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Abstract

The left-truncated Weibull distribution is used in life-time analysis, it has many ap-
plications ranging from financial market analysis and insurance claims to the earthquake
inter-arrival times. We present a comprehensive analysis of the left-truncated Weibull
distribution when the shape, scale or both parameters are unknown and they are deter-
mined from the data using the maximum likelihood estimator. We demonstrate that if
both the Weibull parameters are unknown then there are sets of sample configurations,
with measure greater than zero, for which the maximum likelihood equations do not pos-
sess non trivial solutions. The modified critical values of the goodness-of-fit test from the
Kolmogorov-Smirnov test statistic when the parameters are unknown are obtained from
a quantile analysis. We find that the critical values depend on sample size and truncation
level, but not on the actual Weibull parameters. Confirming this behavior, we present a
complementary analysis using the Brownian bridge approach as an asymptotic limit of
the Kolmogorov-Smirnov statistics and find that both approaches are in good agreement.
A power testing is performed for our Kolmogorov-Smirnov goodness-of-fit test and the
issues related to the left-truncated data are discussed. We conclude the paper by showing
the importance of left-truncated Weibull distribution hypothesis testing on the duration
times of failed marriages in the US, worldwide terrorist attacks, waiting times between
stock market orders, and time intervals of radioactive decay.

Keywords: maximum likelihood estimation, Kolmogorov-Smirnov goodness-of-fit test, left-
truncated data, Monte Carlo simulations, asymptotic analysis, quantiles, Brownian bridge.

1. Introduction and preliminaries
The Weibull distribution with scale and shape parameters, α > 0 and β > 0 respectively,
is widely used in areas such as statistics, engineering, finance, insurance and biology (e.g.
Weibull (1951), Balakrishnan and Cohen (1991), Rinne (2009)), mainly in the context of
life-time analysis (survival analysis in medical studies and reliability analysis in engineer-
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ing). In practical applications, very often truncated statistical distributions must be used
(see also Nadarajah and Kotz (2006)) these truncated statistical distributions arise when a
random variable τ follows a known distributional model, except that a portion of the sam-
ple space cannot be observed or is removed (for example in radioactive decay phenomena a
Geiger-Müller counter does not permit detection of decays events within its dead time). An
independent identically distributed (i.i.d.) left-truncated data set τ = (τ1, · · · , τn) of sample
size n has the property that τL < τi, i = 1, ..., n for a given non-negative parameter τL, the
truncation point (Kendall and Stuart (1979), pp. 551, section 32.15). The left-truncated
cumulative Weibull distribution function (cdf) is given by Wingo (1989)

F (τ |α, β, τL) = 1− exp
[(

τL
α

)β
−
(
τ

α

)β]
for τ > τL (1)

and the left-truncated probability density function (pdf) is

f(τ |α, β, τL) = β

α

(
τ

α

)β−1
exp

[(
τL
α

)β
−
(
τ

α

)β]
for τ > τL . (2)

