
AUSTRIAN JOURNAL OF STATISTICS

Volume 34 (2005), Number 4, 375–390

The Problem of Classification
when the Data are Non-precise

Mayer Alvo and François Théberge
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Abstract: Non-precise data arise in a natural way in several contexts. For
example, the water level of a river does not usually consist of a single number
as can be seen from the intensity of the wetness as a function of depth of
a survey rod. The temperature of a room varies as a function of distance
from a reference point. The color intensities associated with a pixel which
describe observations from remote sensing are non-precise numbers because
they vary as a function of the reflection from the sun. In these examples,
it is the imprecision of the observation itself that is of interest rather than
the uncertainty due to statistical variation. Even in the absence of stochastic
error, there would still be an imprecision in the measurement. Viertl (1997)
developed the subject of statistical inference for such non-precise data and
associated it very closely to fuzzy set theory. Precise data can be described by
an indicator function whereas non-precise data is described by characterizing
functions. In this article, we first review the notation and then consider the
problems of classification for non-precise data.

Zusammenfassung: Unscharfe Daten entstehen auf natürliche Art in diver-
sen Situationen. Beispielsweise ist der Pegelstand eines Flusses gewöhnlich
keine einzelne Zahl. Die Stärke der Feuchtigkeit des Messstabes kann als
Funktion der Tiefe gesehen werden. Die Raumtemperatur variiert als Funk-
tion des Abstands zum Referenzpunkt. Die Farbstärken eines Pixels, die
Beobachtungen bei der Fernerkundung beschreiben, sind unpräzise Zahlen,
da diese in Abhängigkeit von der Sonnenspiegelung variieren. In all diesen
Beispielen ist es vielmehr die Ungenauigkeit der Beobachtung selbst die in-
teressiert, als die Unbestimmtheit wegen statistischer Streuung. Sogar bei
Fehlen eines stochastischen Fehlers ist noch immer Ungenauigkeit in der
Messung. Viertl (1997) entwickelte das Fach der statistischen Inferenz für
derartige unscharfe Daten und verknüpfte es stark mit der Theorie unschar-
fer Mengen. Präzise Daten können durch eine Indikatorfunktion beschrieben
werden während unpräzise Daten durch charakterisierende Funktionen darge-
stellt werden. In diesem Artikel besprechen wir zuerst die Notation und dann
betrachten wir die Probleme der Klassifikation unscharfer Daten.

Keywords: Classification, Non-precise Data, Fuzzy Data.

1 Characterizing Functions
In the presentation below, we shall draw heavily on the analogy with inference for pre-
cise data. We shall put aside the presence of statistical error and assume that a precise
measurement of a given quantity yields a single value. A precise measurement can be
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uniquely represented by an indicator function, I[x0](x) which takes value 1 if x = x0

and 0 otherwise. A non-precise observation will be mathematically modelled in terms of
characterizing function which are a generalization of an indicator function. Quoting from
Viertl (1997),

Definition 1 A characterizing function ξ(·) of a non-precise number is a real function of
a real variable such that

(i) ξ : R→ [0, 1]

(ii) ∃x0 ∈ R : ξ(x0) = 1

(iii) ∀α ∈ (0, 1], the set Bα = {x ∈ R : ξ(x) ≥ α} = [aα, bα] is a finite closed interval
called an α-cut of ξ.

Viertl (1997) has shown that a characterizing function can be uniquely determined by
the family of α-cuts {Bα : α ∈ (0, 1]} and moreover

ξ(x) = max
α∈(0,1]

αIBα(x) , ∀x ∈ R . (1)

It should be noted that continuous functions fulfilling only conditions (i) and (ii)
above can, through the notion of the convex hull, be made to also obey condition (iii).
The characterizing function is the unique representation of a non-precise measurement.
All inference is drawn on the basis of this representation.

Viertl (1997) points out that characterizing functions can be viewed as representing
the rate of change of values and he provides a prescription for its construction. Referring
to the example on the water level of a river, let w(h) represent the intensity of the wetness
of a survey rod as a function of the depth h1 ≤ h ≤ h2, where h1, h2 provide the range of
values. Then the characterizing function can be given as

ξ(h) =
w′(h)

max
h1≤h≤h2

w′(h)
. (2)

The derivative measures the rate of change of the wetness. For values of h close to h1

or h2, ξ(h) should be near 0 since the rod would be either always wet or always dry and
one expects very little change. Precise data is described by an indicator function I[x0](x),
showing that the rate of change is 0 for values on either side of x0.

