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Abstract: The problem of detecting unit roots in time series data is treated

as a problem of multiple decisions instead of a testing problem, as is other-

wise common in the econometric and statistical literature. The multiple deci-

sion design is based on a distinction between continuous primary and discrete

secondary parameters. Four examples for such multiple decision designs are

considered: first- and second-order integrated univariate processes; cointe-

gration in a bivariate model; seasonal integration for semester data; seasonal

integration for quarterly data. In all cases, restricted optimum decision rules

are established based on Monte Carlo simulation.

Zusammenfassung: Die Bestimmung von Einheitswurzeln in Zeitreihen-

daten wird als multiples Entscheidungsproblem behandelt und nicht als Hypo-

thesentest-Problem, wie es sonst in der ökonometrischen und statistischen

Literatur üblich ist. Der verwendete entscheidungstheoretische Ansatz benützt

eine Unterscheidung zwischen stetigen Primärparametern und diskreten Se-

kundärparametern. Vier Beispiele für die Anwendung des Ansatzes werden

im Detail behandelt: univariate Prozesse mit unbekannter Integrationsord-

nung; Kointegration in bivariaten Modellen; saisonale Integration bei Halb-

jahresdaten; saisonale Integration bei Quartalsdaten. In allen Fällen werden

optimale Entscheidungsregeln mittels Monte-Carlo-Simulation gefunden.

Keywords: Multiple decisions, unit roots, autoregressive processes

1 Introduction

Much of the recent literature on the analysis of macroeconomic time series focuses on

the problem of making decisions on their degree of non-stationarity (for a good survey of

the literature, see BANERJEE, DOLADO, GALBRAITH and HENDRY, 1993). Within this

framework, researchers are particularly interested in whether the time series at hand has to

be differenced once or twice or probably not at all to justify the assumption of covariance

stationarity for the filtered series. Series requiring differencing once are usually called

difference-stationary or first-order integrated. Additionally, in the joint analysis of two or

more time series, researchers are interested in whether linear combinations of difference-

stationary series may already be stationary. In this case, the linearly combined series are

called cointegrated (for details, see the seminal paper by ENGLE and GRANGER, 1987).
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Interest in cointegration has been instigated by technical problems as well as by eco-

nomic theory. With regard to technical matters, it can be shown easily that differencing

of cointegrated series leads to inefficient estimation due to a loss of information on low

frequencies, even though individual series are difference-stationary. With regard to eco-

nomic theory, evidence on long-run features is often interpreted as reflecting theoretical

considerations on long-run equilibrium relations. Frequently quoted economic examples

of this type are the long-run income elasticity of consumption, purchasing power parity,

and the joint movement of interest rates with different terms to maturity.

Until the later 1980s, decisions on whether data sets suggest differencing, double

differencing, or cointegration, were mainly based on the univariate testing procedure de-

veloped by FULLER (1976) and by DICKEY and FULLER (1979). Also in multivariate

problems, these decisions tended to be based on a primary “cointegrating” regression

and secondary residual analysis (see, e.g., ENGLE and GRANGER, 1987, and PHILLIPS

and OULIARIS, 1990). JOHANSEN (1988) presented an efficient alternative framework

for making such decisions. He suggested to determine the number of cointegrating rela-

tions by testing sequences and to proceed by conducting conditionally efficient estimation.

PANTULA (1989) took up the idea of sequential testing for deciding upon the number of

unit roots in univariate series.

In consequence, current integration/cointegration analysis is dominated by two main

strands of statistical techniques. The first class of methods is characterized by easy han-

dling and inefficiency caused by univariate residual analysis under limited information.

The second class of methods relies on full system estimation but is faced with the usual

problems of making decisions by sequential hypothesis testing. Alternatively, some re-

searchers have used Bayesian methods, currently still with less impact on economic users.

In the tradition of objectivist Bayesian statistics, most of them relied on continuous prior

distributions designed to capture the researcher’s lack of information before conducting

the experiment. For a survey, see UHLIG (1994). An interesting case of a subjectively

elicited mixed prior is given by KADANE, CHAN and WOLFSON (1996).

Here, a comprehensive framework for the problem of estimating the number of unit

roots in univariate and multivariate situations is presented. In contrast to the bulk of the

literature, this is not seen as a testing but as an estimation problem in the tradition of mul-

tiple decisions. In contrast to most Bayesian contributions to the literature but conforming

with the Bayesian handling of model selection problems, a uniform prior is assumed on

the decision parameters leading to mixtures of discrete and continuous distributions on

the primary model parameters. Section 2 outlines the formal background. Section 3

presents examples and some evidence on corresponding decision bounds generated by

Monte Carlo simulations. Section 4 concludes.

2 Estimating Discrete Parameters

Wherever possible, we would like to enhance the formal correspondence between the es-

timation of continuous and of discrete parameters. The reluctance by many researchers,
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at least in the fields of applied economics, to call discrete parameter estimation prob-

lems by that name has probably led to occasional confusion. Often, discrete problems are

called “model selection” or “sequential testing”. The former expression deserves special

attention. Following AKAIKE (1974), SCHWARZ (1978), and others, a sizable literature

on discrete estimation problems has emerged. Most of the contributions focus on special

applications, such as identifying the lag orders in ARMA models or subset selection in

regressions. For two reasons, we will not adopt the label “model selection” here. Firstly,

many researchers in applied fields link a special content to the task of model selection and

do not see the formal equivalence to a discrete estimation problem. In practice, a model

(or a class of models) may be selected on the basis of diagnostic statistics or of subject

matter considerations and then this formal equivalence gets even more blurred. Secondly,

a substantial part of the model selection literature itself does not focus on simply estimat-

ing discrete parameters. The now classical work of AKAIKE (1974) and the contribution

by SAN MARTINI and SPEZZAFERRI (1984) are examples for this view where discrete

parameter estimation is seen as an intermediate step in maximizing the utility evolving

from a specific model choice. The recent contribution by PHILLIPS (1996) also falls into

this category that is characterized by defining the distance between models via their fore-

casting performance and the Kullback-Leibler information. In contrast, we see discrete

parameter estimation as the ultimate aim and, in consequence, define the distance between

models solely via the discrete parameters of interest.

In concordance with, e.g., the work of HANNAN and DEISTLER (1988) or SCHWARZ

(1978), we use the expression “estimation” for both continuous and discrete parametric

approximation. In contrast, testing problems appear whenever one out of two hypotheses

is given the preferred position of a “null hypothesis” and the researcher’s loss is asym-

metric because of subject matter considerations or of any reasons that permit a formal

equivalence to quality control problems.

2.1 The Nested Problem

We consider the situation that observations are generated by an unknown member of a

collection of distributions characterized by a parameter � taken from a parameter space

�. The parameter � will also be called the primary parameter. � is the union of p + 1

disjoint classes �
j

; j = 0; :::; p. Without including this in a formal definition, we may

envisage class �
j

as being characterized by a certain “feature” occurring j times. Then,
S

j

i=0

�

i

represents the event of the feature occurring at most j times. In particular, �
0

represents the subset of � where the feature of interest is absent. The observer would

like to make decisions on whether � 2 �

j

; j = 0; :::; p. We will call the class index j the

secondary parameter and � = f0; :::; pg the secondary parameter space. After estimating

j, the user could also be interested in estimating � within �
j

. This problem, however, will

be set aside within this study.

This point deserves attention as most advances in the fields of model selection appear

to view estimation of the primary parameter as the final aim. In contrast, we focus exclu-

sively on the classification problem, which will become obvious from the specification of
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the loss function. Hence, the primary parameter may also be viewed as “nuisance” param-

eter in the decision problem, though we will restrict the notion of “nuisance parameter”

to parts of the primary parameter.

