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Abstract: Most of the traditional methods for assessing the capability of
manufacturing processes are dealing with crisp quality. In this paper we dis-
cuss the fuzzy quality and introduce fuzzy process capability indices, where
instead of precise quality we have two membership functions for specification
limits. These indices are necessary when the specification limits are fuzzy
and they are helpful for comparing manufacturing processes with fuzzy spec-
ification limits. Some interesting relations among the introduced indices are
obtained. Numerical examples are given to clarify the method.

Abstract: Die meisten traditionellen Methoden zur Beurteilung der Qualität
eines Fertigungsprozesses haben mit scharfer Qualität zu tun. In diesem
Aufsatz diskutieren wir die unscharfe Qualität und führen unscharfe Indizes
zur Beurteilung der Prozessleistung ein. Dazu haben wir anstatt präziser
Qualität zwei Mitgliedschaftsfunktionen für die Spezifikationsgrenzen. Diese
Indizes sind notwendig falls die Grenzen unscharf sind und sie erlauben den
Vergleich von Fertigungsprozessen mittels unscharfer Spezifikationsgrenzen.
Einige interessante Beziehungen für diese Indizes werden hergeleitet. Nu-
merische Beispiele sind angegeben, um die Methode zu verdeutlichen.

Keywords: Fuzzy Quality Standard, Fuzzy Process Capability Index, Trian-
gular Fuzzy Number, Fuzzy Ranking.

1 Introduction
The process capability compares the output of a process to the specification limits (SLs)
by using capability indices. Frequently, this comparison is made by forming the ratio of
the width between the process SLs to the width of the natural tolerance limits which is
measured by 6 process standard deviation units. This method leads to make a statement
about how well the process meets specifications (see Montgomery, 2001). A process is
said to be capable if with high probability the real valued quality characteristic of the
produced items lies between a lower and upper specification limit (see Kotz and Johnson,
2002). There are several statistics such as Cp, Cpk, Cpm, and so on, which are used to
estimate the capability of a manufacturing process. In most cases a normal distribution
and large sample sizes are assumed for the data (see Kotz and Johnson, 2002, and Kotz,
1993).

After the inception of the notion of fuzzy sets by Zadeh (1965) there are efforts by
many authors, such as Viertl (1996) as well as Zadeh himself, to apply this notion in
statistics (see Taheri, 2003, for such trends).

In some cases SLs are not precise numbers and they are expressed in fuzzy terms, so
that the classical capability indices could not be applied. For such cases Yongting (1996)
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introduced a process capability index Cp as a real number and it was used by Sadeghpour-
Gildeh (2003). Lee (2001) investigated a process capability index, Cpk, as a fuzzy set.

In this paper we introduce new process capability indices as triangular fuzzy num-
bers, where the engineering specification limits are fuzzy triangular numbers as well. The
organization of this paper is as follows. In Section 2, some preliminaries are discussed.
In Section 3, traditional process capability indices are reviewed. In Section 4 a fuzzy
process is considered and then a new fuzzy process capability index C̃p as a fuzzy set is
defined which seems to be more realistic than a real number used by Yongting (1996) and
Sadeghpour-Gildeh (2003). Then more new fuzzy indices C̃pk, C̃pm, C̃pmk and C̃p(u, v)
are introduced. In Section 5, the relation between the introduced fuzzy process capabil-
ities indices are studied. In Section 6, a method based on a binary relation is presented
which is used for the comparison of fuzzy processes. This method is clarified by two
examples and the final section is the conclusion part.

2 Preliminaries
Let R be the set of real numbers. Let

F (R) = {A|A : R→ [0, 1] , A is a continuous function} ,

FT (R) = {Ta,b,c|a, b, c ∈ R , a ≤ b ≤ c} ,

where

Ta,b,c(x) =





(x− a)/(b− a) , if a ≤ x < b ,
(c− x)/(c− b) , if b ≤ x < c ,
0 , elsewhere.

Any A ∈ F (R) is called a fuzzy quantity on R and any Ta,b,c ∈ FT (R) is called a fuzzy
triangular number, which we sometimes write as T (a, b, c). We assume T (a, a, a) be I{a},
the indicator function of a. In this case, for simplicity, we write T (a, a, a) = a.