Example 2 Consider the characterizing function given by:

ξ(x) = exp

{
−(x− ω)2

2τ 2

}
.

The α-cut boundaries are given by

Bα = {x ∈ R : ξ(x) ≥ α} =
{

x ∈ R : |x− ω| ≤
√
−2τ 2 log(α)

}
.

Characterizing functions can also be defined for a non-precise n−dimensional vector x∗.
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Definition 3 A characterizing function ξx∗(·) of a non-precise vector x∗ is a real function
of n variables such that

(i) ξx∗(·) : Rn → [0, 1]

(ii) ∃x0 ∈ Rn : ξ(x0) = 1

(iii) ∀α ∈ (0, 1], the set Bα(x∗) = {x ∈ Rn : ξx∗(x) ≥ α} is a star shaped compact
subset of Rn, by which we mean that the line segment joining any two points in the
set lies entirely in the set.

An example of a non-precise vector is the location of an object on a radar screen. The
object appears as a cloud in two-dimensional space. The characterizing function may be
constructed in terms of the light intensity function. Given n non-precise observations,
x∗1, x

∗
2, . . . , x

∗
n, each taking values in a space M with corresponding characterizing func-

tions ξ1, . . . , ξn, it is possible to define a characterizing function ξ : Mn → [0, 1] for the
combined sample via the product or the minimum rule respectively as

ξ(x1, x2, . . . , xn) =
n∏

i=1

ξi(xi) (3)

or
ξ(x1, x2, . . . , xn) = min

1≤i≤n
ξi(xi) . (4)

The α-cuts for the combined sample (and hence the characterizing function) based on
the minimum combination rule are easy to obtain from the α-cuts of the individual non-
precise observations. Referring to Example 2, if every observation in a sample of size n
has the same characterizing function, then the characterizing function for the combined
sample using the product rule is:

ξ(x1, . . . , xn) = exp

{
−

∑n
i=1(xi − ω)2

2τ 2

}
.

It can be shown that both the product and the minimum combination rules lead to
functions which satisfy the conditions of Definition 3 above. In practice, the minimum
rule appears to be the more useful of the two. We now turn attention to functions of
non-precise observations, such as the usual sample mean and sample variance.

Definition 4 Let g : Rn → R be a real valued continuous function whose arguments are
non-precise vectors x∗ with characterizing function ξ. The characterizing function of the
non-precise value y∗ = g(x∗) is defined ∀y ∈ R as

ψ(y) =

{
sup {ξ(x) : x ∈ Rn, g(x) = y} , for g−1([y]) 6= ∅
0, for g−1([y]) = ∅ . (5)

To demonstrate that the definition is reasonable, consider the sample sum. If the character-
izing function of the individual measurements is represented by a rate of change, then the
range of change in the sum is dictated by the greatest rate of change among the individual
components. It can be shown that once again, ψ defined above is a characterizing function.
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Assuming that g : M → R is a continuous function with M j Rn and sup(ξ(·)) j M ,
Viertl (1997) showed that the general form for the α-cuts (Bα(y∗); α ∈ (0, 1]) that define
the characterizing function above consists of intervals of the form

Bα(y∗) =

[
min

x∈Bα(x∗)
g(x), max

x∈Bα(x∗)
g(x)

]
. (6)

In practice, this result coupled with (1) leads to the construction of the characterizing
function. In order to deal with more general problems of inference in point and inter-
val estimation as well as with Bayesian analysis, Viertl (1997) introduced the following
generalization:

Definition 5 A function g∗(·) with non-precise values is a mapping which assigns to every
element x ∈ M a non-precise number g∗(x).

Example 6 Consider a sample x∗1, . . . , x
∗
n of size n, each with characterizing function

given in Example 2. Let g(x) =
∑n

i=1 xi/n. Then the characterizing function ψ(·) of
g(x∗1, . . . , x

∗
n) is given ∀y ∈ R by its values:

ψ(y) =

{
sup

{
exp

[
−Pn

i=1(xi−ω)2

2τ2

]
: x ∈ Rn ,

∑n
i=1 xi = ny

}
, g−1([y]) 6= ∅

0 , g−1([y]) = ∅
,

= exp

[−n(y − ω)2

2τ 2

]
, in the first case.

