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Abstract: We consider sequential point estimation of a function of the scale
parameter of an exponential distribution subject to the loss function given as
a sum of the squared error and a linear cost. For a fully sequential sampling
scheme, we present a sufficient condition to get a second order approximation
to the risk of the sequential procedure as the cost per observation tends to
zero. In estimating the mean, our result coincides with that of Woodroofe
(1977). Further, in estimating the hazard rate for example, it is shown that
our sequential procedure attains the minimum risk associated with the best
fixed sample size procedure up to the order term.

Zusammenfassung: Wir betrachten die sequentielle Punktatiung einer
Funktion des Skalenparameters einer Exponentialverteilunggbelz einer
Verlustfunktion, welche als Summe des quadratischen Fehlers und einer lin-
earen Kostenfunktion gegeben istirleinen vollsaindigen sequentiellen Stich-
probenplan presentieren wir eine hinreichende Bedingungjunels Risiko

der sequentiellen Prozedur eine Approximation zweiter Ordnung zu bekom-
men, wobei die Kosten je Beobachtung gegen Null streben. Bei dat&uoiy

des Erwartungswertes stimmt unser Ergebnis mit jenem in Woodroofe (1977)
Uberein. Schtzt man beispielsweise die Hazardrate, so wird gezeigt, dass
unsere sequentielle Prozedur bis auf den Ordnungsterm das minimale Risiko
erreicht, welches zur besten Prozedur bei festem Stichprobenumfaig.geh

Keywords: Stopping Rule, Second Order Approximation, Regret, Uniform
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1 Introduction

Let X1, Xs, ... be independent and identically distributed random variables according to
an exponential distribution having the probability density function

folz) = %exp <—§) , x>0,

where the scale parameterc (0, co) is unknown. It is interesting to estimate the mean
o and the variance?. One may like to estimate the hazard rate¢t and the reliability
parameter, that is?(X; > b) = exp(—b/0) for some fixedh (> 0). For this reason, we
consider the estimation of a function of the scale parameter.
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Suppose that(z) is a positive-valued and three times continuously differentiable
function onz > 0 and that?’'(z) # 0 for z > 0, wheref’ stands for the first derivative
of 0. Let#” and#® denote the second and third derivativeg)pfespectively. Given a
sampleXy, ..., X,, of sizen, one wishes to estimate a functiér= 6(o) by 0, = 0(X,),
subject to the loss function

L(6,) = (én - 9)2 +cn,

whereX,, = n~!>" | X; andc > 0 is the known cost per unit sample. The risk is given
by R, = E{L(0,)} = E(, — 0)? + cn. We want to find an appropriate sample size that
will minimize the risk. By Taylor’s expansion and theélder inequality we can show that
under a certain conditior?,, ~ o%{6'(c)}>n! + cn for sufficiently largen. Thus,R,, is
approximately minimized at
/

ny ~ w =n" (say Q)
with R,,, ~ 2cn*. Sinces is unknown, however, we can not use the best fixed sample
size proceduren,. Further, there is no fixed sample size procedure that will attain the
minimum risk ?,,, (see Takada, 1986). Thus, it is necessary to find a sequential sampling
rule.

For the estimation of the med@h= o, Woodroofe (1977) proposed a fully sequential
procedure and gave a second order approximation to the risk. Mukhopadhyay et al. (1997)
considered the sequential estimation of the reliability parandeteexp(—b/o) for some
fixed b (> 0). For the normal case, Takada (1997) constructed sequential confidence
intervals for a function of normal parameters and Uno and Isogai (2002) considered the
sequential estimation of the powers of a normal scale parameter. In this paper, motivated
by (1), we propose the following stopping rule:

(2)

—
N:Nc:inf{an: nzw},

NG

wherem (> 1) is the pilot sample size. By the strong law of large numbers we have
P(N < +00) = 1. In estimatingd = 6(c) by Oy = 6(Xy), the risk is given by

Ry = E(fy — 0)2 + ¢E(N). The performance of the procedure is measured by the regret
Ry — 2en*. The purpose of this paper is to derive second order approximations to the
expected sample size V) and the risk of the above sequential procediixeasc — 0.

