Decompositions of Marginal Homogeneity Model Using Cumulative Logistic Models for Square Contingency Tables with Ordered Categories

Authors

  • Nobuko Miyamoto Tokyo University of Science, Japan
  • Kouji Niibe Tokyo University of Science, Japan
  • Sadao Tomizawa Tokyo University of Science, Japan

DOI:

https://doi.org/10.17713/ajs.v34i4.424

Abstract

For square contingency tables with ordered categories, Agresti (1984, 2002) considered the marginal cumulative logistic (ML) model, which is an extension of the marginal homogeneity (MH) model. The ML model depends on the probabilities on the main diagonal of the table. This paper (1) proposes the conditional marginal cumulative logistic (CML) model which does not depend on the probabilities on the main diagonal, and (2) decomposes the MH model into the ML (CML) model and the model which indicates the equality of row and column marginal means. Examples are given.

References

Agresti, A. (1984). Analysis of Ordinal Categorical Data. New York: Wiley.

Agresti, A. (2002). Categorical Data Analysis (2nd ed.). New York: Wiley.

Andersen, E. B. (1980). Discrete Statistical Models with Social Science Applications. Amsterdam: North-Holland.

Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice. Cambridge, Massachusetts: The MIT Press.

Goodman, L. A. (1979). Multiplicative models for square contingency tables with ordered categories. Biometrika, 66, 413-418.

McCullagh, P. (1978). A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika, 65, 413-418.

Miyamoto, N., Ohtsuka, W., and Tomizawa, S. (2004). Linear diagonals-parameter symmety and quasi-symmety models for cumulative probabilities in square contingency

tables with ordered categories. Biometrical Journal, 46, 664-674.

Sakamoto, Y., Ishiguro, M., and Kitagawa, G. (1986). Akaike Information Criterion Statistics. Dordrecht: D. Reidel Publishing Company.

Stuart, A. (1955). A test for homogeneity of the marginal distributions in a two-way classification. Biometrika, 42, 412-416.

Tallis, G. M. (1962). The maximum likelihood estimation of correlation from contingency tables. Biometrics, 18, 342-353.

Tomizawa, S. (1991). Decomposing the marginal homogeneity model into two models for square contingency tables with ordered categories. Calcutta Statistical Association Bulletin, 41, 201-207.

Tomizawa, S. (1993a). Diagonals-parameter symmetry model for cumulative probabilities in square contingency tables with ordered categories. Biometrics, 49, 883-887.

Tomizawa, S. (1993b). A decomposition of the marginal homogeneity model for square contingency tables with ordered categories. Calcutta Statistical Association Bulletin,

, 123-125.

Tomizawa, S. (1998). A decomposition of the marginal homogeneity model into three models for square contingency tables with ordered categories. Sankhy¹a, Series B, 60, 293-300.

Downloads

Published

2016-04-03

How to Cite

Miyamoto, N., Niibe, K., & Tomizawa, S. (2016). Decompositions of Marginal Homogeneity Model Using Cumulative Logistic Models for Square Contingency Tables with Ordered Categories. Austrian Journal of Statistics, 34(4), 361–373. https://doi.org/10.17713/ajs.v34i4.424

Issue

Section

Articles