Putting τL = 0 in Equation (1) and Equation (2), cdf and pdf of the complete Weibull
distribution will be recovered, respectively. Throughout this paper we use the term complete
Weibull distribution to refer to the untruncated Weibull distribution and in our investigation
we assume that the truncation point τL is known or can be set. The literature on data
analysis tends to focus either on complete or censored data, with much less attention paid
to truncated data, moreover truncation formally defined as in Kendall and Stuart (1979),
(pp. 551, section 32.15) is sometimes confused by censoring. In the literature confusingly
Type I censoring is sometimes called truncation and Type II censoring is sometimes known
simply as censoring, see for example Koziol and Byar (1975), Dufour and Maag (1978), Barr
and Davidson (1973). We define censoring as when all of the data is used to generate the
empirical CDF, but only the uncensored data is used estimated the parameters and calculate
the goodness of fit statistics. In this paper we concentrate on left-truncated (as defined in
the above paragraph) data only.
When dealing with a sample data obtained from observations one may wish to test the
hypothesis that these data are drawn from a left-truncated Weibull distribution, even if the
scale parameter α and shape parameter β are unknown. A common method for estimating
the parameters of a pdf from a sample data set is maximum likelihood estimation (MLE).
Note that the left-truncated Weibull pdf, Equation (2), is continuously differentiable in the
argument τ and its two parameters, 0 < α, β <∞, to any order and thus f ∈ C∞((τL,∞)×
(0,∞) × (0,∞)). Also f and all its derivatives with respect to τ, α, β vanish for τ → ∞,
at least like exp [−(τ/α)β′ ] for α > 0 and any β′ ∈ (0, β). These regularity conditions are
essential for the “well-behaviour” of MLE.
To determine how well the sampled data fits the hypothesized distribution one must measure
the goodness-of-fit (gof). Studies using Kolmogorov-Smirnov gof test to determine whether
the sampled data belong to an untruncated Weibull distribution began in the late 1970s by Lit-
tell, McClave, and Offen (1979), Chandra, Singapurwalla, and Stephens (1981); Parsons and
Wirsching (1982). In performing the hypothesis test it is crucial to use the correct criti-
cal values. When the Weibull parameters are estimated from the sample data, the standard
Kolmogorov-Smirnov test tables Smirnov (1948); Miller (1956) for the case where the parame-
ters are known cannot be used, because the probability integral transform using the estimated
parameters destroys the independence of the transformed random variables as demonstrated
by David and Johnson (1948).
In the literature there are very few studies dedicated to the left-truncated Weibull distribu-
tions (LTWD) is Wingo (1989), Balakrishnan and Mitra (2012). However, the MLE-approach
in the first reference is rather heuristic level whereas the second reference is more concerned
with a maximisation-expectation approach to handle left-truncation and right-censoring. For
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theoretical investigations of the Weibull distribution the reader is referred to Agostino and
Stephens (1986) and Lehmann and Casella (1998).
For the left-truncated 2-parameter Weibull distribution we shall distinguish four cases through-
out this article :

Case I: Both parameters, the scale parameter, α > 0, and the shape parameter, β > 0, are
known a-priori.

Case II: Both parameters, the scale parameter, α > 0, and the shape parameter, β > 0, are
unknown a-priori and need to be estimated from the sample data.

Case IIIa: The scale parameter, α > 0, is unknown and needs to be estimated from the
sample data, but β > 0 is known.

Case IIIb: The shape parameter, β > 0, is unknown and needs to be estimated from the
sample data, but α > 0 is known.

In the next section we briefly review the maximum likelihood estimation for Cases II - III
and comment on the consistency, asymptotic normality and efficiency of the MLE when
applied to data sampled from a left-truncated Weibull distribution. Details on these issues
have been discussed in Kreer, Kizilersu, Thomas, and dos Reis (2015). In Section 3 we
discuss and develop the Kolmogorov-Smirnov (KS) goodness-of-fit (gof) statistics for the
left-truncated Weibull distribution to decide whether the sample data could belong to the
hypothetical distribution. In Section 4 we present an asymptotic analysis exploiting the
Brownian bridge character of the KS statistics following some prior work of Durbin (1973)
and Stephens (1977) on untruncated distributions and give our results for the left-truncated
Weibull distribution for all cases. The quantile analysis to determine the modified critical
values using Monte Carlo simulations is given in Section 5, where we discuss our numerical
algorithm and present our results on the left-truncated data for the four cases listed above.
All the results obtained on modified critical values are discussed and analysed in Section 6.
In Section 7 we give a procedure for interpreting the results and a power study for Case
I and Case II. Section 8 discusses the application of the methods discussed throughout the
paper to failed US marriages, worldwide terrorist attacks, a sample of stock market data from
New York stock exchange, and the radioactive α-decay of Americium-241. All the results are
discussed in the concluding section.

2. Maximum likelihood estimation of left-truncated Weibull
parameters
The maximum likelihood estimates of the left-truncated Weibull parameters differ from the
complete ones because the left-truncated pdf f(·) with left-truncation point τL > 0 has an
additional multiplicative factor exp

( τL
α

)β in comparison to the complete one. In this paper,
the left-truncation point τL is assumed to be known. From Equation (2) we determine that
the likelihood function for the left-truncated Weibull distribution as

