesian Methods. A Social and Behavioral Sciences Approach. Boca Raton: Chapman&Hall.

Greene, W. H. (2000). Econometric Analysis (4. ed.). London: Prentice-Hall.

Joseph, L., and Wolfson, D. B. (1997). Interval-based versus decision theoretic for the choice of sample size. The Statistician, 46(2), 145-149.

Joseph, L., Wolfson, D. B., and Berger, R. D. (1995). Sample size calculations for binomial proportions via highest posterior density intervals. The Statistician, 44(2),

-154.

Marinell, G., and Steckel-Berger, G. (2001). Einf¨uhrung in die Bayes-Statistik: Optimaler Stichprobenumfang (3. ed.). München: R. Oldenbourg Verlag.

Rahme, E., Joseph, L., and Gyorkos, T. W. (2000). Bayesian sample size determination for estimating binomial parameters from data subject to misclassification. Applied

Statistics, 49, 119-128.

Raiffa, H., and Schlaifer, R. (1961). Applied Statistical Decision Theory. Boston: Harvard University Graduate School of Business Administration.

Robert, C. P. (2001). The Bayesian Choice: from decision-theoretic foundations to computational implementation (2. ed.). New York: Springer.

Stüger, H. P. (2004). Bayes-Methoden für Monitoringsysteme. Unpublished doctoral dissertation, University of Graz.

Toma, B. (1999). Dictionary of Veterinary Epidemiology. Iowa State University Press.

Downloads

Published

2016-04-03

How to Cite

Stüger, H. P. (2016). Asymmetric Loss Functions and Sample Size Determination: A Bayesian Approach. Austrian Journal of Statistics, 35(1), 57–66. https://doi.org/10.17713/ajs.v35i1.348

Issue

Section

Articles