Definition 2.1. Let A ∈ F (R), then

a) A is called normal, if and only if there exist some x ∈ R such that A(x) = 1.

b) A is called convex, if and only if

A (λx + (1− λ)y) ≥ (A(x) ∧ A(y)) , ∀x, y ∈ R , ∀λ ∈ [0, 1] ,

where the symbol ∧ denotes the minimum operator.

c) The support of A is the crisp set given by Supp(A) = {x|A(x) > 0}.

d) The α-cut set of A is the crisp set given by Aα = {x|A(x) ≥ α}, for any α ∈ [0, 1].

The following definition could be given by using the extension principle (see Nguyen
and Walker, 2000).

Definition 2.2. Let T (a, b, c), T (a′, b′, c′) ∈ FT (R), k ∈ R, k > 0 and a ≥ c′. Define the
operations ª and ® on FT (R) as

T (a, b, c)ª T (a′, b′, c′) = T (a− c′, b− b′, c− a′) , (1)
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called the width between T (a, b, c) and T ′(a′, b′, c′), and

T (a, b, c)® k = T (a/k, b/k, c/k) , (2)

called the division of T (a, b, c) by k.

3 Traditional Process Capability Indices
A process capability index (PCI) is a real number as a summary that compares the be-
havior of a product or process characteristic to engineering specifications. This measure
is also called performance index. Several PCIs are introduced in the literature such as
Cp, Cpk, Cpm, and so on (see Kotz and Johnson, 2002, Kotz, 1993, Pearn et al., 1992).
For convenience, we will denote the upper and lower specification limits by U and L,
respectively, rather than the more customary USL and LSL notations. When univariate
measurements are concerned, we will denote the corresponding random variate by X .
The expected value and standard deviation of X will be denoted by µ and σ, respec-
tively. We will limit ourselves to the situation where µ is in the specification interval,
i.e. L ≤ µ ≤ U , and we assume that the measured characteristic should have a normal
distribution (at least, approximately), although it is difficult to see why a good industrial
process must result in a normal distribution for every measured characteristic.

The commonly recognized PCIs are

Cp =
U − L

6σ
=

w

6σ
, (3)

where w = U − L. This Cp is used when µ = M , where M = (U + L)/2.

Cpk =
w − 2|µ−M |

6σ
=

min{U − µ, µ− L}
3σ

, (4)

and
Cpm =

w

6
√

σ2 + (µ− T )2
=

w

6
√

E[(X − T )2]
, (5)

where T is the target value and E[.] denotes the expected value. There is also the hybrid
index

Cpmk =
w − 2|µ−M |

6
√

σ2 + (µ− T )2
=

w − 2|µ−M |
6
√

E[(X − T )2]
. (6)

Usually, T = M . If T 6= M the situation is sometimes described as “asymmetric
tolerances” (see Boyles, 1994, Vannman, 1997, and Vannman, 1998). Introduction of Cp

is ascribed to Juran (1974), that of Cpk to Kane (1986), that of Cpm for the most part to
Hsiang and Taguchi (1985), and Cpmk to Pearn et al. (1992).

Clearly Cp ≥ Cpk ≥ Cpmk and Cp ≥ Cpm ≥ Cpmk. Some more relations between
PCIs could be realized. From (3) and (4), we have

Cpk = Cp − 1

3

∣∣∣∣
µ−M

σ

∣∣∣∣ (7)
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and from (3) and (5) we have

Cpm =
Cp√

1 +
(

µ−T
σ

)2
. (8)

From (4) and (6), we have

Cpmk =
Cpk√

1 +
(

µ−T
σ

)2
. (9)

A further interesting relation is

Cpmk =
CpmCpk

Cp

. (10)

An enlightening view of relations among the PCIs can be obtained from studies of the
“superstructure PCIs” introduced by Vannman (1995) as

Cp(u, v) =
w − 2u|µ−M |

6
√

σ2 + v(µ− T )2
, u, v ≥ 0 . (11)

The four PCIs introduced in (3)–(6) are special case of Cp(u, v). Indeed

Cp = Cp(0, 0) ; Cpk = Cp(1, 0) ; Cpm = Cp(0, 1) , and Cpmk = Cp(1, 1) .