In line with the above motivation concerning the problem of determining the fre-

quency of occurrence of certain features, at first we restrict attention to the case that the

model classes (or parameter sets) are ordered by an inclusion sequence

�

0

�

�

�

1

;�

1

�

�

�

2

; : : : ;�

p�1

�

�

�

p

(1)

�

�

i

denotes the topological closure of �
i

relative to the assumed topology in �. We will

assume throughout that � is a topological space. Stronger assumptions will be used when

necessary. Since in most interesting applications - including those considered in Section

3 - � is a subset of the m-dimensional Euclidean space Rm, such assumptions are not

unduly restrictive. In this case, we note that closure refers to the topology of � and not

of the Euclidean space and, typically, neither � nor any �

i

will be closed within the

Euclidean space. We further note that, in this case, the trace of (Rm

; d) naturally defines

(�; d) as a metric space.

(1) implies that �
j

is “small” relative to all �
i

with j > i. Therefore, we will refer to

(1) as the nested problem. To derive potential theoretical results and to exclude notorious

cases, one may also impose the stricter condition

j

[

k=0

�

k

=

�

�

j

j = 0; : : : ; p: (2)

The choice function defined by

� :

(

�! �

� 7! �(�) if � 2 �

�(�)

(3)

maps the typically continuous primary parameter space onto the discrete secondary pa-

rameter space. The discrete secondary parameter �(�) summarizes all interesting infor-

mation in �, all other information is viewed as “nuisance” information. From now on, we

will also use � for the secondary parameter as we think it will not create confusion with

the function �(:). The fact that, from the viewpoint of the decision problem, no penalty

arises from selecting a member �� 6= �

0

if the true primary parameter is �
0

, as long as

�(�

�

) = �(�

0

), must not be confounded with the fact that, within the sample, estima-

tion of the secondary parameter can depend critically on the location of �. To assess the

precision achieved in estimating the secondary parameter, we need to define a distance

measure 1 on �. Concentrating on the Euclidean case, (�; d) and the function �(:) could

be used to define a metric on � which, however, is not very useful. The nested inclusion

sequences (1) or (2) would imply that inffd(�
i

; �

j

) : �

i

2 �

i

; �

j

2 �

j

g = 0: Alternatively

- remembering our initial interpretation of the nested problem - we adopt the logical po-

sition of viewing e.g. j = 3 to be “closer” to j = 2 than to j = 1 and we will expressly

1The expression “distance measure” is used as a free expression in contrast to a “metric” that must fulfill

certain properties. Formally, a distance measure is just non-negative and symmetric.
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use the squared distance measure

d

�

(i; j) = (i� j)

2

: (4)

We note that d
�

is the square of a metric on � but it is not a metric as the triangle inequal-

ity does not hold. The researcher attempts to minimize the distance d

�

between his/her

estimate of �(�) and the true value. We note that d
�

corresponds to measuring efficiency

of continuous estimates via their variance.

Later we will define weighting priors on each of the classes �
i

which could also be

used to define a metric on � via the average distance between points in two classes �
i

and

�

j

, provided this weighted average distance is finite. We do not follow this route as we

do not think that this average distance corresponds to the user’s loss function.

Typically, the discrete secondary parameter is estimated indirectly by first estimating

the continuous primary parameter �. The estimate for � is a random variable

^

� :

(

(
;A; P )! �

x

n

= (X

1

; : : : ; X

n

) 7!

^

�(x

n

)

(5)

as the observations x
n

are realizations of a random variable on the indicated probability

space. The sample size is n. We assume that the estimator (5) is consistent. A good

estimator of the primary parameter is certainly crucial for what follows. In most appli-

cations, the estimator is some approximation to the maximum likelihood estimator under

the information that � 2 �. After making the decision on the secondary parameter, the

observer may return to this problem and replace (5) by a more efficient estimator under

the information that � 2 �

j

for fixed j.

A naive suggestion for constructing an estimator for the secondary parameter would

be

�̂

N

= �(

^

�): (6)

This is, however, unattractive because of the very definition of the nested problem (1)

or (2). In finite samples, ^� usually - e.g., in all regression or time series problems that

assume a continuous error distribution - has a continuous probability density, hence the

topological smallness of � n�
p

is reflected by the probability measure and P (^� 2 �

p

) =

1. Thus, P (�̂
N

= p) = 1. This property holds for every finite n, and the estimator is

inconsistent.

The inclusion sequences (1) and particularly (2) have incited many researchers to solve

the estimation problem via hypothesis testing. Hypothesis tests are constructed with the

null hypothesis H
0

: � 2 �

j

and the alternative �

j+1

or � n �

j

. An estimate for the

secondary parameter is obtained by a certain stopping rule in such a testing sequence.

There are four methods of this type in current usage:

(i) Test �
0

[ : : :�

p�1

=

�

�

p�1

against �
p

; if rejected stop and �̂ = p; otherwise test
�

�

p�2

against �
p�1

; if rejected stop and �̂ = p� 1; : : : ; if no rejection �̂ = 0.

(ii) As in (i) but always test ��
i

against � n

�

�

i

.

(iii) Test �
0

against �
1

; if accepted stop and �̂ = 0; otherwise test ��
1

against �
2

; if

accepted stop and �̂ = 1; ... ; if everything is rejected �̂ = p.
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(iv) As in (iii) but always test ��
i

against � n

�

�

i

.

The testing sequences (i) and (ii) correspond to the currently favored general-to-

specific tests (see, e.g., YAP and REINSEL, 1995). (iii) and (iv) are specific-to-general.

(iii) only works if rejection of �
j

against �
j+1

is guaranteed if �
j+k

holds with k � 2.

Asymptotically these properties are guaranteed by (2) and therefore all four testing se-

quences are consistent in the sense of test consistency.

Test consistency is defined by an asymptotic test power of unity for all parameter val-

ues belonging to the alternative but does not require the null to be accepted with probabil-

ity one in large samples if it is true. If both properties are required, one speaks of “full (or

complete) consistency”. The testing steps with a fixed significance level are individually

consistent but not fully consistent. Viewed as estimators for �, they define inconsistent

procedures unless � = p. Reducing the significance level to zero asymptotically, one can

construct consistent estimators of � for many cases of empirical relevance. 2 For exam-

ple, in the nested problem of autoregressive order selection, such a consistent estimation

procedure was considered by POETSCHER (1983). The very popular estimators based on

testing sequences with fixed significance level - usually 5% - will be summarily called

testing estimators.

In finite samples, the properties of testing estimators differ across problems. Typically,

(i) and (ii) yield a tendency toward small-sample upward biases and (iii) and (iv) toward

downward biases. These tendencies can be counteracted by modifying significance levels.

The distance measure d

�

can be used to generate a different type of estimators. In

analogy to e.g. least-squares estimation, let us assume that the investigator endeavors to

minimize the loss function

l(�̂; x) = (�̂(x(�; !))� �(�))

2

= d

�

(�̂; �): (7)

The arguments are random variables and the right-hand side in (7) is unobserved. How-

ever, one could try to minimize expected loss given fixed �:

E

�

l(�̂; x) =

Z




(�̂(x(�; !))� �(�))

2

dP

�

(!) (8)

In statistical decision theory, this function is called the risk function (see, e.g., FERGU-

SON, 1967). (8) is definitely not constant in � and usually not constant in � for given �.

Unlike in some classical problems, it is also not possible in general to solve the minimiza-

tion problem analytically as this would require some knowledge about the small sample

distribution of the primary parameter estimate. This turns out to be intractable in most

applications. In order to make (8) operable in principle, one could try to finally define an

estimator

�̂ minimizes EE

�

l(�̂; x) =

Z

�

Z




(�̂(x(�; !))� �)

2

dP

�

(!)dQ(�): (9)

2Many researchers are aware of this problem but deem it to be unimportant for the practitioner (see e.g.