Ltrunc(τ1, τ2, ..., τn|α, β, τL) =
n∏
i=1

β

α

(
τi
α

)β−1
e(

τL
α )β−( τiα )β , (3)

and consequently the logarithm of the likelihood as

logLtrunc(τ1, τ2, ..., τn|α, β, τL) =
n∑
i=1

log
[
β

α

(
τi
α

)β−1
e−( τiα )β

]
+ n

(
τL
α

)β
= n log β − nβ logα+ (β − 1)

n∑
i=1

log τi −
n∑
i=1

(
τi
α

)β
+ n

(
τL
α

)β
, (4)

= logL (τ |α, β, 0) + n

(
τL
α

)β
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where L(τ |α, β, 0) is the likelihood function for the untruncated distribution.
The Weibull parameters that maximize the likelihood function, Equation (3), are the same as
those that maximise the log-likelihood function, Equation (4), and are obtained by calculating
the partial derivatives with respect to α and β :

∂

∂α
logLtrunc(τ1, τ2, ..., τn|α, β, τL) = ∂

∂α
logL(τ1, τ2, ..., τn|α, β) + n

∂

∂α

(
τL
α

)β
= 0 ,

=⇒ −nβ 1
α

+ β
n∑
i=1

τβi α
−β−1 − nβ

(
τL
α

)β 1
α

= 0 . (5)

∂

∂β
logLtrunc(τ1, τ2, ..., τn|α, β, τL) = ∂

∂β
logL(τ1, τ2, ..., τn|α, β) + n

∂

∂α

(
τL
β

)β
= 0 ,

=⇒ n

β
− n logα+

n∑
i=1

log τi −
n∑
i=1

log
(τi
α

)
·
(
τi
α

)β
+ n log

(τL
α

)
·
(τL
α

)β
= 0 . (6)

Rearranging Equation (5) we get

α =
(

1
n

n∑
i=1

[
τβi − τ

β
L

])1/β

. (7)

Note that Equation (7) is one of two MLE equations in Case II but is the only MLE equation
in Case IIIa. There always exists a solution for α in Case IIIa for a given β. Rewriting
Equation (6) we obtain the following

n
1
β

+
n∑
i=1

log
(
τi
α

)
−

n∑
i=1

(
τi
α

)β
log

(
τi
α

)
+

n∑
i=1

(
τL
α

)β
log

(
τL
α

)
= 0 . (8)

Equation (8) is the second MLE equation in Case II but the only MLE equation in Case IIIb,
where α is known. Eliminating α in Equation (8) using Equation (7), we obtain (after some
algebraic manipulation) the following equation for β (for Case II) (Wingo (1989) and arxiv-
version of Malevergne, Pisarenko, and Sornette (2005))

0 = 1
β
−

1
n

∑n
i=1

(
τi
τL

)β
log τi

τL

1
n

∑n
i=1

[(
τi
τL

)β
− 1

] + 1
n

n∑
i=1

log τi
τL
. (9)

Equations (7) and (9), reduce, in the limit τL → 0, to those given in Cohen (1965) for
untruncated MLE equations. The solutions for α and β to the simultaneous Equations (7)
and (9) are denoted by β̂n = β̂n(τ1, . . . , τn|τL) and α̂n = α̂n(τ1, . . . , τn|τL). For convenience
we shall suppress the dependence on the sample τ1, ..., τn and the left-truncation value τL and
simply write α̂ and β̂. The existence and uniqueness of a non-trivial MLE solution is almost
trivial for Case IIIa, whereas the Case II and Case IIIb are dealt with the Lemma I given
in Kreer et al. (2015). To assert the existence of a non-vanishing MLE-solution, the sample
data need to satisfy the following inequality

2 ·
(

1
n

n∑
i=1

log τi
τL

)2

− 1
n

n∑
i=1

(
log τi

τL

)2
> 0 . (10)

If the condition given Equation (10) is not satisfied then the only solution to the MLE equation
for β, Equation (9) is the trivial solution α = β = 0. This can be shown by inserting α = β1/β
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and taking the limit β → 0 in Equation (3). Only in this case the likelihood Equation (3) is
positive and non vanishing1.
Table 1 was generated using a Monte Carlo Simulation with 10,000 steps, and without loss
of generality the parameters were chosen as α = 1 and β = 1. It gives the percentage of left-
truncated Weibull distributed random samples of size n satisfing Equation (10) for which the
MLE provides a non-trivial solution. Note that the various truncation points τL were chosen
in such a way, that η = (τL/α)β yields the desired truncation probability p = 1− exp (−η) of
10%, ..., 90% respectively. The truncated Weibull numbers were generated by Equation (30).

