A Comparison of Three Procedures for Robust PCA in High Dimensions

Authors

  • S. Engelen Katholieke Universiteit Leuven, Belgium
  • M. Hubert Katholieke Universiteit Leuven, Belgium
  • K. Vanden Branden Katholieke Universiteit Leuven, Belgium

DOI:

https://doi.org/10.17713/ajs.v34i2.405

Abstract

In this paper we compare three procedures for robust Principal Components Analysis (PCA). The first method is called ROBPCA (see Hubert et al., 2005). It combines projection pursuit ideas with robust covariance estimation. The original algorithm for its computation is designed to construct an optimal PCA subspace of a fixed dimension k. If instead the optimal PCA subspace is searched within a whole range of dimensions k, this algorithm is not computationally efficient. Hence we present an adjusted algorithm that yields several PCA models in one single run. A different approach is the LTS-subspace estimator (see Wolbers, 2002; Maronna, 2005). It seeks for the subspace that minimizes an objective function based on the squared orthogonal distances of the observations to this subspace. It can be computed in analogy with the computation of the LTS regression estimator (see Rousseeuw and Van Driessen, 2000). The three approaches are compared by means of a simulation study.

References

M. Debruyne and M. Hubert. The influence function of Stahel-Donoho type methods for robust PCA. 2005. In preparation.

S. Engelen and M. Hubert. Fast cross-validation for robust PCA. In J. Antoch, editor, Proceedings in Computational Statistics, pages 989–996, Heidelberg, 2004. Springer,

Physica-Verlag.

S. Engelen and M. Hubert. Fast model selection for robust calibration methods. Analytica Chemica Acta, 2005. To appear.

M. Hubert and S. Engelen. Fast cross-validation for high-breakdown resampling algorithms for PCA, 2004. Submitted.

M. Hubert, P. J. Rousseeuw, and K. Vanden Branden. ROBPCA: a new approach to robust principal components analysis. Technometrics, 47:64–79, 2005.

I.T. Joliffe. Principal Component Analysis. Springer, New York, 1986.

W.J. Krzanowski. Between-groups comparison of principal components. Journal of the American Statistical Association, 74:703–707, 1979.

R. A. Maronna. Principal components and orthogonal regression based on robust scales. Technometrics, 2005. To appear.

P. J. Rousseeuw. Least median of squares regression. Journal of the American Statistical Association, 79:871–880, 1984.

P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. Wiley-Interscience, New York, 1987.

P. J. Rousseeuw and K. Van Driessen. A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41:212–223, 1999.

P. J. Rousseeuw and K. Van Driessen. An algorithm for positive-breakdown methods based on concentration steps. In W. Gaul, O. Opitz, and M. Schader, editors, Data

Analysis: Scientific Modeling and Practical Application, pages 335–346, New York, 2000. Springer-Verlag.

S. Verboven and M. Hubert. LIBRA: a Matlab library for robust analysis. Chemometrics and Intelligent Laboratory Systems, 75:127–136, 2005.

M. Wolbers. Linear unmixing of multivariate observations. PhD thesis, ETH Zürich, 2002.

Downloads

Published

2016-04-03

How to Cite

Engelen, S., Hubert, M., & Vanden Branden, K. (2016). A Comparison of Three Procedures for Robust PCA in High Dimensions. Austrian Journal of Statistics, 34(2), 117–126. https://doi.org/10.17713/ajs.v34i2.405

Issue

Section

Articles