In Section 2, we present a sufficient condition to get an asymptotic expansion of the risk.
In Section 3, as an example of the functitf) we consider the estimation of the hazard
ratef(c) = o' with simulation experiments and show that our sequential procedure
attains the minimum risRen* up to the order term.
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2 Main Results

In this section, we shall investigate second order asymptotic properties of the sequential

procedure. Let
1

h(z) = ———— for 2 > 0.
zy/A{0'(2)}?
The stopping ruleéV defined by (2) becomes
N=inf{n>m: Z,>n"}, whereZ, = HM
h(o)

LetY; = (Xi/o) — 1, fori =1,2,..., 8, = > YiandY, = n~1S,. By Taylor's
theorem, - B -
h(Xn) = h(o) + 1(0)(Xn — o) + 5(Xn — 0)*h" (1) ,

wheren, is a random variable betweerand.X,,. Then we haveZ,, = n + .S, + &, with

A e L)
o (1 T ) b= (T o s 3)
and 0(x) [{0() +a0(0))?  20"(x) + 26O)(a)
, B " llL‘—l—JZ”JZ 2_ ”l‘—i—ZESZL‘
") = i) {2 FICIESIE PP } |
Let 2
T=inf{n>1: n+aS, >0} and p:%' (4)

Consider the following assumptions:

(A1) {

where 2zt = max(z,0) .

13
(Zn _ ﬁ) ] . n > m} is uniformly integrable for someé) < ¢, < 1,
€0

(A2) Z nP{¢, < —ein} < oo forsome0 <e; < 1.

Then we obtain the following approximation to the expected sample size for all
(0, 00) but not uniformly inc.

Theorem 1 If (A1) and (A2) hold, then
E(N)=n"+p—1+0(1) asc—0,
where

o (o)  o*{0"(0)}*  %0¥) (o)

U TTeer T 200
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Proof. Let IV be distributed according to a standard normal distribufiai, 1). Then,
from (3)

fnﬁle-WQ asn — oo,

where ~%+’ denotes convergence in distribution. We shall check conditions (C1)—(C6) of
Aras and Woodroofe (1993). Clearly, (C1) holds. (C2) with 3 and (C3) are identical
with (A1) and (A2), respectively. Letting(y) = h(oy + o)/h(o), (C4), (C5) and (C6)
follow from Proposition 4 of Aras and Woodroofe (1993). Hence, from Theorem 1 of
Aras and Woodroofe (1993),

E(N)=n"+p—E)+o(l)=n"+p—1+0(l) asc—0,

which concludes the theoreml

The proposition below gives sufficient conditions for (A2) which are useful in actual
estimation problems.
Proposition 1

@) If '(n,) > 0forall n > m, then (A2) holds.

(i) If sup,,, Elh"(n,)|° < oo for somes > 2, then (A2) holds.

Proof. From (3), (i) implies (A2). Suppose that (ii) holds. Fbk ¢ < 1 andqg > 2,
P&, < —en) = P{—h"(n,)(X,, — 0)? > 2h(0)e}
< (2h(0)e) TTE|(X 5 — )R (1) |
< (2h(0)e) ™ {EIX — o2} {BIR ()|}
whereu™! + v~! = 1 andu > 1. Choos€(u, v) and2 < ¢ < s such thats = quv. By the

Marcinkiewicz-Zygmund inequality (see Chow and Teicher, 1988) w&g&t, — o[> =
O(n=%). Thus we have:P (¢, < —en) = O(n'~9) asn — oo, which implies (A2).0J

We shall now assess the regfet — 2cn*. By Taylor’s theorem,
0(Xn) —0(0) =0'(0)(Xy —0) + 30"(0)(Xn — 0)* + §(Xn — 0)°0P(4.),  (5)
whereg, is a random variable betweenand X . We impose the following assumption:

(A3) Forsomez > 1, u > 1 andc, > 0,
sup {CfauE|7N . O,’4au} < 00 and sup E’e(S) ((C)‘2au/(u71) < 00,

0<c<co 0<c<cp

where(, is any random variable betweerand X y.

Remark 1 If |#®)(z)| is bounded, then the second part(88B) is satisfied. 16 ()|

is convex om0, co) and sup;. <., E[6® (X y)|?*/(*~1) < oo, then the second part of
(A3) is satisfied. Lef(x) = 2" for z > 0 with any fixedr, for instance. Thet9® (z)| is
convex unles8 < r < 4.
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The main theorem of this paper is as follows.

Theorem 2 If (Al), (A2) and (A3) hold, then
at"(c)  T0*{0"(0)}> B a0 (o)
0'(o) 4o'(0)}? 0'(o)

RN—an*:{3+2 }c+0(c) asc— 0.

Remark 2 Theorem 2 shows that in estimating the méaa: o, the regret becomes
3¢ + o(c), which coincides with the result of Woodroofe (1977).