Table 1: Percentage of left-truncated Weibull distributed random samples for which there
exists a solution to the MLE equations for Case II.

Percentage 0 10 20 30 40 50 60 70 80 90
Removed % % % % % % % % % %
n=30 100±0 100±0 100±0 98 ±1 94±1 89±1 85±1 83±1 82 ±0 83±0
n=50 100±0 100±0 100±0 100±0 98±0 95±1 90±1 87±1 85±1 83±1
n=100 100±0 100±0 100±0 100±0 100±0 99±0 98±0 95±1 92±1 87±1

The consistency, asymptotic normality and efficiency of the MLE method for left-truncated
Weibull distribution are discussed in Theorem 1 in Kreer et al. (2015) and the relevant proofs
are provided as well. Key for the proof is the smoothness property of the left-truncated
Weibull distribution. Denoting the true parameter vector by (α0, β0), we note in partic-
ular that all the asymptotic properties follow in this case from the asymptotic normality,
i.e.
√
n
(
(α̂n, β̂n)− (α0, β0)

)
is asymptotically normal with vector mean zero and covariance

matrix [Z((α0, β0))]−1 being the inverse of the Fisher information matrix

Z(α0, β0) = −E

 ∂2 log f(τ |α,β,τL)
∂α2

∂2 log f(τ |α,β,τL)
∂α∂β

∂2 log f(τ |α,β,τL)
∂β∂α

∂2 log f(τ |,α,β,τL)
∂β2


α=α0,β=β0

(11)

The elements of the Fisher information matrix, Equation (11), are calculated as

E
(
∂2

∂α2 log f(τ |α, β, τL)
)

= −β
2

α2 ,

E
(

∂2

∂α∂β
log f(τ |α, β, τL)

)
= 1

α
{1 + [log η + eηE1(η)]} ,

E
(
∂2

∂β2 log f(τ |α, β, τL)
)

= − 1
β2

{
1 + 2 [log η + eηE1(η)] +

[
(log η)2 + 2eηE2(η)

]}
.

where we have used the functions E1(s) =
∫∞
s dy exp (−y)/y (i.e. the exponential integral)

and E2(s) =
∫∞
s dy exp (−y) log (y)/y.

3. Kolmogorov-Smirnov goodness-of-fit test for the left-truncated
Weibull distribution
Let us test the following null hypothesis H0: The i.i.d. sample τ1, τ2, · · · , τn satisfying τL < τi
for i = 1, 2, ..., n for some positive τL and some integer n, is drawn from a left-truncated

1 An example of the violation of the second MLE equation Equation (9) is for n = 30 the random sample
τi = τL + ε · i for i = 1, 2, ..., 25, a sufficiently small ε > 0 and τi = ` · τL + ε · i for i = 26, 27, ..., 30 and some
` � 1. In this case we see that Equation (10) is not satisfied.
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Weibull distribution F (τ ) as given in Equation (1) with estimated parameters (α̂, β̂) obtained
from MLE as discussed in the previous section2. Using the empirical distribution function
Fn(τ ), defined as the proportion of the values of the order statistics τ(1), τ(2), ..., τ(n) smaller
than τ ∈ (τL,∞), the Kolmogorov-Smirnov (KS) test statistic is given (e.g. Kendall and
Stuart (1979), sect. 30.49 and Shorack and Wellner (2009)),

Dn ≡ sup
−∞<τ<+∞

‖Fn(τ )− F (τ )‖, (12)

= sup
τL<τ<∞

[Fn(τ )− F (τ ), F (τ )− Fn(τ )]

= max
1≤i≤n

[
i

n
− F (τi), F (τi)−

i− 1
n

]
. (13)

Here Dn is the KS distance which is compared with a critical value Dcv(n, p, 0.05), that
depends on the sample size n, the truncation level p (the theoretical percentage removed
from the untruncated distribution ) and significance level 0.05 used throughout the paper. If
the value of

√
nDn is greater than some critical value Dcv(n, p, 0.05) then the hypothesis that

Fn(τ ) and F (τ ) come from the same distribution is rejected, i.e.,

H0 is the hypothesis that the set of values τ is sampled from a random distribution
with a known cdf F (τ ),

H0 is not rejected if
√
nDn < Dcv(n, p, 0.05) . (14)

The critical values used in the hypothesis test, Equation (14), depend on whether the pa-
rameters, α, β, are known or unknown and are estimated from the data itself. The cases
introduced earlier in section 1 can be grouped under two the categories for the purpose of KS
statistics.