Theorem 12.7 by JOHANSEN, 1995b). Also, some Bayesians point out the complete consistency of their

tests (see PHILLIPS and PLOBERGER, 1994) achieved by asymptotic reduction of significance levels.
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However, (9) requires a definition of a probability measure Q on the parameter space � to

define a weighting scheme. This will be done here. An alternative could be to minimize

the supremum of the risk instead of a weighted average and would lead to the so-called

minimax rules.

A formal Bayesian problem such as (9) naturally brings up the question of how to

interpret the measure Q, as this is an issue where opinions vary considerably. We would

like to avoid interpreting Q as a prior distribution reflecting prior beliefs about the pa-

rameter �. It is simply used as an auxiliary weighting scheme for a decision problem.

For such a decision problem among the discrete secondary parameter values, it appears

logical to attribute the same weight to each of these values. In the Bayesian interpretation,

this amounts to a non-informative prior over the secondary parameter space. In contrast

to Bayesian analysis, we will not focus on posterior distributions but rather stick to the

classical and supposedly more user-relevant problem of making discrete point decisions.

For an example of the genuinely Bayesian point of view, see KADANE et al. (1996).

The uniform distribution on the secondary parameter space � does not uniquely spec-

ify the distribution over the primary parameter �. To this aim, we define a weighting

scheme on each �

j

= �

�1

(fjg) separately. In concordance with the uniform weighting

for the secondary parameter, one may consider to define Q as uniform on �
j

. This seems

to be reasonable if�
j

is bounded and convex. 3 However, if �
j

is unbounded, the uniform

law may not be properly defined. We would like to avoid the use of diffuse improperly

defined priors as, in most practical applications, the weight given to unusual “far-away”

parameter values is unacceptable.

In many applications, � = �

(1)

� �

(2)

such that any parameter vector will consist of

two parts � = (�

1

; �

2

) where �
1

is restricted to a bounded convex set and �
2

is not restricted

within a multidimensional Euclidean subspace. Cross restrictions are conceivable but the

separation is important as it permits the construction of a uniform distribution on the

subspace �
(1)

. Sometimes, this partition can be attained by a continuous transformation

of the parameter space, starting from a given primary parameterization. Then, we consider

the transformed parameterization as the “natural” one, assuming that classification of any

� into the �
j

is independent of �
2

, i.e., �(�
1

; �

2

) is constant in �
2

. This convention does not

define the parameterization uniquely, as e.g. any continuous one-to-one transformation of

a given �
(1)

onto itself defines an equally valid parameterization. We also do not require

the dimension of�
(1)

to be minimal. Typically, selection of a specific coordinate system is

determined by the practitioner’s concern rather than by formal properties. As an example,

autoregressive models of fixed order have a convenient and natural parameterization if �
1

consists of the coefficients and �

2

of a possible mean. Decisions on the number of unit

roots can be made based on �

1

, and �

(1)

is bounded and convex. We could adopt the re-

parameterization due to DICKEY and FULLER (1979) and thus minimize the dimension

of �
(1)

but this coordinate space is probably less natural. In contrast, the coefficient

coordinates of vector autoregressions are not bounded within the Euclidean space, hence

for decisions on cointegration a re-parameterization, as e.g. suggested by JOHANSEN

(1988), is inevitable.

3Boundedness and convexity are not necessary but are used here to exclude atypical cases.
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Now, assuming each �

j

(1) to be bounded and convex, with �

j

= �

j(1)

� �

j(2)

and

�(�

1

; �

2

) to be constant in �

2

, we can define Q as continuous uniform on �

j(1)

. This

convention expresses the researcher’s lack of information as well as the preference for

the natural coordinate system. �

2

is regarded as nuisance. Though the nuisance �

2

is

assumed not to influence the decision on the secondary parameter in population and in

larger samples, we may permit a certain degree of dependence of the expected loss in (8)

on �

2

in finite samples. If �
2

is defined on some higher-dimensional product of the real

line, one could, e.g., impose standard normal distributions as weighting schemes for these

nuisance parameters.

It is worth while to compare a so constructed distribution on � with prior distributions

used in the literature. Firstly, uniform priors are widely avoided as they may produce

strange results in some cases and are not invariant to transformations of the coordinates

in �. This is less of a problem if a specific parameterization exists that is agreed upon as

“natural” by most researchers. Secondly, mixed priors have been rarely used in the exam-

ples that will constitute our main focus of interest. For autoregressive processes, previous

research has given positive weight to parts of the parameter space that are non-admissible

a priori, such as explosive processes. The likely intention of this positive weighting of

non-admissible parameter values is to draw attention to the admissible boundary a pos-

teriori. In this interpretation, though the zero weighting of an interesting hypothesis and

mixing of continuous and discrete distributions is avoided, it may be difficult to see the

equivalence between the assumed “prior” and the researcher’s true prior if such a one is

hypothesized to exist and to be reasonable.

In the following examples, evaluation of optimum decision bounds will be based en-

tirely on Monte Carlo simulation. A detailed description of the Monte Carlo technique

is given in Section 3. The complicated metric imposed on the primary parameter space

prevents analytical derivations, excepting the simplest case � = f0,1g. Even numerically,

however, (9) can hardly be solved directly for all possible estimators �̂. In restricting the

considered class of decision rules in order to admit a numerical search for conditionally

optimal solutions, one must focus on those rules where the loss relative to the unrestricted

optimum is likely to be small. Under some regularity conditions - e.g. monotonous like-

lihood ratios - it can be shown by statistical theory that decision rules based on sufficient

statistics and likelihood ratios are optimal in some sense. Not in all of our problems the

corresponding criterion statistics are sufficient but it will always be assumed that the prac-

titioner is primarily interested in keeping the decision rules simple. However, note that

in the following, - in the notation of the nested problem - plausible restrictions such as

�

j

� �̂

�1

(j); j = 0; : : : ; p� 1, are in general violated. We further note that basing deci-

sions on likelihood-ratio type statistics facilitates the comparison to classical analysis in

the framework of the testing estimator.

2.2 The Multiple Binary Problem

In the nested problem, the secondary parameter space � appears to be naturally ordered.

This corresponds well to cases where, for example, the number of non-zero or unit eigen-
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values in a matrix are estimated. � will always be equivalent to a finite sequence of

natural numbers, such as f0,1,2,...,pg, or possibly the whole ofN
0

. In the multiple binary

problem, the elements of � are k-tuples of binary numbers, such as (0,1,0,1). Formally,

� = f0; 1g

k for some k. This corresponds well to problems where k interesting and mu-

tually (logically) independent features are either absent or present in the data. The set of

decisions or secondary parameter values is also reminiscent of the power set over 0,...,k

- note that this is not the �-field used to construct a probability space but the set of ele-

mentary events - or of a Boolean algebra of order k. Therefore, we could also call it the

lattice problem.

To handle the lattice problem in a similar way to the nested problem, we have to define

a distance measure. Two extensions of the quadratic distance measure are conceivable.

Firstly, one may use

d

1

((a

1

; : : : ; a

k

); (b

1

; : : : ; b

k

)) =

k

X

i=1

(a

i

� b

i

)

2

: (10)

All the entries a
i

and b
i

are either 0 or 1, hence d
1

weights the maximum distance just

by k. This corresponds to a linear weighting of large distances and does not appear to

penalize large errors sufficiently. We will therefore use

d

k

((a

1

; : : : ; a

k

); (b

1

; : : : ; b

k

)) =

"

k

X

i=1

(a

i

� b

i

)

2

#

2

: (11)

Again note that these distance measures are not metrics on � as triangle inequalities fail

to hold. Simple transforms would be metrics but would be uninteresting for our purposes.