See more details about of this section in Kotz and Johnson (2002).

4 Fuzzy Process Capability Indices
As explained in Section 1, the Cp index based on fuzzy SLs introduced as a real number
by Yongting (1996) and was used by other authors. But it would be more realistic to
have a Cp which is also fuzzy, since a fuzzy process capability index would include much
more information than a precise number, when we have fuzzy specification limits. For
this reason, we improve Yongting’s PCI and introduce C̃p as a fuzzy capability index.
It is natural to use fuzzy numbers such as U(au, bu, cu) = T (au, bu, cu) ∈ FT (R) and
L(al, bl, cl) = T (al, bl, cl) ∈ FT (R) for the upper and lower engineering specification
limits, if process specification limits are fuzzy rather than real numbers.

Definition 4.1. A process with fuzzy specification limits, which we call a fuzzy process
for short, is one which approximately satisfies the normal distribution condition and its
specification limits are fuzzy.

Definition 4.2. Suppose we have a fuzzy process with fixed σ, for which the upper and
lower specification limits are the fuzzy sets U(au, bu, cu), L(al, bl, cl) ∈ FT (R), where
au ≥ cl. Then

a) The width between fuzzy process specification limits is a triangular fuzzy number
w̃SL ∈ FT (R), defined by

w̃SL = U(au, bu, cu)ª L(al, bl, cl) . (12)
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b) The fuzzy process capability index is a triangular fuzzy number, C̃p ∈ FT (R), de-
fined by

C̃p = w̃SL ® 6σ . (13)

By (1) and (2) we obtain

C̃p = T

(
au − cl

6σ
,
bu − bl

6σ
,
cu − al

6σ

)
. (14)

Note that C̃p is useful when µ = m, where m = (bu + bl)/2. In the following we give an
example to clear the idea of C̃p.

Example 4.1. For a special product suppose that the specification limits are considered
to be “approximately 4” and “approximately 8” which are characterized by L(2, 4, 6) ∈
FT (R) and U(7, 8, 9) ∈ FT (R), respectively (see Figure 1). Assume that the process
mean µ is 6 and the estimated process standard deviation is 2/3.

Figure 1: The membership function of fuzzy process specification limits in Example 4.1.

By Definition 4.2 we can compute the width between process SLs as w̃SL = T (1, 4, 7).

Therefore, the estimation of C̃p is ˆ̃Cp = T (1/4, 1, 7/4). Hence, ˆ̃Cp is “approximately
one”, as shown in Figure 2.

Figure 2: The membership function of fuzzy process capability index in Example 4.1

Definition 4.3. Let U(au, bu, cu), L(al, bl, cl) ∈ FT (R) be the upper and lower engineer-
ing fuzzy specification limits, where au ≥ cl. We introduce the following new fuzzy PCIs,
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by Definition 4.2 and the inspiration of the relations (4)–(6), as

C̃pk = T

(
au − cl − 2|µ−m|

6σ
,
bu − bl − 2|µ−m|

6σ
,
cu − al − 2|µ−m|

6σ

)
, (15)

C̃pm = T

(
au − cl

6
√

σ2 + (µ− t)2
,

bu − bl

6
√

σ2 + (µ− t)2
,

cu − al

6
√

σ2 + (µ− t)2

)
, (16)

C̃pmk = T

(
au − cl − 2|µ−m|
6
√

σ2 + (µ− t)2
,
bu − bl − 2|µ−m|
6
√

σ2 + (µ− t)2
,
cu − al − 2|µ−m|
6
√

σ2 + (µ− t)2

)
, (17)

where m = (bu + bl)/2 and t is the target value.
The “superstructure fuzzy PCI” is defined as

C̃p(u, v) = T

(
au − cl − 2u|µ−m|
6
√

σ2 + v(µ− t)2
,
bu − bl − 2u|µ−m|
6
√

σ2 + v(µ− t)2
,
cu − al − 2u|µ−m|
6
√

σ2 + v(µ− t)2

)
(18)

for u, v ≥ 0.