This can be seen from the fact that

n∑
i=1

(xi − ω)2 =
n∑

i=1

(xi − y)2 + n(y − ω2) (7)

and we can choose the xi’s so that x1 = · · · = xn = y.

In the next example, we consider the sample variance.

Example 7 Consider a sample x∗1, . . . , x
∗
n of size n, each with characterizing function

given as in Example 2. Let g(x) =
∑n

i=1(xi−x)2/(n−1) = S2
x. Then the characterizing

function of g(x∗1, . . . , x
∗
n) is ∀y ∈ R given by

ψ(y) =

{
sup

{
exp

[
−Pn

i=1(xi−ω)2

2τ2

]
: x ∈ Rn ,

Pn
i=1(xi−x)2

n−1
= y2

}
, g−1([y]) 6= ∅

0 , g−1([y]) = ∅

}
,

= exp

[
−(n− 1)y2

2τ 2

]
, in the first case.

To demonstrate this, using (7), we may write

ψ(y) = sup
S2

x=y

exp

(−(n− 1)y2

2τ 2
− −n(x− ω)2

2τ 2

)
.
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The first term is constant, and choosing x = ω, the second term is 0, so that

ψ(y) = exp

(−(n− 1)y2

2τ 2

)
.

Setting x1 = · · · = xn−1 = ω ±
√

y2/n and xn = nω − (n − 1)
(
ω ±

√
y2/n

)
yields

this optimum.

In both examples, the characterizing functions decrease exponentially fast as the sam-
ple size increases. The basis for inference involving non-precise data is the construction
of the characterizing function ξ(·) of the n-dimensional non-precise vector describing
the combined sample x∗. The statistical function S(x1, x2, . . . , xn) which is the basis of
inference for precise data x = (x1, x2, . . . , xn) is then adapted for non-precise data by
computing its characterizing function in accordance with the rule ∀y ∈ R

ψ(y) =

{
sup {ξ(x) : x ∈ Rn , S(x1, x2, . . . , xn) = y} for S−1([y]) 6= ∅
0 , for S−1([y]) = ∅

}
. (8)

We make use of this procedure in the problem of classification.

2 The Problem of Classification
As an application of a classification problem involving non-precise data, we may wish
to identify the species of fish on the basis of echo sounder measurements. The depth at
which fish travel does not consist of a single number but rather is a non-precise number.
Moreover, different species may travel at depths described by different characterizing
functions. In the simplest situation, for precise data, samples are observed from two
populations π1, π2 described respectively by density functions f1(·) and f2(·). Let c(i|j)
be the cost of misclassification of class j as class i, i 6= j, and let p(i) be the prior
probability for class i. We would like to classify a new observation which may be vector
valued, into either π1, π2 so as to minimize the expected cost of misclassification (ECM).
It can be shown (Johnson and Wichern, 1999, chapter 11) that the optimal region consists
of classifying the new observation x into population π1 provided

f1(x)

f2(x)
≥ c(1|2)p(2)

c(2|1)p(1)
.

In what follows we will assume equal priors and equal costs, so that

c(1|2)p(2)

c(2|1)p(1)
= 1 .

As an example, suppose that π1, π2 are described by normal populations with known
means and covariances given respectively by (µ1, Σ1) and (µ2, Σ2). Assume Σ1 = Σ2 =
Σ and let

T (x; µ1, µ2, Σ) ≡ (µ1 − µ2)
′Σ−1 (x− (µ1 + µ2)/2) . (9)
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The optimal classification rule for precise data consists of classifying a new observation
x into population π1 if and only if

T (x; µ1, µ2, Σ) ≥ 0 . (10)

When the parameters (µ1, µ2, Σ) are unknown, samples of sizes n1, n2 respectively

x(1) =
(
x

(1)
1 , x

(1)
2 , . . . , x(1)

n1

)
, x(2) =

(
x

(2)
1 , x

(2)
2 , . . . , x(2)

n2

)

are taken and used to calculate the corresponding sample means µ̂1, µ̂2 and pooled sample
covariance

Σ̂ =
(n1 − 1)Σ̂1 + (n2 − 1)Σ̂2

(n1 − 1) + (n2 − 1)
,

where Σ̂1, Σ̂2 are the respective sample covariances. The rule then consists of classifying
a new observation x into population π1 if and only if