Proof of Theorem 2.From (5),
Ry —2cn* = E(fy — 0)% + cE(N) — 2en*
= {0/(0)}*E(Xy — 0)? + cE(N) — 2en*
+0'(0)0"(0)E(X § — 0)® + i{e”(a)}%](YN —o)*
+30 () E{(Xy = 0)'0% (¢0)} + §0"(0)E{(Xn — 0)°0®(¢)}
+55B[(X v — 0)*{6% (6:)}?]. (6)
From Theorems 2 and 3 of Aras and Woodroofe (1993), we obtain (7)—(9) below, as
c— 0.
{0/(0)}’E(X y — 0)® + cE(N) — 2cn’*
= co{(n")’E(Yn)* + E(N) — 20}
= {2B(EW?) — 2E(€) + 3a” + 2aE(Y1)*}e + o(c)
= {41 + 3a* + 4a}c + o(c)

B ol (o) o2{0"(a)}? B a20®) (o) ot ofc
S CRRE AR i S e S ) @
0 (0)0" (0)E(X y — o) = ";/('S)c(n*fE(?Nﬁ
= 09,/(0) (6% 3 C o\C

- 0_0//(0_) 0'2{9”<0')}2 ot ofe
- {4 o) ) } tole. @

H (0B - )t = ZUH
_ 3 0'2{9”( )}2
P

Forb>1,p>1,q=p/(p—1)andv = u/(u — 1), we have
‘{ 2R } {6®)(¢,))2 (YN)Q‘b

S {E ‘(n*)l/Q?N‘4bpu} 1/pu {E |0(3)(¢C)|2bpv}1/pv {E(?N>2bq}1/q

U 4 ofc). (9)
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and by Doob’s maximal inequality,

— _ 2b
E(Yy)™ <E {Sup(yn)m} : <2§;ﬁl> "E(Y)™ < oo.

n>1

Choosingh andp such that. = bp, (A3) yields the uniform integrability of
{2V N HID (0} (YN)?, 0 <e< )

Since{(n")2Y y }4{0¥(4,)}2 -1 {6®(c)}2W* and(Y y)? — 0 a.s. as — 0, we
get
5 E[(Xn — 0)*{09(6.)}"]

36{9,(4 5B {0V OO (60 PV )2 = ofc). (10)

By arguments similar to (10), we obtain

2

VB X = )00} = gy {7 00

o? a20%) (o)

39/ 0{39 -I—O(l)}: 0'(c) ¢+ o(c) (11)
and
0" (@)E{(Xy = 00’0 (00))
— B [{(n) T} 09T ] = o) 42
Substituting (7)—(12) into (6), we get
Ry — 2cn”
ot (o) o*{0" (o )}2 a*6%) (o)
{3+(6 4)0(0) +(7—6+ ) ()12 + (= 2+1)w}c+0(0)
B b (o) 702{9//(0>}2_ 0?6 (o) c+o(c c—
- {3+ %0 + T~ e e om0

which concludes the theoreml

3 Example

As an example of the functiof(z), we consider the estimation of the hazard rate
0(c) = o~!. Ali and Isogai (2003) considered the bounded risk point estimation problem
for the power of scale parametet of a negatlve exponential distribution. In this case

0(z) = 2. In estimating) = o~ by §,, = , the risk is given by

R, = E{L(6,)} = E{(d, — 0)? +cn}:E(7;1—a*1)2+cn,
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which is finite forn > 2. In fact,

n+2

e 2)0_2 +en=0*n"t+em+0(Mn?) asn— oo,

R, =

Then,n* = ¢ /26! and the stopping rulé’ in (2) becomes
N:inf{an: an_l/QY;l} ) (13)
A second order approximation to the expected sample size is given in the next theorem.

Theorem 3 Supposen > 1. Then,

E(N)=n"+1+0(1) asc—0.

Proof. From (13),N = inf{n > m : Z, > n*} where
Zy=nX,/oc=ng(Y,) and g(z)=z+1.

Sinceg(x) is convex andi[{g(Y1)}T]® = E(X;/0)? < oo, from Proposition 5 of Aras
and Woodroofe (1993), (A1) and (A2) hold. Sinte- o, we have

L ad"(o)\ B a0"(c)  o*{0"(0)}? B 20 (o) B
o= (” e'<a>)‘1 and =1y e T we)

The stopping timé” in (4) become§” = inf{n > 1: n+ S, > 0} = 1, so that

_E(T'+aSr)? E(1+Y)?
PTOR(T +aSr)  2B(1+Yy)

Theorem 1 with = 0 andp = 1 yields the theoreni]

Remark 3 The referee pointed out that for this examplgV) can be calculated by the
following elementary method. L&f = % > or ., Xi. Then

E(N):m+§:P(N>k:) - m+§jp(s;;<n*>

k=m k=m
= " 1 k—1_—=x
=m + Z /0 m A e dl’ y
k=m
n* m—2 ilfk
=m+n" — / o e “dx, by interchanging summation and integral
0 k=0

k *
—n 1l te™ Z(”,) —n*+1+0(1) asc—0.
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We cannot always calculat&(/V) by elementary methods. Take for example, the function
O(x) = z" withr # —1 andr # 0.

