Another Generalized Transmuted family of distributions:Properties and Applications
DOI:
https://doi.org/10.17713/ajs.v45i3.109Abstract
We introduce and study general mathematical properties of a new generator of continuous distributions with two extra parameters called the Generalized transmuted family of distributions. We present some special models. We investigate the asymptotes and shapes. The new density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. We obtain explicit expressions for the ordinary and incomplete moments and generating functions, Bonferroni and Lorenz curves, asymptotic distribution of the extreme values, Shannon and Renyi entropies and order statistics, which hold for any baseline model, certain characterisations are presented. Further, we introduce a bivariate extensions of the new family. We discuss the different method of estimation of the model parameters and illustrate the potentiality of the family by means of two applications to real data. A brief simulation for evaluating Maximum likelihood estimator is done.Downloads
Published
How to Cite
Issue
Section
License
The Austrian Journal of Statistics publish open access articles under the terms of the Creative Commons Attribution (CC BY) License.
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC BY license permits commercial and non-commercial re-use of an open access article, as long as the author is properly attributed.
Copyright on any research article published by the Austrian Journal of Statistics is retained by the author(s). Authors grant the Austrian Journal of Statistics a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its original authors, citation details and publisher are identified.
Manuscripts should be unpublished and not be under consideration for publication elsewhere. By submitting an article, the author(s) certify that the article is their original work, that they have the right to submit the article for publication, and that they can grant the above license.