T (x; µ̂1, µ̂2, Σ̂) ≥ 0 . (11)

The statistic T can be considered a score function. Viewed in terms of T (x; µ̂1, µ̂2, Σ̂),
the region for classification of points into π1 is always a subset of R. For non-precise
data x(1)∗, x(2)∗, x∗, the characterizing function of the non-precise value t∗ of the statistic
T (x; µ̂1, µ̂2, Σ̂) is given by its values (∀t ∈ R)

ψ(t) =

{
sup

{
ξ(x(1), x(2), x) : x(i) ∈ M (i), x ∈ M, T = t

}
, T−1(t) 6= ∅

0 , T−1(t) = ∅

}
, (12)

where M, M (i) are the respective spaces for the non-precise observations. If the support
of t∗ is contained in either the interval [0,∞) or its complement (−∞, 0), the obser-
vation is classified into either π1 or π2, respectively. On the other hand, if the support
has a non-empty intersection with the intervals [0,∞), (−∞, 0), then the classification is
ambiguous. We now consider some examples.

Example 8 Consider the case for two univariate normal populations with known means
µ1, µ2 and common known variance σ2. Assume that the characterizing function of a
new measurement x is given as in Example 2. Then the characterizing function of the
non-precise value t∗ is given by

ψ(t) = exp

{
− σ2

2τ 2(µ1 − µ2)2

[
t− (µ1 − µ2)

σ

(
ω − (µ1 + µ2)

2

)]2
}

.

The decision of where to place the measurement clearly depends on the support of t∗.
Assume that µ1 > µ2. For values of ω À (µ1 + µ2)/2, the characterizing function will be
centered around a large positive number. Consequently, the measurement is likely to be
classified into π1. Conversely for values of ω ¿ (µ1 + µ2)/2, the measurement is likely
to be classified into π2. For values of ω ≈ (µ1 + µ2)/2, the characterizing function will
be centered around 0 and then the classification will be ambiguous.
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The example above can be generalized to the case where the parameters are unknown
and are estimated on the basis of non-precise data. The latter will then serve to modify
the characterizing function of t∗.

We now consider the general classification problem involving several populations.
For precise data, Fisher recommended the use of sample linear discriminants. These are
defined as follows. Let x(i) = (x

(i)
1 , x

(i)
2 , . . . , x

(i)
ni ) be a sample of observations from the ith

population and define the mean vectors xi =
∑

j x
(i)
j /ni, x =

∑
i

∑
j x

(i)
j /

∑
i ni. Define

as well the between groups and within groups variation matrices respectively

B =
∑

i

ni(xi − x)(xi − x)′ , (13)

W =
∑

i

∑
j

(xij − xi)(xij − xi)
′ .

Let (λs) denote the non-zero eigenvalues of W−1B arranged in decreasing order and
let (es) denote the corresponding eigenvectors. Then, the vector of coefficients l which
maximizes the ratio l′Bl/l′Wl is given by l1 = e1. The first sample linear discriminant is
given by d1 = e′1x. In general, the sth sample discriminant is given by ds = e′sx and these
are used to classify a future observation x as follows. Compute the discriminants y =
(d1, d2, . . .)

′ along with their vector of means µY i = (e′1µi, e
′
2µi, . . .)

′ under population
πi. We assign x to that population for which the distance ‖y − µY ‖2 is smallest.

Let Di(x
(1), x(2), . . .) = ‖y−µY i‖2 represent the distance of the discriminants to their

mean under the ith population. Then the characterizing function of Di is given by the
following, ∀t ∈ R

ψi(t) =

{
sup

{
ξ(x(1), x(2), . . . , x) : x(j) ∈ M (j) , x ∈ M , Di = t

}
, D−1

i (t) 6= ∅
0 , D−1

i (t) = ∅ .
(14)

In the case where a single characterizing function, say from population πk, emerges
clearly to the left of all the others, then the decision consists of classifying the measure-
ment into πk. In instances where the regions of support of the characterizing functions
overlap, there will be ambiguity in the classification. The calculations involved in (14)
are illustrated in the next section for normal populations using the notion of α-cuts.