However, after forming expectations, metrics on probability spaces can be defined by

taking e.g. square roots of the expectation of (4) or (10) or fourth roots of the expectation

of (11).

We finally assume that the secondary parameter space � is the whole of f0; 1gk and

that Q attributes the same weight to each k-tuple. In other words, the prior weighting will

be uniform over all k-tuples.

Most observations can be transferred directly from our handling the nested problem

to the multiple binary problem. Interestingly, even the classical treatment in the literature

has been equivalent. Typically, one of the two cases - the “feature” being present or

being absent - is reflected in a “generic” subset of the primary parameter space. The

non-generic feature is then used as “null hypothesis” and is “tested” against the generic

alternative. Obviously, a main problem concerns the assumptions about the features at

different entries of the k-tuple. Routinely, classical testing chooses the convenient way

of testing the non-generic feature at entry i under the (maintained) assumption that the

non-generic feature also holds at all entries j 6= i. This design expresses a strong a priori

belief in the non-generic features at all entries and can run into severe problems when

more than one feature turns out to be generic. Alternatively, F-type and portmanteau tests

assume the generic feature at all entries “under the alternative” and face the verdict of

“low power”. This low power is a consequence of the fact that the procedure classifies all

mixed k-tuples such as (0,1,0,1) either as (0,0,0,0) or as (1,1,1,1).
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As a viable alternative, we view the multiple binary problem as an estimation problem,

where the secondary parameter is estimated such that the expected double squared loss

expressed by the distance function d
k

is minimized. Again, uniform weighting is assumed

on the classes of primary parameters defined by �

a

= �

�1

(a) and a = (a

1

; : : : ; a

k

), or,

in the common presence of unbounded nuisance parameters, uniform weighting on some

�

a(1)

in a convenient coordinate system.

Under the name of parameter subset selection, the lattice problem has been treated

in the literature by BAUER et al. (1988). They prove that a consistent estimator for

the secondary parameter exists if a form of uniform convergence holds for estimation in

the primary parameter space. Such results ensure that an asymptotic risk of zero can be

attained by decision rules that are t-tests or generalizations thereof. The problem remains

how to minimize risk in finite samples. Whereas consistency, i.e. asymptotic zero risk, is

independent of the distance function, the optimization of finite-sample performance may

depend on the loss criterion.

A further generalization to “multiple nested problems” is straightforward. In this

case, each feature j can appear with the frequency l 2 f1; :::; p

j

g or not at all. In some

applications, p
j

will be constant over all j and the secondary parameter space will be

equivalent to 0; :::; pk. Unsurprisingly, even this complicated discrete estimation problem

has been routinely handled by sequences of binary tests with fixed significance levels in

much of the literature leading to inconsistent secondary parameter estimates.

3 The Examples

The discrete parameter estimation technique outlined in Section 2 is applied to four simple

problems of time series econometrics. In accordance with the minimization problem (9)

and the loss functions (4) and (11) decision bounds are calculated as follows.

1. A primary parameter is randomly drawn from the prior distribution. This is done

by first drawing the secondary parameter � from a discrete uniform law and then

the primary parameter � according to the prior on �

�

.

2. The selected � defines a data-generating process. A trajectory of n observations is

generated from this process. All error processes in the construction are assumed as

n.i.d.(0,1).

3. A small number of statistics is calculated from the trajectory and stored.

4. The first three steps are repeated n

s

times. Each time the true secondary parameter

and the relevant statistics are stored.

5. Tentative values for decision bounds on the statistics are selected and the approxi-

mate expected loss is evaluated.

6. The decision bounds are varied until a minimum of the expected loss is obtained.

This minimization is conducted by a grid search involving several refining steps.
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The value n
s

defines the precision of the calculated bounds. In all examples, it was set to

at least 10,000. The number of observations n was varied among several values that may

conform to the size of typical economic data sets.

The so obtained minimizing bounds and the value of the expected loss at the minimum

are then tabulated. FORTRAN codes of the procedures used for all examples can be

obtained from the author on request.

3.1 Order of Integration in Second-order Autoregressions

We consider the second-order autoregressive model

X

t

= �

1

X

t�1

+ �

2

X

t�2

+ �

t

(12)

with n.i.d. (0; �2) errors �
t

. It is well known that all sensible combinations of the param-

eters (�
1

; �

2

) are situated in and on a triangle flanked by the three lines

�

1

+ �

2

= 1 � �

1

+ �

2

= 1 �

2

= �1: (13)

See our Figure 1 for a geometric interpretation.

Figure 1: The second-order difference equation. Stable solutions lie inside the triangle.

In the following, we will refer to this triangle as the SODE triangle for “second- order

difference equations” whose stability conditions are reflected in it (e.g., see HAMILTON,

1994). All parameter combinations outside the triangle define anticipative or explosive
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processes 4 and will therefore be excluded from the investigation. The set of sensible

parameter values consists of the inner part

�

2

= f(�

1

; �

2

) 2 R

2

j�

1

+ �

2

< 1;��

1

+ �

2

< 1; �

2

> �1g

and the boundary of the triangle. All parameter values in �

2

define stationary AR(2)

processes. The boundary of the triangle defines homogeneous non-stationary processes

that are also called integrated processes. The maybe best known example (�
1

; �

2

) = (1; 0)

is the random walk. All points on the north-east boundary

�

1

= f(�

1

; �

2

)j�

1

+ �

2

= 1; 0 < �

1

< 2g

define first-order integrated processes. These are characterized by exactly one root of +1

in their characteristic polynomial and equivalently by the fact that they become stationary

after one first-differencing transformation. The south-east corner point

�

0

= f(2;�1)g

defines a second-order integrated process. It is the “double random walk”

X

t

=

t

X

s=0

s

X

r=0

�

r

and is the only process of its kind among the AR(2) processes. The other parts of the tri-

angle boundary will be excluded for the moment. They are related to processes with very

dominant periodicity, including the “mirror image” of the random walk X
t

= �X

t�1

+�

t

.

These will be examined more closely in Example 3. Hence, � is assumed to contain the

interior of the SODE triangle and its north-east boundary half-closed by the south-east

corner point. The remainder of the SODE boundary is not included in �.

Obviously, the design of this problem fulfills our assumptions (2) for a nested prob-

lem. The secondary parameter space � is f0,1,2g. We note that 2 � � is the order of

integration of the process. In the literature, most authors have used the testing estima-

tor based on approximate or exact ML estimates of the coefficients �
1

and �

2

. 5% test

boundaries were fixed by simulation or numerical integration as the asymptotic distribu-

tion of the LR statistic is a known transformation of Brownian motion integrals. As was

already observed, the testing estimator with fixed significance level is inconsistent (see

JOHANSEN, 1995a, and PANTULA, 1989).

To evaluate the asymptotic risk of the testing estimator, one may build on the following

approximation. The exact asymptotic bias can be calculated from the formula given by

JOHANSEN (1995a). If � = 2, then the estimator is consistent and the asymptotic loss is

0. If � = 1, there is a 5% chance of selecting � = 2 and a 95% chance of uncovering

the true value. Asymptotic loss is 0.05/3 because of the uniform prior weights assigned

4The difference equationX
t

= �X

t�1

+ �

t

with j�j > 1 defines an explosive process if it is interpreted

causally, with future evolving from the past. It defines a stationary process if it is interpreted anticipatively,

with past evolving from the future. Neither one of the two cases corresponds to a useful description of

economic data. Similar remarks hold for the second-order equation (12).
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to the three values of the secondary parameter. If � = 0, there is a probability of 0.05 of

incorrect asymptotic “rejection”, i.e., selection of different values of �. Assuming the two

“testing” steps to be approximately independent, given �=0, the asymptotic loss becomes

(0:05 � 0:95+4 � 0:05

2

)=3, as the sequence of two incorrect “rejections” yields a loss of 4.