Out-sample KS statistics If the parameters of the distribution from which the sampled
data is to be tested against are known precisely, i.e. if F (τ ) in Equation (12) is known
this referred to as an out-sample KS statistic. In this study this statistics is named
as Case I where the critical values (CVs) of Kolmogorov and Smirnov are recovered.
Moreover the CVs are independent of the distribution and the range of parameters.

In-sample KS statistics If the parameters of the distribution must be estimated from the
sampled data to construct the theoretical cdf (F (τ ) in Equation (12)), then Dn is re-
ferred as an in-sample KS statistic. It is well known, when the parameters are estimated
from the sample and then the goodness-of-fit test is performed, that the probability inte-
gral transformation of the sample variables destroys their independence (see e.g. David
and Johnson (1948)). Thus Kolmogorov’s argument leading to Equation (13) for his
universal critical values becomes invalid. We expect for each of our three cases to have
different critical values, and in Case I we should recover Kolmorogorov’s values.

Making use Equation (1) for F and of the τi’s representation as given by Equation (30),
Equation (13) can be written as :

Dn = max
1≤i≤n

{
i

n
− 1 + exp

[(τL
α̂

)β̂
−
(τi
α̂

)β̂]
, 1− exp

[(τL
α̂

)β̂
−
(τi
α̂

)β̂]
− i− 1

n

}

= max
1≤j≤n

{
i− n
n

+ exp
[
η̂ − (η + yi)β̂/β

0
(
α0

α̂

)β̂]
,
n+ 1− i

n
− exp

[
η̂ − (η + yi)β̂/β

0
(
α0

α̂

)β̂]}

= max
1≤i≤n

{
i− n
n

+ exp
[{
ηβ̂/β

0
− (η + yi)β̂/β

0}(α0

α̂

)β̂]
,

n+ 1− i
n

− exp
[{
ηβ̂/β

0
− (η + yi)β̂/β

0}(α0

α̂

)β̂]}
, (15)

2From this point onwards we will drop the index n and use α̂ and β̂.
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where α̂ and β̂ are the estimated parameters while α0 and β0 are the true ones, η ≡ (τL/α0)β0

and likewise η̂ ≡ (τL/α̂)β̂ and yi’s are standard exponential random variates, as described in
Appendix A. Equation (15) describes the modified critical values for all four cases above.
The critical values in general are a function of the sample size n only when the untruncated
data set is considered. But clearly, they also depend on the truncation parameters, such as the
truncation level p or truncation parameter η, when truncated data is considered. However,
for two cases we find simplified relations for Dn, which are independent of the truncation
parameter τL or η and also independent of the true values of α0 and β0 :

Case I : (η̂ = η, α̂ = α0 and β̂ = β0 )

Dn = max
1≤i≤n

{
i− n
n

+ exp (−yi),
n+ 1− i

n
− exp (−yi)

}
.

(16)

Case IIIa : (β̂ = β0)

Dn = max
1≤i≤n

 i− nn + exp

−yi
(
α0

α̂

)β0 , n+ 1− i
n

− exp

−yi
(
α0

α̂

)β0 . (17)

One observes that in Case IIIa when the shape parameter β0 is known, Equation (15) simplifies
to Equation (17) and becomes independent of truncation, τL (or η), because of β̂/β0 = 1 the
η-terms cancel each other out.
To construct confidence tables without loss of generality one may assume (α0, β0) = (1, 1)
and hence η = τL. Following Thoman, Bain, and Antle (1969) we denote for general Weibull
distributions with any positive (α0, β0) the random variables (α0/α̂)β̂ and β̂/β0 as pivotal
functions. Note that the KS distance Dn in Equation (15) depends on these pivotal functions,
n and η. Consequently, Dn is “universal” for different combinations of (α0, β0) for the same
n and η, provided the following holds true(