Example 9 Suppose that it is desired to classify a non-precise measurement x∗ into one of
several multivariate populations having means µi and covariances Σi. The usual classifi-
cation rule in the case where the data are precise consists of allocating x to that popula-
tion πk for which the quadratic score dk(x) = −1

2
log |Σk|− 1

2
(x−µk)

′Σ−1
k (x−µk)+log pk

is largest. Here, {pkt} represent the prior probabilities of selection of the populations. If
the parameters are unknown, they are replaced by standard estimates µ̂k, Σ̂k, p̂k and the
quadratic score becomes

d̂k(x) = −1

2
log |Σ̂k| − 1

2
(x− µ̂k)

′Σ̂−1
k (x− µ̂k) + log p̂k . (15)
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For non-precise data, the characterizing function corresponding to the ith score becomes

ψi(t) =

{
sup

{
ξ(x(1), x2), . . . , x) : x(j) ∈ M (j) , x ∈ M , d̂i = t

}
, for d̂−1

i (t) 6= ∅
0 , for d̂−1

i (t) = ∅ ,
(16)

∀t ∈ R.

We now consider some numerical examples.

3 Classification - Example
In order to illustrate our classification rule with non-precise observations, we consider
three population classes with truncated Gaussian characterizing functions. (For all x such
that ξ(x) < α for some small α, we set ξ(x) = 0. This yields a finite support.) We
consider samples of size ni = 25 for each class i = 1, 2, 3, and

• We set c1 = 0, c2 = 2, and c3 = 3, the “centers” of each class.

• For each non-precise observation j from class i, we set µi,j = ci + Ui,j , where the
Ui,j are iid uniform random variables on [−1, 1]. We also set σi,j = Vi,j , iid uniform
random variables on [0.1, 0.5].

• We generated a “new observation”, x∗, also with a truncated Gaussian characteriz-
ing function with µ = 0.65 and σ = 0.05.

We then build the characterizing functions for the Di, the distances of the discrimi-
nants to their means under each class, as given in formula (14). This is done as follows.
We set a fixed value α, and we consider the α-cuts for each observation to evaluate the
minimum and maximum values taken by Di for this value of α. We do this for several
values of α to obtain a sketch of the characterizing functions for the Di. This is illustrated
in the top graphic of Figure 1 where, from left to right, we see the characterizing functions
for classes 1, 2, and 3, respectively. From this plot, we see that for α > 0.78 (roughly),
x∗ belongs to class 1. For 0.1 < α < 0.78, there is ambiguity between populations 1
and 2, and for α < 0.1, there is ambiguity between all three populations. We define the
values αc(1, 2) = 0.78 and αc(1, 3) = 0.1 as critical points. Another way to describe the
classification of x∗ is to say that it belongs to class 1 with confidence 1−αc(1, 2) = 0.22,
and to class 1 or 2 with confidence 1− αc(1, 3) = 0.9.

Formally, looking at classes i 6= j, we define

αc(i, j) =

{
max{α; Bα(Di) ∩Bα(Dj) 6= ∅} , if such α exists
0 , otherwise (17)

the point at which the α-cuts intersect, if any. In the bottom plot of Figure 1, we compute
αc(1, 2) and αc(1, 3) for a range of precise observations x ∈ [0, 2]. When we overlay
the characterizing function of x∗, we clearly see the critical values 0.78 and 0.1. This
approach can be generalized to any number of classes and dimensions.
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Figure 1: Nonprecise classification with 3 populations.

4 Classification - Discussion

The main difference in classification between precise and non-precise numbers lies in
the interpretation of fi(x), class i probability density function (pdf) for precise quantities
versus ξi(x), class i characterizing function for non-precise quantities. For non-precise
numbers, class i numbers take all values ξi(x) > 0 simultaneously, and ξi(x) represents
the intensity at the (precise) value x. Properties such as the area under the curve being 1 (in
the continuous case) no longer holds here. This interpretation is crucial in our definitions
of classification functions.

As an illustration, consider some two-dimensional objects, such as weather patterns,
groups of animals, etc., in R2. In the simple example shown in Figure 2, we have two
square-shaped objects, with respective area of 1 and 25. We assume that the density is
uniform for both objects, with characterizing functions ξi(x, y) = 1, i = 1, 2, respectively
inside the squares, and 0 elsewhere. In this case, a point (x, y) that belongs to both objects
is such that ξ1(x, y)/ξ2(x, y) = 1, since both objects have the same intensity at (x, y).
However, if we consider the objects via pdf’s, we get f1(x, y)/f2(x, y) = 25, which gives
much more weight to the smaller object.