The total asymptotic risk of the testing estimator is 0.03583... More efficient estimators

have to be gauged against this number.

A consistent estimator with an asymptotic risk of 0 is the Bayes-rule estimator. In our

case, its form would be:

�̂ = argmax

j

Z

�

j

f

�

(x)d�

for x = (x

1

; : : : ; x

n

) 2 R

n being the observed time series. This is a very simple case for

applying the Bayes rule as each �

j

= �

�1

(fjg); j = 0; 1; 2; is completely expressed in

the two parameters �
1

and �

2

and the assumed prior is uniform on �

j

. The Bayes-rule

estimator is consistent and minimizes the risk defined by the trivial distance function

d

B

(i; j) =

(

0 if i = j

1 if i 6= j:

To attain a minimum for our more complicated quadratic distance measure d
�

defined

by (4), we took refuge to Monte Carlo simulation. We note that d
�

expresses the view

that a random walk is “closer” to a stationary process than the double unit root process

X

t

= 2X

t�1

� X

t�2

+ �

t

, which naturally extends our idea that 1 is closer to 0 than 2

is. This “intensity of incorrect decision-making” is reflected by the distance and the risk

function.

Clearly, the requirement of asymptotic zero risk cannot define a decision rule uniquely.

On the other hand, the theoretical optimum decision rules for a given finite sample size

can be uncomfortably complex. In accordance with practitioners’ needs, here simple and

immediately operable decision rules will be preferred. A class of such simple decision

rules is defined by the following design

1. select �̂ = 0 if ^

�

1

> 2� b

1

2. select �̂ = 1 if ^�
1

+

^

�

2

> 1� b

2

and �̂ = 0 is not selected

3. select �̂ = 2 if neither �̂ = 0 nor �̂ = 1 is selected.

The optimum bounds b
1

and b

2

vary with the sample size and converge to 0 for large

samples. It is easily seen that the so defined estimator �̂ is consistent if the coefficient

estimators are. The estimator of the secondary parameter is consistent if the estimator

of the primary parameters is consistent. Exact maximum likelihood, least squares, and

the method-of-moments Yule-Walker rule all define consistent estimators of the primary

parameters. In this Monte Carlo study, the least squares estimator is used as it is simple to

calculate and therefore much in general use. However, it occasionally yields inadmissible
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coefficient estimates that are treated just according to the general decision rule. The Yule-

Walker estimate is unattractive in nearly non-stationary situations.

Our choice of bounds corresponds closely to the classical solution of the testing esti-

mator. In fact, FULLER (1976) and also some later authors used the estimated coefficients

proper, rather than using likelihood-ratio test statistics, for making decisions on whether

unit roots are present. Of course, the binary decision problem between �

0

and �

1

is

uninteresting as the Bayes rule defines an easy-to-use estimator that, in this case, also

minimizes d
�

risk.

Table 1: Monte Carlo bounds for estimating the number of unit roots in a univariate AR(2)

model. 10,000 replications were conducted.

n b

1

b

2

risk

100 0.15 0.12 0.0564

200 0.08 0.08 0.0343

500 0.04 0.04 0.0145

Table 1 reports the results from our Monte Carlo simulation. For the smallest sample

size n=100, the simulated bounds coincide well with the 5% bounds given in the literature.

For larger sample sizes, their slower convergence toward 0 relative to the testing bounds

becomes palpable. The bounds correspond to hypothesis tests with different size but

nevertheless the achieved minimum risk may serve as a guideline in roughly suggesting

that, in the absence of tables such as our Table 1, for n=500, decisions should be based

on 2.5% rather than on 5% significance bounds. One may also compare the indicated

decision bounds with the optimum achieved by the Bayes-rule estimator. All simulations

were redone with the 0-1 loss function but the differences in optimum solutions were

rather small so they are not reported.

3.2 Rank of Cointegrating Matrix

The first example can also be seen as estimating the rank of a certain matrix evolving from

the state-space transition AR(1) form of the univariate AR(2) model

"

X

t

X

t�1

#

=

"

�

1

�

2

1 0

# "

X

t�1

X

t�2

#

+

"

�

t

0

#

~

X

t

= T

~

X

t�1

+ (�

t

0)

0

:

If the state-space transition matrix T has all its eigenvalues smaller than 1, the autore-

gressive process is (asymptotically) stationary. If it has exactly one eigenvalue equal to

1, the process is first-order integrated. The process is second-order integrated if both

eigenvalues of T are equal to unity. One could also consider the form

�

~

X

t

= (T� I)

~

X

t�1

+ (�

t

0)

0

:
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Now, for j = 1; 2, �
j

corresponds to the matrix T-I having rank j. The estimation prob-

lem of the secondary parameter becomes equivalent to estimating the rank of a stochastic

matrix.

A similar problem evolves in truly multivariate time series analysis. Consider the so-

called error-correcting representation of a bivariate first-order vector autoregression (see

ENGLE and GRANGER, 1987)

"

�X

t

�Y

t

#

= (�� I)

"

X

t�1

Y

t�1

#

+

"

�

1t

�

2t

#

:

We assume that det(I-�z) has no roots � with j�j < 1 or j�j = 1 but � 6= 1. A further

regularity condition excludes cases of second-order integration in one of the variables

(see ENGLE and GRANGER and below). Here, the rank of the matrix�� I is particularly

interesting. If it is 0, the processes X
t

and Y
t

are dynamically unrelated random walks. If

it is 2, the bivariate process is stationary. If it is 1, both individual processes X and Y are

first-order integrated but there is a stationary linear combination. Economists interpret

this stationary cointegrating vector as expressing a long-run equilibrium relationship in

the system. Obviously, this is again a nested problem in the sense of our definition.

In order to elicit a weighting measure on a parameter space �, the notion of a generic

event is needed. Very informally, we define a generic event by being true on a subset of �

that is so large as compared to � that any reasonable mass distribution is likely to assign

a probability mass of 1 to the subset. We deliberately do not give the definition based

on continuous mass distributions, as we would like to allow for discontinuities where

they are plausible for the application. In our sense, a generic event is defined partly by

its mathematical and partly by its subject matter properties. The opposite case, which is

assigned a mass of 0 on the basis of similar considerations, will be called a non-generic

event.

In this problem, primary parameters could be the elements of� or��I. The classifi-

cation of � into the three classes depends critically on the eigenvalues of�� I. Admissi-

ble eigenvalues of� lie in (-1,1), hence admissible eigenvalues of��I are in (-2,0), with

the borderline case 0 corresponding to unit roots. In this example, it is not so “natural”

to choose a specific parameterization and therefore it is not so easy to find an appropri-

ate weighting scheme. Here, the following idea was selected. The matrix � � I can be

expressed via its Jordan canonical form:

�� I = L

"

�

1

�

0 �

2

#

L

�1 (14)

For “most” matrices, the element � is 0. � = 1 for some matrices with �

1

= �

2

. For the

design of the following simulation study, we assume that this case plays little role. It is

probably not very costly to exclude an event such as �
1

= �

2

anyway as it is non-generic.

In particular, the case �
1

= �

2

= � = 1 is excluded which would entail a second-order

integrated component process. A further difficulty is much more important. The Jordan

canonical form is only valid in general if complex eigenvalues are admitted. For real

matrices, these must be complex conjugates. The Jordan matrix can be represented in an
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all-real form but we chose to exclude complex eigenvalues altogether. In Examples 3 and

4, this problem will be taken up again. Some cursory simulations allowing for complex

conjugate eigenvalues proved that the results are not sensitive to our all-real design.