Remark 4.1.
i) The process capability indices defined by (3)–(6) could be expressed by the fuzzy

process capability indices as

Cp = C̃p = T (Cp, Cp, Cp) ,

Cpk = C̃pk = T (Cpk, Cpk, Cpk) ,

Cpm = C̃pm = T (Cpm, Cpm, Cpm) ,

Cpmk = C̃pmk = T (Cpmk, Cpmk, Cpmk) .

ii) When the process specification limits U(au, bu, cu) and L(al, bl, cl) are precise num-
bers, i.e. au = bu = cu and al = bl = cl, then all the introduced fuzzy PCIs are
precise numbers and they coincide with the traditional PCIs.

5 Relationships between Fuzzy Process Capability Indices
Here we give some relations fuzzy process capability indices introduced in Section 4.

Theorem 5.1. In a fuzzy process assume au ≥ cl. Then there are the following relations
between fuzzy PCIs introduced in (14)–(17)

C̃pk(x) = C̃p(x + |µ−m|/3σ) , where m = (bu + bl)/2 , (19)

C̃pm(x) = C̃p(x
√

1 + (µ− t)2/σ2) , (20)

C̃pmk(x) = C̃pk(x
√

1 + (µ− t)2/σ2) . (21)

Proof. Let k = |µ−m|/3σ. Then by some calculations we have

C̃p(x + k) =





cl − au + 6σ(x + k)

bu + cl − bl − au

, if (au − cl)/6σ ≤ x + k < (bu − bl)/6σ ,

cu − al − 6σ(x + k)

cu + bl − al − bu

, if (bu − bl)/6σ ≤ x + k < (cu − al)/6σ ,

0 , elsewhere,
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C̃pk(x) =





cl − au + 6σ(x + k)

bu + cl − bl − au

, if (au − cl)/6σ − k ≤ x < (bu − bl)/6σ − k ,

cu − al − 6σ(x + k)

cu + bl − al − bu

, if (bu − bl)/6σ − k ≤ x < (cu − al)/6σ − k ,

0 , elsewhere.

Therefore, (19) is proved. Similarly we can prove (20) and (21).

Theorem 5.2. The four fuzzy PCIs introduced in (14)–(17) are special cases of C̃p(u, v).
Indeed

C̃p = C̃p(0, 0) , C̃pk = C̃p(1, 0) , C̃pm = C̃p(0, 1) , and C̃pmk = C̃p(1, 1) .

Proof. It is obvious by using (14)–(18).
A further interesting identity among PCIs is stated in the following theorem. First we

give some important lemmas.

Definition 5.1. Let ◦ : R× R→ R be an operation and C, D ⊆ R. Define

C ◦D = {x ◦ y|x ∈ C, y ∈ D} .

Remark 5.1. One can check that if ◦ is the usual multiplication “·” on R and [a, b], [c, d]
are real intervals in R, where a, b, c, d ≥ 0, then

[a, b] · [c, d] = [ac, bd] . (22)

See also Kaufmann and Gupta (1988) for interval multiplications.

Lemma 5.1. If A and B are in F (R) with bounded support, all α-cuts are closed, and ◦
is a continuous binary operation on R, then (A ◦B)α = Aα ◦Bα, for all α ∈ [0, 1], where
(A ◦B)(x) = sup

x=y◦z
min(A(y), B(z)).

Proof. See Corollary 3.1.10 of Nguyen and Walker (2000).

Lemma 5.2. Let A,B ∈ F (R). Then A = B if and only if Aα = Bα for all α ∈ [0, 1].
Proof. See Theorem 2.5.2 of Nguyen and Walker (2000).

Now the following theorem can be proved.