In this section, we look at likelihood scores Si(x) for i ∈ {1, . . . , n} and x a precise
value, given n characterizing functions ξi(·), i = 1, . . . , n.
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Object 2

Object 1

.
(x,y)

Figure 2: Three classes in two dimensions.

4.1 Two Likelihood Scores
If we deal with precise numbers, the pdf fi(x) is a measure of the likelihood of class i
for observation x, and the straightforward classification strategy is to choose class i that
maximizes fi(x). We can assign the following scores for each class

Sfi
(x) =

fi(x)∑
j fj(x)

,

which are interpreted as a membership function, or fuzzy classification values. We use
this definition first and consider the following scores for each class i

SI
ξi
(x) =

ξi(x)∑
j ξj(x)

. (18)

In this case however, since the ξi(·) take values all in the same range [0, 1], we can define
another score based on the α-cuts.

For a given observation x, let 1 ≥ ξ1(x) ≥ ξ2(x) ≥ · · · ≥ ξN(x) ≥ 0 without loss of
generality (this is simply a re-definition of the class labels). We see that

• x belongs to no α-cut for 1 ≥ α > ξ1(x).

• x belongs to class 1 α-cut for ξ1(x) ≥ α > ξ2(x).

• x belongs to classes 1 and 2 α-cuts for ξ2(x) ≥ α > ξ3(x).

• x belongs to classes 1, 2, and 3 α-cuts for ξ3(x) ≥ α > ξ4(x).

• · · ·
• x belongs to all N α-cuts for ξN(x) ≥ α ≥ 0.
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At a given α value, the interpretation is that x could belong to all classes i such that x
is in the α-cut for this class. We assign scores according to the following table.

α-range class 1 class 2 · · · class N

(ξ1(x), 1] 0 0 · · · 0

(ξ2(x), ξ1(x)] ξ1(x)− ξ2(x) 0 · · · 0

(ξ3(x), ξ2(x)] (ξ2(x)− ξ3(x))/2 (ξ2(x)− ξ3(x))/2 · · · 0

· · · · · · · · · · · · · · ·
[0, ξN(x)] ξN(x)/N ξN(x)/N · · · ξN(x)/N

Summing all entries from this table we get ξ1(x), so the score assigned to class i is
given by the sum of all values in column i, divided by ξ1(x)

SII
ξi

(x) =

N−1∑
j=i

(ξj(x)− ξj+1(x))/j + ξN(x)/N

ξ1(x)
. (19)

Example

We consider a simple 2-class example where ξ1(x) is a triangle defined in the range [0, 2]
with ξ1(1) = 1, while ξ2(x) = 1 over the range [0, 2]. This is illustrated in Figure 3, along
with the corresponding probability density functions.

ξ1(x)

ξ2(x)
1

1 2

f1(x)

f2(x)

1

1 2

1/2

Figure 3: Two-class example.

Here are some values for the classification scores of class 1.

x Sf1(x) SI
ξ1

(x) SII
ξ1

(x)

0 or 2 0 0 0

1/2 or 3/2 1/2 1/3 1/4

1 2/3 1/2 1/2

We see that Sf1(1) differs from the other ones at x = 1, since it must be the case that∫
fi(x)dx = 1, so the triangular-shaped pdf gets more weight at x = 1. In the non-precise

case however, observing x = 1 is as likely to come from either class. We also see that SI
ξ

and SII
ξ differ, and in the next subsection, we show that SII

ξ1
(x) is always a better choice

with respect to some global error criterion.
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4.2 An Error Criterion
In the N -class classification problem for non-precise numbers with characterizing func-
tions ξi(x), i = 1, . . . , N , let Sξ be a scoring function such that Sξi

(x) ≥ 0 is the score
for class i at x, and

∑N
i=1 Sξi

(x) = 1, ∀x. We define the following error function in the
continuous case

Υ(Sξ) =
N∑

i=1

∫ ∆

−∆

ξi(x)(1− Sξi
(x))dx (20)

for some large ∆. (In practice, we usually assume finite support so ∆ is finite.) So for
each class i, we sum all the score given to the other classes, weighted by ξi(·). In the
discrete case, the integral is replaced by a summation over all cases for which ξi(x) > 0.