α0

α̂(α0,β0)

)β̂(α0,β0)
distrib.=

(
1

α̂(1,1)

)β̂(1,1)

,

(
β̂(α0,β0)
β0

)
distrib.= β̂(1,1) (18)

where α̂(1,1) and β̂(1,1) are the MLE estimates originating from the simplest choice of a Weibull
distribution with (α0, β0) = (1, 1). Likewise α̂ = α̂(α0,β0) and β̂ = β̂(α0,β0) are the MLE
estimates originating from a Weibull distribution for arbitrary positive (α0, β0). The latter
equality in distribution, Equation (18), was demonstrated in Appendix 3 of Kreer et al. (2015).
For untruncated data where xL = 0 (thus η and p vanish), Dcv(n, 0, 0.05) will only depend on
n. This was observed by Thoman et al. (1969) and allowed Littell et al. (1979) and Parsons
and Wirsching (1982) the production of confidence tables for in-sample KS tests with MLE
equations solved for exponential random variates. Similarly, in Case IIIa when the shape
parameter β is known, Equation (15) simplifies and becomes independent of truncation, xL
(and hence of the truncation level p = 1−e−η ), because β̂/β0 = 1 and the η-terms cancel out.
Only for Case II and Case IIIb do we need to investigate the dependence of Dcv(n, p, 0.05)
on the parameter η (η = xL if (α0, β0) = (1, 1)) and n in greater detail.

4. Brownian bridge asymptotics for Kolmogorov-Smirnov good-
ness of fit tests

4.1. Brownian bridge and Donsker’s theorem

As in the discussion of the MLE in section 2 it will be interesting to consider what happens
to the KS test when n → ∞. The asymptotic behaviour of the KS-test has been of interest
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from the 1940s onwards, Durbin (1973), Stephens (1977), and Shorack and Wellner (2009), in
calculating the asymptotic critical values. For a random variable τ distributed according to a
theoretical Weibull distribution function F (τ |θ0), one may define the difference between the
theoretical (with or without estimated parameters θ̂n = (α̂n, β̂n)) and empirical distributions
as (Durbin (1973), Equation (2) )

Gn(t) =
√
n
[
F̂n(t)− t

]
(19)

where F̂n(t) is the proportion of τ1, τ2, · · · , τn, i.i.d. for which F (τi|θ̂n) ≤ t, t ∈ [0, 1], and
θ̂n is the MLE estimate for the true parameter θ0 = (α0, β0). Note that taking the abso-
lute value of the supremum in Equation (19) would yield the KS-distance in Equation (13).
Viewing Equation (19) as a stochastic process in t ∈ [0, 1], Doob’s Theorem (also known as
the functional central limit theorem) asserts the convergence in distribution against a lim-
iting stochastic process which is Gaussian with zero mean and the covariance structure of
a Brownian bridge (see Shorack and Wellner (2009)). For the case where the parameters
are estimated from the sample itself a modification (due to Durbin (1973)) has to be made.
We may apply Theorem 2 of Durbin (1973) (here θ = (α, β)), where the limiting Gaussian
process is denoted, in analogy from above, by Gn(t) with mean of 0, i.e. E (Gn(t)) = 0 and a
covariance structure given by

C(s, t) = E (Gn(s)Gn(t)) = min (s, t)− s · t− uT (s) Σ u(t), 0 ≤ s ≤ t ≤ 1 (20)

where Σ = Z−1 is the inverse of the Fisher information matrix Z(α, β) given in Equation (11),
and u(·) are certain vector-valued functions given by Equation (21) below. Note that the
supremum of this Gaussian process using only n points will converge to the asymptotic value
of the KS-distance Dn, as given in Equation (13) of the previous section, when n→∞. This
will be key in deriving the asymptotic values. We readily check that Durbin’s assumptions
(A2) and (A3) in Durbin (1973) are also satisfied for the truncated case with truncation
point τL > 0, so that Theorem 2 of Durbin (1973) may be applied. Stephens (1977) studies
the Brownian bridge with the covariance structure given in Equation (20) for complete data,
(i.e. τL = 0). The vector-valued function u(s) in Equation (20) for left-truncated Weibull
distributions with τL > 0 is