In estimatingd = o' by 6 = Y]_Vl, the risk is given by
Ry =EB{L(6x)} =E{(Xy — 0 )2+ cN}.
The regret of the procedure (13) is given as follows.

Theorem 4 If m > 12, then

Ry —2cn* =o0(c) asc—0.

It follows from Theorem 4 that our procedure attains the minimumz2isK up to the
o(c) term. We need the following lemmas to show Theorem 4. Mestand for a generic
positive constant not depending eand letc, > 0 be a constant such that > 1.

Lemmal Letg> 1.
(i) {(N/n*)"9, ¢ > 0} is uniformly integrable.
(i) Ifm > g, then{(N/n*)?, 0 < ¢ < ¢y} is uniformly integrable.

Proof. From (13),(N/n*)™% < (Xy/0)?. Then,sup..,(Xn)? < sup,-,(X,)? and by
Doob’s maximal inequality,

E {sup,,(X,)7} < (ﬁ)qul)q <.

Thus (i) holds. To show (i), observe th@¥ — 1) X y_; /o < n* on{N > m}, so that for
0 < c<cy,

* B * *
N/n* < {oXy_; + (/0" ) Hinsmy + (m/0") [(n=m)
—1
< (0 Xy ) nsmy + (m+1),

wherel; ., denotes the indicator function. Therefore, fiox ¢ < ¢,

(/)1 < M { (XL oy + (m+ 1)1}
We havesupy. <., (X v—1) I{n>my < Sup,=,,(X,)~?and by Doob’s maximal inequal-
ity, E {sup,>,,(X,) ™} < ME(X,,)™ < oo if m > ¢. Thus, the second assertion
holds.UJ

From Theorem 2 of Chow et al. (1979), we have the next lemma.

Lemma2 Letq > 1. If {(N/n*)?, 0 < c < ¢} is uniformly integrable, then
{|(n*)" 23N (X; — 0)]%, 0 < ¢ < ¢} is uniformly integrable.
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Proof of Theorem 4We shall show (A3) withy = 3. Choosez > 1 such thatn > 12a.
Forp > landg =p/(p — 1),

12ap 1/p

N|=

CfSaE|7N _ 0,|12a <M{E (n*)f {E(n*/N)12aq}1/q ’

> (Xi—o)

i=1

which, together with Lemmas 1 and 2, implies,_.., {¢ **E[X y —o|'?*} < co. Since
6 (r) = —62*, by Doob’s maximal inequality and the condition that> 12a we have
sup E|0®(Xy)[** <M sup E(Xy) ™

0<c<Lco 0<c<co

< ME {sup(Yn)—m} < ME(X,,) ™ < oc0.

n>m

So from Remark 1, (A3) holds. Thus, Theorem 2 with

af"(o)  T0*{0"(0)}* a0 (o)

0o TR 00

3+2

proves Theorem 4]

Simulation. In order to justify the results of Theorems 3 and 4 we shall give brief
simulation results. We are interested in the performance of our sequential procedure for
various values of, and so we consider the cases whesr 0.5, 1 and 2, with correspond-
ing # = 2, 1 and 0.5. Since the cosis sufficiently small in our theorems, the values of
c are chosen such that = ¢/20~! = 20, 30. The pilot sample size is setat = 13
which is sufficient for Theorem 4. The simulation results in Tables 1 and 2 are based on
100,000 repetitions by means of the stopping iMlelefined by (13). From Theorems 3
and 4 we have thdi(N) = n*+ 1+ o(1) and(Rx — 2¢n*)/c = o(1) asc — 0. Tables 1
and 2 show that these results are justified. Further, it appears that the esﬁ)(r@awﬁ)r
0 in both tables are very close to the true values. Therefore, our sequential prog¢edure
seems to be effective and useful.

Table 1:n* = 20
c=20.5 oc=1 o=2
m =13 c¢c=0.01 ¢=0.0025 c=0.000625
0 =2 =1 0=0.5
E(N) 21.055920 21.032170 21.052520
E(éN) 2.007637 1.002746 0.501807

(Ry — 2cn*)/c  —0.166272 —0.312113  —0.298089
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Table 2:n* = 30
oc=20.5 oc=1 oc=2
m =13 c=10.0044 ¢=0.0011 c=0.000277
E(N) 30.996970 31.031260 30.997910
E(éN) 2.001831 1.002166 0.500437
(Ry — 20n*)/c —0.104954 —0.201335 —0.222469
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