In the example seen previously where ξ1(x) is triangular-shaped and ξ2(x) is uniform,
we get Υ(SI

ξ ) ≈ 0.301, Υ(SII
ξ ) ≈ 0.292, and Υ(Sf ) ≈ 0.338 when using the pdf’s.

For our next example, we consider two Gaussian distributions (respectively, charac-
terizing functions) with mean and variance (0, 1) for class 1 and (1, γ) for class 2, and
we look at several values for γ. In Figure 4, we plot the quantities Υ(SI

ξ )/Υ(Sf ) (ratio
I) and Υ(SII

ξ )/Υ(Sf ) (ratio II). When γ = 1, we see that Υ(SI
ξ ) = Υ(Sf ) as expected.

Moreover, we see that Υ(SII
ξ ) < Υ(SI

ξ ) for all cases considered. This is in fact a general
result that we prove next.
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Figure 4: Gaussian example.

Theorem 10 Given a classification problem with N non-precise classes having respec-
tive characterizing functions ξi(x), i = 1, . . . , N , then Υ(SII

ξ ) ≤ Υ(SI
ξ ).

In order to prove this result, we need to show a few results in Lemmas 11 to 13, where
we introduce the following (lighter) notation, given N classes

ΥI
N = Υ(SI

ξ ) , ΥII
N = Υ(SII

ξ ) .

All proofs are given in the Appendix.
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Lemma 11 ΥI
N = ΥI

N−1 +
ξN∑N
i=1 ξi

(
N−1∑
i=1

ξi +

∑N−1
i=1 ξ2

i∑N−1
i=1 ξi

)
.

Lemma 12 ΥII
N = ΥII

N−1 +
1

ξ1

(
ξN

N(N − 1)

N−1∑
i=1

ξi + ξ1ξN − ξ2
N

N

)
.

Lemma 13 For 1 ≥ ξ1 ≥ ξ2 ≥ · · · ≥ ξN ≥ 0 with N > 1,

N∑
i=1

N−1∑
j=1

N−1∑

k=1

ξ1ξk(ξk − ξN) ≥
N∑

i=1

N−1∑
j=1

N−1∑

k=1

ξiξj(ξk − ξN) .

We illustrate the likelihood scores given in (18) and (19) with an example based on
the one presented in Section 3. Here, we assume that each population is represented by a
truncated Gaussian characterizing function with respective centers µ1 = 0, µ2 = 2, and
µ3 = 3. We assume that all σ = 1. In Figure 5, we compute the likelihood functions
for the three classes for precise values of x ∈ [0, 5]. In particular, we look at x = 0.65
and notice that with both measures, this point is more likely to belong to class 1, with
respective scores of 0.64 and 0.75.
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Figure 5: Likelihood with three populations.
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5 Conclusion

In this paper, we presented a framework to address the problem of classification for non-
precise quantities. This was achieved by writing the characterizing functions of the dis-
tances to discriminants with respect to each class of observations. The notion of critical
value αc(i, j) between classes i and j was also introduced. We also compared a new likeli-
hood score to a straightforward extension from probability density functions. We showed
that our likelihood score is always a better choice under some global error criterion.
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A Proofs

Proof of Lemma 11:

ΥI
N −ΥI

N−1 = ξN −
∑N

i=1 ξ2
i∑N

i=1 ξi

+

∑N−1
i=1 ξ2

i∑N−1
i=1 ξi

= ξN +

∑N−1
i=1 ξ2

i

∑N
i=1 ξi −

∑N
i=1 ξ2

i

∑N−1
i=1 ξi∑N

i=1 ξi

∑N−1
i=1 ξi

= ξN +
ξN

∑N−1
i=1 ξ2

i − ξ2
N

∑N−1
i=1 ξi∑N

i=1 ξi

∑N−1
i=1 ξi

=
ξN∑N
i=1 ξi

(
N∑

i=1

ξi +

∑N−1
i=1 ξ2

i∑N−1
i=1 ξi

− ξN

)

=
ξN∑N
i=1 ξi

(
N−1∑
i=1

ξi +

∑N−1
i=1 ξ2

i∑N−1
i=1 ξi

)
. ¤

Proof of Lemma 12: By definition, for i < N , we have

1− SII
ξi

(N) = 1− SII
ξi

(N − 1) +
ξN

N(N − 1)ξ1

.
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Therefore,

ΥII
N = ΥII

N−1 +
N−1∑
i=1

ξi
ξN

N(N − 1)ξ1

+ ξN

(
1− ξN

Nξ1

)

= ΥII
N−1 +

1

ξ1

(
N−1∑
i=1

ξiξN

N(N − 1)ξ1

+ ξ1ξN − ξ2
N

N

)
. ¤

Proof of Lemma 13: We show this result by induction on N . We let LHS and RHS
represent respectively the left and right hand sides of the inequality in the lemma.