In this bivariate model, note that complex conjugates imply j�

1

j = j�

2

j, i.e., an-

other apparently non-generic event. However, this kind of argument is probably faulty.

The SODE triangle (Figure 1) shows a bottom area bordered by a dashed parabola cor-

responding to conjugate complex eigenvalues. This lower part covers two thirds of the

entire area. Note, however, that it only touches upon �

1

at the corner point �
0

. The

discrimination of complex-rooted stationary processes from unit-root processes is proba-

bly a minor problem as compared to “average” real-rooted cases. In higher-dimensional

models, this restriction may be more critical.

The matrix L in the Jordan decomposition can be any matrix provided it is non-

singular. It is not uniquely determined. To reduce the effect of the non-uniqueness with

respect to scaling, the innocuous normalization l

ii

= 1; i = 1; 2, is imposed. The off-

diagonal elements are allowed to take on any real values as long as these values do not

succeed in making L singular, which again is a non-generic event but was not excluded a

priori. The primary parameters l
ij

; i 6= j, are treated as unbounded nuisance of the type

�

2

and are weighted according to a standard normal distribution. In later experiments, it

may be interesting to vary this weighting on �

2

and evaluate the sensitivity. We presume

that the �
2

weighting is unimportant.

In summary, we use uniform continuous prior weighting for (�
1

; �

2

) and standard

normal priors for the l
ij

with i 6= j in (14) over the subspace �
2

of stationary processes.

For the cointegrating processes �
1

and the “fully integrated” processes �
0

, one or two of

the eigenvalues �
i

are set at 0.

To check on the rank of � � I, a decision criterion could rely on the eigenvalues

�

1

; �

2

; j�

1

j � j�

2

j, of (� � I)(� � I)

0, as the number of non-zero eigenvalues of this

symmetric matrix corresponds to the rank of �� I. We preferred to use squared canon-

ical correlations between (X; Y ) and (�X;�Y ), �
1

� �

2

, instead, as suggested by JO-

HANSEN (1988). These are related to the likelihood ratio and can be extended easily to

account for conditional influences in higher-order models or for correlation among �
1t

; �

2t

.

It is shown easily that �
j

= 0 if and only if the rank of � � I is less than 3 � j. Also,

�

j

= 0 if and only if �
j

= 0, provided that��I is diagonalizable. However, note that the

prior weighting distribution was uniform on (-2,0) for �
1

; �

2

but not on (0,1) for �
1

; �

2

.

Results from this bivariate cointegration experiment are summarized in Table 2. Ac-

tual decisions on the secondary parameter were based on sample estimates of the squared

canonical correlations, in concordance with the likelihood-ratio analysis by JOHANSEN

(1988). Our decision rule was defined in the following way:

1. Calculate the squared canonical roots and order them 0 � �̂

1

� �̂

2

� 1.

2. Choose the stationary model if �̂
1

� b

1

.

3. Otherwise, choose the cointegrated model if �̂
2

� b

2

.
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4. Otherwise, choose the fully integrated model.

This decision rule is similar in spirit to the classical eigenvalue test suggested by JO-

HANSEN (1988) as an alternative to the trace test whose fractiles are tabulated there. One

may envisage the difference between the two decision rules - firstly, ours and Johansen’s

eigenvalue test and, secondly, Johansen’s trace test - by plotting �̂

1

and �̂

2

in a plane

where the permitted area is bounded by a triangle as the eigenvalues have been ordered

by �̂

1

� �̂

2

. The b
2

rule corresponds to a horizontal line whereas the trace test rule cor-

responds to a 45

� negatively sloped line. Both “cut off” the area around the origin that

indicates fully integrated processes. In both variants, the rule on the smaller eigenvalue

corresponds to a vertical line. Table 2 allows a comparison between our procedure and

the classical one under the caveat that the decision rules are slightly different with respect

to �

2

.

Table 2: Monte Carlo bounds for estimating the cointegrating rank in a bivariate AR(1)

model. 10,000 replications were conducted. Approximate bounds suggested by a 5%

significance level in the trace test for cointegration by JOHANSEN (1988) and the risk of

this classical decision rule are given in square brackets.

n b

1

b

2

risk

100 0.045 [0.041] 0.127 [0.075] 0.0778 [0.0914]

200 0.026 [0.021] 0.070 [0.038] 0.0447 [0.0665]

300 0.022 [0.014] 0.053 [0.026] 0.0329 [0.0564]

400 0.019 [0.010] 0.039 [0.019] 0.0254 [0.0548]

500 0.015 [0.008] 0.038 [0.015] 0.0207 [0.0523]

It is not surprising that the risk of the classical decision rule substantially exceeds the

optimum risk, as the classical test operates on an entirely different concept of risk that it

tries to minimize. Its risk appears to settle down at values slightly above 5% at n = 500,

which reflects its inconsistency. In contrast, our procedure attains 2% at n = 500. If n =

100, the usual 5% critical values roughly match those evolving from the multiple decision

problem. In contrast, for n = 500, the significance level of the classical tests would

have to be lowered to 1% to establish this equivalence. In consequence, for n = 100, b
1

corresponds roughly to Johansen’s trace value whereas, for n = 500, b
1

is 1.8 times as

large as the classical decision bound. On the other hand, b
2

is always much larger than

the classical bound, which indicates that the classical procedure tends to avoid the fully

integrated model even in small samples. In summary, substantially more fully integrated

and some more co-integrated processes are found by the multiple decision procedure,

these cases both gaining at the cost of stationary solutions. To put it conversely, the

classical procedure appears to find uncomfortably many covariance-stationary processes

when the true model is integrated. 5

5Note that also PHILLIPS and PLOBERGER (1994) find more integrated models than previously used

classical tests.
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Note that the shape of the decision rule per se does not change much between the

classical and our multiple decision framework. The main difference is in the significance

levels not in the decision criterion.

3.3 Multiple Binary Problems: Seasonal Unit Roots

Let us take up the SODE triangle again. In Example 1, we had excluded the triangle

boundary except for the north-east line segment, closed in the south-east by �

0

and open

at the north corner. In particular since the publication of the article by HYLLEBERG et al.

(1990, HEGY), econometricians have focused on cyclical and seasonal non-stationarity

possibly explicable by unit roots at -1 alone or at both -1 and +1, extending the hitherto

conducted approaches restricted to the unit root at +1. This model with “integration”,

i.e., spectral singularities, at the long-run and at the Nyqvist frequency seems particularly

interesting for semester (half-yearly) data, whereas additional roots at the conjugate com-

plex pair �i may be considered for quarterly data (see Example 4). In Example 3, we

concentrate on the semester case and on the root at -1.

Second-order autoregressive processes with exactly one unit root at -1 are found on the

open north-west boundary line segment. The south-west corner point has second-order

integration at -1. This case appears to be of mere academic interest and is unlikely to

be found in economic reality. Hence, just like the explosive cases, the south-west corner

point will be assigned zero weight. The north pole corresponds to integration both at +1

and at -1. This is the autoregressive process

X

t

= X

t�2

+ �

t

:

HYLLEBERG et al. (1990) and other authors have found that such processes provide

reasonable descriptions of trending economic variables with substantial changes in their

seasonal pattern. Hence, we do want to consider this case. In summary, we now have four

subsets of the overall SODE triangle parameter space:

�

�

= f(0; 1)g . . . integrated at long run and at Nyqvist frequency

�

+

= f(�

1

; �

2

)j�

1

2 (0; 2); �

1

+ �

2

= 1g . . . integrated at long run only

�

�

= f(�

1

; �

2

)j�

1

2 (�2; 0); �

1

� �

2

= �1g . . . integrated at Nyqvist frequency only

�

S

= f(�

1

; �

2

) 2 R

2

j�

1

+ �

2

< 1;��

1

+ �

2

< 1; �

2

> �1g . . . stationary

In the notation used in Section 2.2, the four events can also be coded in binary form as

(1,1), (1,0), (0,1), (0,0), in this order, with the first entry corresponding to the unit root at

1 and the second entry to the unit root at -1.