Theorem 5.3. Let in a fuzzy process au ≥ cl and C̃p, C̃pk, C̃pm and C̃pmk be defined by
(14)–(17), respectively. Then C̃pC̃pmk = C̃pmC̃pk.
Proof. Let T (a, b, c) ∈ FT (R), then

(T (a, b, c))0 = R , (23)

and
(T (a, b, c))α = [a + α(b− a), c + α(b− c)] , ∀α ∈ (0, 1] . (24)

Note that C̃p, C̃pk, C̃pm, C̃pmk ∈ FT (R), hence we can calculate their α-cuts from (24) as

(
C̃p

)
α

=

[
au − cl

6σ
+ α

bu − bl − au + cl

6σ
,
cu − al

6σ
+ α

bu − bl − cu + al

6σ

]
,
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(
C̃pk

)
α

=

[
au − cl − 2|µ−m|

6σ
+ α

bu − bl − au + cl

6σ
,

cu − al − 2|µ−m|
6σ

+ α
bu − bl − cu + al

6σ

]
,

(
C̃pm

)
α

=

[
au − cl

6
√

σ2 + (µ− t)2
+ α

bu − bl − au + cl

6
√

σ2 + (µ− t)2
,

cu − al

6
√

σ2 + (µ− t)2
+ α

bu − bl − cu + al

6
√

σ2 + (µ− t)2

]
,

(
C̃pmk

)
α

=

[
au − cl − 2|µ−m|
6
√

σ2 + (µ− t)2
+ α

bu − bl − au + cl

6
√

σ2 + (µ− t)2
,

cu − al − 2|µ−m|
6
√

σ2 + (µ− t)2
+ α

bu − bl − cu + al

6
√

σ2 + (µ− t)2

]
.

Therefore, by Lemma 5.1, we have for any α ∈ [0, 1]

(
C̃p

)
α
·
(
C̃pmk

)
α

=

[
(au − cl)(au − cl − 2|µ−m|)

36σ
√

σ2 + (µ− t)2
+

α(au − cl)(bu − bl − au + cl)
36σ

√
σ2 + (µ− t)2

+
α(bu − bl − au + cl)(au − cl − 2|µ−m|)

36σ
√

σ2 + (µ− t)2
+

α2(bu − bl − au + cl)2

36σ
√

σ2 + (µ− t)2
,

(cu − al)(cu − al − 2|µ−m|)
36σ

√
σ2 + (µ− t)2

+
α(cu − al)(bu − bl − cu + al)

36σ
√

σ2 + (µ− t)2

+
α(bu − bl − cu + al)(cu − al − 2|µ−m|)

36σ
√

σ2 + (µ− t)2
+

α2(bu − bl − cu + al)2

36σ
√

σ2 + (µ− t)2

]

=
(
C̃pm

)
α
·
(
C̃pk

)
α

.

Note that the supports of all the fuzzy PCIs, introduced by (14)–(17) are bounded. There-
fore, by Lemma 5.1 and the fact that multiplication on R is continuous, we have

(
C̃pC̃pmk

)
α

=
(
C̃p

)
α
·
(
C̃pmk

)
α

=
(
C̃pm

)
α
·
(
C̃pk

)
α

=
(
C̃pmC̃pk

)
α

, (25)

for all α ∈ [0, 1]. Hence, by Lemma 5.2 and (25), we conclude that C̃pC̃pmk = C̃pmC̃pk.

6 Comparison of Fuzzy Processes
When we have several fuzzy processes, a criterion for comparing of two fuzzy subsets is
needed. There are many ways to do this comparison, (see Wang, 2001). We use the ap-
proach in Yuan (1991), since it is a reasonable approach and it has appropriate properties
such as distinguishability and robustness. For the following definitions see Yuan (1991).

Definition 6.1. A binary relation on F (R) is a fuzzy set such as µ : F (R)×F (R) → [0, 1],
where µ(A,B) represents the truth level or the strength of the relation between A and B,
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where µ(A,B) = 1 means that the relation between A and B is true or the strongest, and
µ(A, B) = 0 means the relation is false or the weakest.

Definition 6.2. Let Ci, Cj ∈ F (R) be normal and convex, as in Definition 2.1. A fuzzy
relation which compares the right spread of Ci with the left spread of Cj , defined as

∆ij =

∫

c+iα>c−jα

(c+
iα − c−jα) dα +

∫

c−iα>c+jα

(c−iα − c+
jα) dα , (26)

where
c+
iα = sup{x : x ∈ Ciα} , c−iα = inf{x : x ∈ Ciα} ,

and Ciα is the α-cut of Ci, α ∈ (0, 1].
From a practical point of view, especially when we operate in a fuzzy environment, it

is useful to introduce a criterion regarding the degree of certainty about our decision. Yuan
(1991) introduced a criterion for comparing Ci and Cj given in the following definition.