For N = 2, LHS = 2ξ2
1(ξ1 − ξ2) and RHS = ξ2

1(ξ1 − ξ2) + ξ1ξ2(ξ1 − ξ2) ≤ LHS,
since ξ2 ≤ ξ1.

We assume the result holds up to N − 1, and we decompose the LHS and RHS into
four terms, respectively Li and Ri for i = 1, . . . , 4.

LHS =
N∑

i=2

N−1∑
j=2

N−1∑

k=2

ξ1ξk(ξk − ξN) +
N−1∑
j=1

N−1∑

k=1

ξ1ξk(ξk − ξN)

+
N∑

i=2

N−1∑

k=1

ξ1ξk(ξk − ξN) +
N∑

i=2

N−1∑
j=2

ξ2
1(ξ1 − ξN)

∆
= L1 + L2 + L3 + L4 .

RHS =
N∑

i=2

N−1∑
j=2

N−1∑

k=2

ξiξj(ξk − ξN) + ξ1

N−1∑
j=1

N−1∑

k=1

ξj(ξk − ξN)

+ξ1

N∑
i=2

N−1∑

k=1

ξi(ξk − ξN) + (ξ1 − ξN)
N∑

i=2

N−1∑
j=2

ξiξj

∆
= R1 + R2 + R3 + R4 .

Next, we compare the terms pairwise.

1. L1 ≥
∑N

i=2

∑N−1
j=2

∑N−1
k=2 ξ2ξk(ξk − ξN) ≥ R1 from the induction hypothesis, and

since ξ1 ≥ ξ2.

2. L2 = (N − 1)ξ1

∑N−1
k=1 ξk(ξk − ξN) and R2 = ξ1

∑N−1
j=1

∑N−1
k=1 ξj(ξk − ξN), so

(L2−R2)/ξ1 = (N−1)
∑N−1

k=1 ξ2
k−

∑N−1
j=1

∑N−1
k=1 ξjξk ≥ 0 from Cauchy-Schwartz

inequality.

3. L2 = L3 and R2 ≥ R3 so L3 ≥ R3.

4. L4 = (N − 2)ξ2
1(ξ1 − ξN) ≥ R4 since all ξi ≤ ξ1.
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Thus, LHS ≥ RHS. ¤

Proof of Theorem 10: For N = 1, we get ΥI
N = ΥII

N = 0. For N > 1, we write
ΥI

N = ΥI
N−1 + ∆I

N and ΥII
N = ΥII

N−1 + ∆II
N and show that ∆II

N ≤ ∆I
N . From Lemmas 11

and 12, we get

1

ξN

(∆I
N −∆II

N ) =

∑N−1
i=1 ξi∑N
i=1 ξi

+

∑N−1
i=1 ξ2

i∑N
i=1 ξi

∑N−1
i=1 ξi

− 1−
∑N−1

i=1 ξi

ξ1N(N − 1)
+

ξN

Nξ1

=
−ξN∑N
i=1 ξi

+

∑N−1
i=1 ξ2

i∑N
i=1 ξi

∑N−1
i=1 ξi

−
∑N−1

i=1 ξi

ξ1N(N − 1)
+

ξN

Nξ1

.

To show this is non-negative is equivalent to showing that
∑N−1

i=1 ξi

ξ1N(N − 1)
− ξN

Nξ1

≤
∑N−1

i=1 ξ2
i − ξN

∑N
i=1 ξi∑N

i=1 ξi

∑N−1
i=1 ξi

,

which we can write as
(

N∑
i=1

ξi

) (
N−1∑
i=1

ξi

)(
N−1∑
i=1

(ξi − ξN)

)
≤ N(N − 1)ξ1

N−1∑
i=1

ξi(ξi − ξN) ,

which was shown in Lemma 13. ¤
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