u(s) ≡

 ∂s
∂α

∂s
∂β

 =
(

β
αs log s

− s
β {η log η − (η − log s) log (η − log s)}

)
, (21)

where s = F (τ) = F (τ |α, β, τL). In the following calculations, without loss of generality, we
may choose for convenience (α, β) = (1, 1). Using the covariance equations, Equation (20),
together with Equation (21) and the matrix Σ as the inverse of Z, from Equation (11), we
can now for any m ∈ N simulate a Brownian bridge with discrete values ti = i/m with the
given discrete covariance structure Ci,j = C(s = i/m, t = j/m), for i, j = 0, 1, ...,m.

4.2. Numerical implementation of the Brownian bridge

We perform the following procedure as described in Anderson and Stephens (1997) to calculate
the critical values in the Brownian bridge approach :

1. Discretise the interval [0, 1] for given m ∈ N, in discrete values s = i/m, t = j/m,
i, j = 0, 1, ...,m.

2. The discrete covariance matrix C(m+1) = (Ci,j)i,j from Equation (20) now has entries

Ci,j = min (i, j)/m− i/m · j/m − uT (i/m) Σ u(j/m) (22)

and is symmetric and positive definite.
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3. Calculate the Cholesky decomposition C(m+1) = BBT , where B = B(m+1) is a
triangular matrix of dimension (m+ 1)× (m+ 1).

4. Draw (ζ0, ζ1, ..., ζm) standard normally distributed numbers (i.e. mean 0 and variance
1). Set ζ0 = 0 and ζm = 0 and define the vector z = (0, ζ1, ..., ζm−1, 0).

5. The transformed (m + 1)-vector Bz is a discrete representation of a Brownian bridge
Gm(t) starting at t = 0 with Gm(0) = 0 and ending at t = 1 with Gm(1) = 0. Find the
following statistics
D+(m) = max (Bz), D−(m) = −min (Bz) and then set Dm = max {D+(m), D−(m)}.

6. Keep Dm in a list and sort in ascending order. Take the 95% as a critical DBB
m (95%).

7. Repeat procedure form = 30, 50, 100, 200, ... and fit Dm against the function A+B/
√
m

(see also Chandra et al. (1981)). The value A is the asymptotic value of the Kolmogorov-
Smirnov statistic, A = Dcv(∞, 0.05).

4.3. Results: asymptotical critical values from Brownian bridge

We apply the Brownian Bridge (BB) approach to find the asymptotic critical values for the
following cases and present the results in Table 2.

Case I Out-sample testing: Put Σ = 0 (because α and β are known precisely therefore
Fisher information matrix is irrelevant here) and sample a pure Brownian bridge.

Case II In-sample testing for two unknown parameters (with truncation).

Case IIIa - IIIb In-sample testing with one-parameter known (with truncation): Get a
one-dimensional Fisher Information matrix from Equation (11) with the unknown pa-
rameter and invert this element to obtain the corresponding Σ-matrix.
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5. The quantile analysis for determining the critical values

5.1. The Monte-Carlo algorithm

The quantile procedure to calculate the critical values is described below.

Algorithm 1: Procedure for calculating the mean and variance of the critical values of the
KS-test

Input:
The values of α and β are both set to 1

Output: The mean and standard deviation of the critical values of the KS-test for a range of sample
sizes n and truncation levels p, η = τL = α (− log (1− p))β .

1 for p = 0 to 0.9 -STEP 0.1 do
2 for n = 30, 50, 100, 200, 500, 1000, 10000 do
3 for j = 1 to 100 do
4 for k = 1 to 1000 do
5 • Draw n random numbers ui from a uniform distribution ui ∼ U(0, 1). It follows

directly from the discussion in appendix A that the left-truncated Weibull
distributed random variables are τi = τL − log ui

6 • Estimate α̂ and β̂ using MLE equations Equations (7) and (9).
7 • Calculate the Kolmogorov-Smirnov statistic using Equation (13) and store it as

D(n, p, j, k)
8 • Sort D(n, p, j, :) ∀ k in ascending order. The 95% confidence interval, i.e.

(αH = 0.05) is Dq
cv(n, p, j) = 1

2 (D(n, p, j, 950) +D(n, p, j, 951)) .