The decision situation corresponds to the multiple binary or lattice problem introduced

in Section 2.2. Note that there are two nested paths

�

�

�

� �

+

;

�

�

+

� �

S

and �

�

�

� �

�

;

�

�

�

� �

S
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The double-squared distance function introduced as (5) yields losses as outlined in the

following table:

d

�

�

�

�

+

�

�

�

S

�

�

0 1 1 4

�

+

1 0 4 1

�

�

1 4 0 1

�

S

4 1 1 0

This table gives a cyclical definition of distance. A unit-root process of the long-run

integrated type is supposed to be “closer” to a process integrated at both frequencies than

to a process integrated at -1 only. This solution to the distance definition is probably

debatable. In other multiple decision problems of similar type, this distance between

the case of “exactly one object A” and “exactly one object B” obviously depends on

the difference between objects A and B. When estimating the number of persons in a

certain room or space, in most practical situations the distinction between men/women

or black/white persons matters little and would not justify our cyclical design. On the

other hand, the qualification of a good econometrician - who knows about economics and

statistics as well - is probably closer to that of a statistician or of an economist than the

two specialists’ qualifications usually are among them. In our example, the properties

of processes with roots at -1 and +1 are so strikingly different that the cyclical distance

measure seems justified.

Monte Carlo simulations were conducted and an estimation of the secondary param-

eter in f(0,0),(0,1),(1,0),(1,1)g was based on parallels to the north-east and north-west

line segment and a horizontal beneath the north pole point. As the scheme appears to be

perfectly symmetric between �

1

and ��
1

, there will be only two decision thresholds, b
1

describing the position of the horizontal and b

2

fixing the position of the skew parallels

(see also Figure 2).

In summary, we have

�̂ =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>
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>

>

>

>

>

>

>

>

>

>

:

(0; 0) if ^

�

1

+

^

�

2

< 1� b

2

and �

^

�

1

+

^

�

2

< 1� b

2

and ^

�

2

< 1� b

1

(1; 0) if ^

�

1

+

^

�

2

> 1� b

2

and ^

�

2

< 1� b

1

(0; 1) if �^

�

1

+

^

�

2

> 1� b

2

and ^

�

2

< 1� b

1

(1; 1) otherwise:

(15)

A technical problem derives from the fact that, as long as b
1

< b

2

, the areas pointing

to � = (0; 1) and � = (1; 0) may overlap. In this case, we select � = (1; 0) whenever
^

�

1

> 0 and � = (0; 1) otherwise. The results of some Monte Carlo simulations based on

50,000 replications are displayed as Table 3.
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Figure 2: A sketch of the decision configuration

Since there are now four competing decisions, the risk is slightly higher than in Table

1, at corresponding sample sizes. Strikingly at odds with classical hypothesis test deci-

sions, the optimum values for b
1

and b

2

are almost identical. It is interesting to have a

closer look at these classical tests. The current recommendation seems to be to start by

choosing among the secondary values � = (0; 1) or (1,1) and among � = (1; 0) or (1,1)

separately. These tests with identical large-sample distributions correspond to our b
1

de-

cision. If � = (1; 1) and � = (1; 0) are selected by the two separate tests, � = (0; 1) and

� = (1; 1) are discarded and � = (1; 0) vs. � = (0; 0) are subjected to a third binary deci-

sion “due to the low power of the HEGY tests relative to the more specific DF test when

Table 3: Monte Carlo bounds for deciding among long-run, seasonal, and jointly long-run

and seasonal non- stationarity in AR(2) models. 50,000 replications were conducted.

n b

1

b

2

risk

100 0.133 0.136 0.0842

200 0.084 0.088 0.0488

300 0.060 0.066 0.0349

400 0.044 0.048 0.0288

500 0.042 0.046 0.0228
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no seasonal unit root is present”. The main conclusion to be drawn from suggesting this

very complicated and hardly efficient procedure is that a priori confidence in the seasonal

unit roots is lower than that in the more familiar cases � = (0; 1) and � = (0; 0).

Note that, for simplicity, the south-east corner point was excluded from consideration

in Example 3. The union of Examples 1 and 3 can also be handled within our framework

with � = f0; 1; 2g � f0; 1g but it is not a lattice problem.

3.4 The so-called Univariate HEGY Model

The possibility of the joint presence of unit roots at different locations has been shown to

complicate the handling in our multiple decision framework slightly but these difficulties

can be overcome. In econometric practice, quarterly or monthly data are more common

than semi-annual observations. For quarterly data, it is tempting to allow for the presence

of homogeneous non-stationary influences deriving from the main frequencies 0; �=2; �

though other frequencies would be conceivable. In econometrics, the main reference to

this problem is again HEGY (1990). There, fourth-order autoregressive structures were

considered. These were transformed into the form

�

4

X

t

= c

1

S(B)X

t�1

+ c

2

A(B)X

t�1

+ (c

3

; c

4

)(�

2

X

t�1

;�

2

X

t�2

)

0

+ �

t

with S(B) = 1+B+B

2

+B

3, A(B) = 1�B+B

2

+B

3, �
i

= 1�B

i, and B denoting the

backshift or lag operator defined by BX
t

= X

t�1

. HEGY (1990) then suggest to conduct

t- and F-type tests on the significance of the coefficients in order to find out about the

potential significance of rejecting unit roots at 1 (the coefficient c
1

), at -1 (the coefficient

c

2

), and at �i (c
3

and c

4

jointly). As was already stated above, we want to develop

alternatives to this classical framework which is, moreover, based on the assumption of

“just local tests”, with the remaining unit roots assumed as being present anyway. Only

asymptotically, such cross-effects among effects at different seasonal frequencies vanish.

To handle the HEGY problem in our framework, we again rely on the double-squared

distance measure for lattice problems (11). The secondary parameter can be coded as a

3-vector of binary numbers (a
1

; a

2

; a

3

), convening that a
1

= 1 stands for the presence of

a unit root at +1, a
2

= 1 for a unit root at -1, and a

3

= 1 for the complex pair �i. Then,

e.g. (0,0,0) corresponds to the event of “no unit roots”, and (0,1,1) to “no unit root at 1

but one each at -1 and �i”. In detail, the distance measure is defined by

d

k

0

B

@

0

B

@

a

1

a

2

a

3

1

C

A

;

0

B

@

b

1

b

2

b

3

1

C

A

1

C

A

=

0

@

3

X

j=1

ja

j

� b

j

j

1

A

2

:

We note that all a
j

and b

j

elements are either 0 or 1 and that the maximum distance of 9

is, e.g., obtained between (1,0,0) and (0,1,1), i.e., between a process of the random-walk

type and one that wholly consists of persistent seasonal cycles.

Next, the weighting distributions over the primary parameters within the classes have

to be fixed. This is trivial for (1,1,1), since there is only one fourth-order process with all

three unit roots present:
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(a) (1,1,1) is simulated as �
4

X

t

= �

t

.

(b) For (0,1,1), the process must look like (1��B)(1+B)(1+B

2

)X

t

= �

t

. We assume

a uniform weighting prior on � within the interval (-1,1). Similar rectangular priors

can be chosen for (1,0,1).

