Multinomial Logit Models for the Austrian Labor Market

  • Ivan Pryanishnikov Vienna University of Technology, Austria
  • Katarina Zigova Vienna Institute of Demography, Austrian Academy of Sciences


In this paper we analyze the selection of industry branches by employees in the Austrian labor market. For this purpose we use the standard logit model and the heteroscedastic extreme value model. We show that the likelihood ratio test rejects the multinomial logit model in favor of the heteroscedastic specification. Consequently, we concentrate on estimation results of the heteroscedastic extreme value model. In our investigation we use 1997 social security records provided by the Hauptverband der Sozialversicherungen.


G. Allenby and J. Ginter. Modelling competitive subsets and product differentiation. International Journal of Research in Marketing, 12, 1995.

M. Ben-Akiva, D. Bolduc, and J. Walker. Identification of the logit kernel (or mixed logit) model. Working Paper, Department of Civil and Environmental Engineering,

MIT, 2003.

C. Bhat. A heteroscedastic extreme value model of intercity choice. Transportation Research B, 29, 1995.

A. B¨orsch-Supan. Econometric Analysis of Discrete Choice. With Application on the Demand for Housing in the United States and West Germany. Lecture Notes in Economics and Mathematical Systems 296. Springer, Heidelberg, New York, Tokyo, 1987.

C. Daganzo. Multinomial Probit: The Theory and Its Application to Demand Forecasting. Academic Press, New York, 1979.

A. Daly and S. Zachary. Improved multiple choice models. In D. Hensher and Q. Davi, editors, Identifying and Measuring the Determinants of Mode Choice. Teakfield, London, 1979.

J. Geweke. Monte carlo simulation and numerical integration. In H. Amman, D. Kendrick, and J. Rust, editors, Handbook of Computational Economics, pages 731–800. Elsevier Science, Amsterdam, 1996.

W. Greene. Econometric Analysis. Prentice Hall, Upper Saddle River, New Jersey, 4th edition, 2000.

J. Horowitz. Identification and diagnosis of specification errors in the multinomial logit model. Transportation Research B, 15, 1981.

J. Horowitz. Reconsidering the multinomial probit model. Transportation Research B, 25, 1991.

N. Johnson and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions. John Wiley & Sons, New York, 1970.

G. Judge, W. Griffiths, R. Hill, and T. Lee. The Theory and Practice of Econometrics. John Wiley & Sons, New York, 1980.

D. McFadden. Conditional logit analysis of qualitative choice behaviour. In P. Zarembka, editor, Frontiers in Econometrics, pages 105–142. Academic Press, New York, 1974.

D. McFadden. Modelling the choice of residential location. In A. Karlqvist, L. Lundqvist, F. Snickars, and J. Weibull, editors, Spatial Interaction Theory and Planning Models,

pages 75–96. North Holland, Amsterdam, 1978.

D. McFadden and K. Train. Mixed mnl models of discrete response. Journal of Applied Econometrics, 15(5):447–470, 2000.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C. The Art of Scientific Computing. Cambridge University Press, Cambridge, New York, 2nd

edition, 1992.

J. Scott Long. Regression Models for Categorical and Limited Dependent Variables. SAGE Publications, Volume 7, 1997.

J. Steckel andW. Vanhonacker. A heterogenous conditional logit model of choice. Journal of Business and Economic Statistics, 6, 1988.

P. Stopher, A. Meyburg, andW. Brög. Travel behaviour research: a perspective. In P. Stopher, A. Meyburg, and W. Br¨og, editors, New Horizons in Travel Behaviour Research.

Lexington Books, Lexington, 1981.

G. Tutz. Die Analyse kategorialer Daten: anwendungsorientierte Einführung in Logit-

Modellierung und kategoriale Regression. Oldenbourg Wissenschaftsverlag GmbH, München, 2000.

How to Cite
Pryanishnikov, I., & Zigova, K. (2016). Multinomial Logit Models for the Austrian Labor Market. Austrian Journal of Statistics, 32(4), 267–282.