Definition 6.3. Suppose that the assumptions of Definition 6.2 hold. Then µ(Ci, Cj) is
said to be the degree of bigness of Ci relative to Cj , where

µ(Ci, Cj) =
∆ij

∆ij + ∆ji

. (27)

Definition 6.4. Let Ci, Cj ∈ F (R), then

i) Ci is bigger than Cj if and only if µ(Ci, Cj) > 0.5,

ii) Ci and Cj are equal if and only if µ(Ci, Cj) = 0.5.

Using the preference relation defined for each ordered pair, it is easy to rank n alter-
natives {C1, C2, . . . , Cn}. The procedure is as follows:

Calculate µ(Ci, Cj) for i = 1, . . . , n, j = 1, . . . , n, which consists of an n×n matrix.
By using the fact that µ(Ci, Cj) = 1 − µ(Cj, Ci), we only need to calculate n(n − 1)/2
membership values. Then sort {C1, C2, . . . , Cn} into {Ck1 , Ck2 , . . . , Ckn} so that for any
i < j, µ(Cki

, Ckj
) ≥ 0.5. Based on the sorting we can conclude that Ck1 is the most

preferred choice, Ck2 is the second.
Now, we use this method to compare the fuzzy PCIs of fuzzy processes in the next

examples.

Example 6.1. Suppose that we want to choose one of the three fuzzy processes which is
better than others, where their PCIs are obtained as follows (Figure 3)

C̃p1(x) = T (5/6, 1, 3/2) , C̃p2(x) = T (2/3, 5/6, 1) , C̃p3(x) = T (1/2, 7/6, 4/3) .

In Table 1, we have presented the results of the pairwise comparison for three fuzzy
process capability indices by the aid of Maple software. For example, C̃p1 is bigger than
C̃p2 with 0.93 degree of bigness and so the first fuzzy process is better than the second
one. Actually we have the sorting {C̃p1 , C̃p3 , C̃p2}. Based on the sorting we can conclude
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Figure 3: The membership functions of fuzzy capability indices in Example 6.1

Table 1: The results of calculations for Example 6.1
Comparison between ∆ij ∆ji Better fuzzy process Degree of bigness

C̃p1 and C̃p2 0.542 0.042 1 is better than 2 0.93
C̃p1 and C̃p3 0.429 0.345 1 is better than 3 0.55
C̃p2 and C̃p3 0.150 0.567 3 is better than 2 0.79

that the first fuzzy process is the most preferred choice and the second fuzzy process is
the worst choice between all three fuzzy processes.

In classical case we compare our PCIs with the number 1. In the fuzzy case we do this
comparison as in the following example.

Example 6.2. In Example 6.1, we want to compare fuzzy PCIs of three fuzzy pro-
cesses with “approximately one”, and suppose that “approximately one” is defined by
1̃ = T (5/6, 1, 7/6). In Table 2, we have presented the results of the pairwise comparison
of three fuzzy process capability indices with “approximately one” by the aid of Maple
software. For example, C̃p1 is bigger than “approximately one” with 0.67 degree of big-
ness and so the first fuzzy process is approximately in control. Note that the decision
maker can change the membership function of 1̃.

Table 2: The results of calculations for Example 6.2
Comparison between ∆ij ∆ji Result of comparison Degree of bigness

C̃p1 and 1̃ 0.333 0.167 C̃p1 is bigger than 1̃ 0.67
C̃p2 and 1̃ 0.042 0.375 C̃p2 is smaller than 1̃ 0.10
C̃p3 and 1̃ 0.349 0.269 C̃p3 is bigger than 1̃ 0.56

7 Conclusion
In this paper we introduced the fuzzy process capability indices (PCIs), when the en-
gineering specification limits (SLs) are triangular fuzzy numbers. Also several relations
between them are revealed. If we define the SLs by fuzzy quantities, it is more appropriate
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to define the PCIs as fuzzy numbers. The new indices are very flexible and hence capable
in manufacturing processes. A meaningful application of these new PCIs emereged when
we are required to compare fuzzy processes. This is clarified by examples.
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