On Robust Estimation of Power Spectra

Authors

  • Bernhard Spangl University of Natural Resources and Applied Life Sciences, Vienna, Austria
  • Rudolf Dutter Vienna University of Technology, Austria

DOI:

https://doi.org/10.17713/ajs.v34i2.412

Abstract

Let us consider the problem of robust spectral density estimation. Conventional methods to obtain estimates of spectral density function are not robust in the presence of outlying observations. We present different methods to robustly estimate the spectral density function that are insensitive against outliers. The proposed methods are applied to simulated and real data and the results are compared. As a special practical application we focus on the frequency-domain analysis of short-term heart rate variability measurements of diabetes patients.

References

R.B. Blackman and J.W. Tukey. The Measurement of Power Spectra. Dover, New York, 1958.

A.D. Chave, D.J. Thomson, and M.E. Ander. On the robust estimation of power spectra, coherences, and transfer functions. J. Geophys. Res., 92(B1):633–648, 1987.

A.J. Fox. Outliers in time series. J. Royal Statist. Soc., 34(3):350–363, 1972.

J.E.K. Hartikainen, K.U.O. Tahvanainen, and T.A. Kuusela. Short-term measurement of heart rate variability. In Malik, editor, Clinical Guide to Cardiac Autonomic Tests, pages 149–176. Kluwer, Dordrecht, 1998.

C.M. Hurvich and Beltrão. Cross-validatory choice of a spectrum estimate and its connections with AIC. J. Time Series Analysis, 11(2):121–137, 1990.

A. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, New York, 1970.

A.G. Jones and K. Hollinger. Spectral analysis of the KTB sonic and density logs using robust nonparametic methods. J. Geophys. Res., 102(B8):18391–18403, 1997.

R. Kleiner, R.D. Martin, and D.J. Thomson. Robust estimation of power spectra. J. Royal Statist. Soc. B, 41(3):313–351, 1979.

Y. Ma and M.G. Genton. Highly robust estimation of the autocovariance function. J. Time Series Analysis, 21(6):663–684, 2000.

R.D. Martin. Robust estimation of autoregressive models. In D.R. Brillinger and G.C. Tiao, editors, Directions in Time Series, pages 228–254. Inst. Math. Statist. Publications,

Haywood, CA, 1980.

R.D. Martin and D.J. Thomson. Robust-resistant sprectrum estimation. In Proceedings of the IEEE, volume 70, pages 1097–1115. IEEE, 1982.

J. Pumprla, K. Howorka, D. Groves, M. Chester, and J. Nolan. Functional assessment of heart rate variability: physiological basis and practical applications. Int. J. Cardiology, 84:1–14, 2002.

P.J. Rousseeuw and A.M. Leroy. Robust Regression and Outlier Detection. John Wiley & Sons, New York, 1987.

A.F. Siegel. Robust regression using repeated medians. Biometrika, 69:242–244, 1982.

L.G. Tatum and C.M. Hurvich. A frequency domain approach to robust time series analysis. In Morgenthaler, Ronchetti, and Stahel, editors, New Directions in Statistical Data Analysis and Robustness. Birkhäuser-Verlag, Basel, 1993a.

L.G. Tatum and C.M. Hurvich. High breakdown methods of time series analysis. J. Royal Statist. Soc. B, 55(4):881-896, 1993b.

D.J. Thomson. An overview of multiple-window and quadratic-inverse spectrum estimationmethods. In Proceedings of the IEEE ICASSP, volume 6, pages 185–194. IEEE, 1994.

Downloads

Published

2016-04-03

How to Cite

Spangl, B., & Dutter, R. (2016). On Robust Estimation of Power Spectra. Austrian Journal of Statistics, 34(2), 199–210. https://doi.org/10.17713/ajs.v34i2.412

Issue

Section

Articles