(c) (1,1,0) is simulated using a uniform weighting prior over the SODE triangle to

generate processes of type (1�B

2

)(1� �

1

B � �

2

B

2

)X

t

= �

t

.

(d) For (0,0,1), we use the design (1 + B

2

)(1 � �

1

B � �

2

B

2

)X

t

= �

t

again over the

SODE triangle for (�
1

; �

2

).

For (1,0,0) and (0,1,0), a counterpart to the SODE triangle in the three-dimensional space

would be required. However, the structure of the stationarity area for the third-order

difference equation is already quite involved. It is convex but not a simplex and does not

have planes at all boundaries. We decided to use “brute force” instead for any order larger

than two. For three lags, noting that the coefficients in a third-order stationary difference

equation have maximum absolute values of (1,3,3,1), single coefficients were drawn from

uniform random variables of (-3,3), (-3,3), and (-1,1), respectively.

(e) (1,0,0) and (0,1,0) are generated from (1 � B)(1 � �

1

B � �

2

B

2

� �

3

B

3

)X

t

= �

t

and (1+B)(1��

1

B��

2

B

2

��

3

B

3

)X

t

= �

t

. The primary parameters (�
1

; �

2

; �

3

)

are generated by draws from three uniform distributions. Stability of the differ-

ence equation is checked and (�
1

; �

2

; �

3

) are re-drawn if explosive roots have been

found.

(f) (0,0,0) is generated from the full fourth-order design (1� �

1

B � �

2

B

2

� �

3

B

3

�

�

4

B

4

)X

t

= �

t

. Maxima for (j�
1

j; j�

2

j; j�

3

j; j�

4

j) are (4,6,4,1). Stability is checked

and independent re-drawing is performed if necessary.

Across the classes, a uniform prior was assumed and hence each class obtains the rela-

tive weight of 0.125. Table 4 gives the results from a Monte Carlo experiment according to

the outlined design. For each of the sample sizes 100 and 200, 80,000 replications were

simulated. This gives approximately 10,000 replications for each specific model class.

Table 4 does not only show the simulated bounds but also gives the matrix of correct and

incorrect decisions in the experiment. Larger sample sizes probably are not relevant in

practice, due to the fact that quarterly data are rarely available for time spans of more than

50 years, maybe excepting meteorological series.

4 Summary and Conclusion

Many problems of multiple decisions are usually handled by binary sequential testing de-

cisions with much emphasis on keeping a “correct” constant size of the test components.

The quality control framework may not correspond to the interest of the practitioner who
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Table 4: Empirical frequencies of selecting the respective events of seasonal integration

if the loss function is double quadratic. Number of replications is 80,000.

(a) n = 100

true selected model

(0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)

(0,0,0) 6824 1284 1424 97 314 21 22 0

(1,0,0) 89 8951 38 752 2 165 0 1

(0,1,0) 91 33 8939 769 3 0 181 4

(1,1,0) 8 444 436 9064 1 3 5 49

(0,0,1) 15 1 8 1 8868 543 563 18

(1,0,1) 1 83 0 4 207 9430 23 236

(0,1,1) 2 0 71 4 239 18 9399 254

(1,1,1) 2 8 13 156 76 757 742 8244

Bounds: b
1

=0.060 b

2

=0.062 b
3

=0.126 Loss at minimum = 0.1444

(b) n = 200

true selected model

(0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)

(0,0,0) 7661 1124 983 50 152 10 6 0

(1,0,0) 40 9321 14 540 1 79 0 3

(0,1,0) 47 18 9277 601 0 0 77 0

(1,1,0) 2 270 222 9499 0 1 0 16

(0,0,1) 5 0 0 0 9194 429 378 11

(1,0,1) 0 28 0 1 77 9688 5 185

(0,1,1) 0 0 20 1 111 7 9667 181

(1,1,1) 0 3 1 65 10 450 355 9114

Bounds: b
1

=0.045 b

2

=0.041 b
3

=0.082 Loss at minimum = 0.0876

intends to classify the data at hand into one out of a small number of categories. Two fre-

quent forms of such problems have been considered, the nested and the lattice problem.

In the nested problem, the researcher is interested in estimating a naturally ordered

discrete parameter. A related example of this type would be estimating the lag order of

an autoregressive structure but this problem has been treated extensively in the literature

(see also HANNAN and DEISTLER, 1988, Ch. 5). Information criteria have been shown to

provide consistent estimates of the lag order and have widely replaced the less adequate

sequential tests that lead to inconsistent estimates if significance levels are fixed. For the

problem of estimating the order of integration in time series, a satisfactory treatment is

still needed and our Examples 1 and 2 have contributed to that aim.

In the lattice problem, the researcher is interested in a number of features that could be
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present in the data or not. A common example would be the inclusion/exclusion decision

on possible regressor variables in linear regressions that is usually handled by t-tests and

F-tests. However, in that case, many researchers may find themselves in a quality control

situation and their decision may closely correspond to rejecting or accepting a subject

matter theory. In contrast, in estimating seasonal unit root models, this view is less likely.

The researcher rather attempts to find the one model out of 4 (Example 3) or 8 (Example

4) structures that most closely tracks the data at hand. We have provided a new and

promising framework for making such decisions.

Much work remains to be done in the future. Amalgams of the nested and lattice

models appear when a variety of features can be absent/present in varying numbers and the

number associated to each feature is interesting. Such a situation evolves, e.g., in seasonal

cointegration. Another situation obtains when the absence or presence of deterministic

features - such as constants, trends, fixed cycles - is investigated jointly with the unit

roots. Depending on the interest in the features per se, the presence or absence of the

features may define distinct decision classes or may be treated as nuisance.

To find an optimum decision rule, we assumed squared loss for the secondary param-

eters which are the only parameters of interest here. Squared loss is a common concept

in estimating continuous parameters and we feel that multiple decisions should be treated

in a joint framework. Risk typically depends on all primary parameters and we adopted

uniform weighting of these parameters over “natural” parameterizations, conscious of the

fact that uniform weighting is not invariant to re-parameterizations. We also gave equal

weights to each class (secondary parameter) considered. We finally insisted on the typical

researcher’s aim to make binary (not quantitative) decisions on the secondary parameters,

leaving Bayesian grounds with the latter viewpoint.

Viewed from a Bayesian perspective, we stressed the importance of mixed (continu-

ous-discrete) priors in typical situations of multiple decisions. In contrast, the continuous

priors used by most Bayesian researchers in unit root estimation entail two severe prob-

lems. Firstly, they only achieve posterior mass for the non-generic classes by putting prior

mass on non-admissible extensions of the parameter space, such as explosive processes.

Secondly, they put probably undue emphasis on the problem of estimating primary param-

eters in a way that the researcher may not be interested if he/she is faced with the problem

of making strictly binary decisions such as choosing among conflicting viewpoints arising

from economic theory.

The four examples contain an interesting aspect that may seem unusual to Bayesian

statisticians. The tabulated decision bounds in our framework may serve purposes sim-

ilar to the usual tables of fractiles. However, most practitioners may be reluctant to use

such tables unless they can be convinced that the most general structure as represented

by � may be general enough to capture a model that could likely have generated the ob-

served data. The answer to this point is a delicate matter, hence we will conclude with

three possible ones. Firstly, we may say that the statistician defines the model. If it is a

second-order autoregression, such tables can be used in accordance with the statistician’s

“window to reality”. Secondly, if one suspects that the model is not general enough, one

may repeat the numerical experiment with randomized nuisance, thus “opening the win-
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dow”. Thirdly, if further discrete parameters, such as the order of an autoregression, are

of genuine interest, one may construct more classes and “enlarge” the window. Unfortu-

nately, computing time may limit the dimension of the decision set in this latter solution.
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