9 end
10 end
11 • Calculate the mean Dq

cv(n, p) and variance σ2
Dq

cv(n,p) from the 100 values.
12 end
13 end

Table 2: The asymptotical critical values from BB approach for all cases.

Truncation Truncation
Level Parameter Case I Case II Case IIIa Case IIIb

p η DBB
cv DBB

cv DBB
cv DBB

cv
0 0 1.356±0.008 0.901 ±0.007 1.093±0.005 1.317±0.006
0.1 0.1 1.359±0.004 0.862 ±0.002 1.094±0.003 1.329±0.006
0.2 0.2 1.358±0.005 0.860 ±0.007 1.095±0.003 1.321±0.006
0.3 0.35 1.358±0.008 0.860 ±0.006 1.094±0.003 1.291±0.005
0.4 0.5 1.359±0.005 0.874 ±0.003 1.095±0.005 1.260±0.006
0.5 0.7 1.358±0.003 0.880 ±0.003 1.094±0.005 1.234±0.006
0.6 0.9 1.361±0.004 0.879 ±0.006 1.094±0.002 1.198±0.003
0.7 1.2 1.357±0.005 0.892 ±0.007 1.094±0.002 1.183±0.004
0.8 1.6 1.358±0.006 0.900 ±0.007 1.093±0.001 1.163±0.004
0.9 2.3 1.359±0.005 0.909 ±0.007 1.093±0.006 1.142±0.003

5.2. Results: critical values from Monte-Carlo simulations

Our results obtained for the modified critical values using the quantile analysis (outlined in
Algorithm 1) for each sample size n = (30, 50, 100, 500, 1000, 10000) and truncation parameter
η are summarised in Table 3 for Case I, in Table 4 for Case II, in Table 5 for Case IIIa, and
in Table 6 for Case IIIb.
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Table 3: The critical values, Dq
cv, calculated from the quantile analysis for Case I.

p η D
q
n=30 D

q
n=50 D

q
n=100 D

q
n=200 D

q
n=500 D

q
n=1000 D

q
n=10000

0 0 1.322±0.025 1.329±0.024 1.336±0.024 1.343±0.024 1.346±0.024 1.346±0.023 1.354±0.027
0.1 0.1 1.321±0.024 1.333±0.023 1.339±0.026 1.345±0.026 1.348±0.027 1.351±0.024 1.352±0.021
0.2 0.2 1.321±0.025 1.327±0.024 1.339±0.025 1.345±0.023 1.344±0.025 1.352±0.027 1.351±0.026
0.3 0.35 1.322±0.023 1.335±0.028 1.341±0.025 1.349±0.025 1.349±0.024 1.350±0.025 1.359±0.026
0.4 0.5 1.319±0.026 1.330±0.027 1.338±0.026 1.345±0.026 1.347±0.024 1.356±0.025 1.352±0.026
0.5 0.7 1.322±0.024 1.331±0.024 1.334±0.024 1.345±0.028 1.349±0.022 1.356±0.025 1.353±0.028
0.6 0.9 1.322±0.025 1.331±0.024 1.340±0.023 1.343±0.024 1.349±0.028 1.352±0.026 1.357±0.026
0.7 1.2 1.322±0.027 1.330±0.023 1.339±0.027 1.345±0.024 1.346±0.023 1.350±0.025 1.359±0.025
0.8 1.6 1.319±0.029 1.330±0.025 1.338±0.021 1.345±0.029 1.348±0.024 1.351±0.025 1.355±0.026
0.9 2.3 1.323±0.024 1.328±0.023 1.340±0.026 1.348±0.024 1.346±0.023 1.349±0.024 1.354±0.026

Table 4: The critical values, Dq
cv, from the quantile analysis for Case II.

p η D
q
n=30 D

q
n=50 D

q
n=100 D

q
n=200 D

q
n=500 D

q
n=1000 D

q
n=10000

0 0 0.858±0.011 0.865±0.012 0.874± 0.012 0.881±0.013 0.887±0.012 0.890±0.015 0.893±0.015
0.1 0.1 0.817±0.012 0.829±0.011 0.838±0.012 0.843±0.013 0.850±0.013 0.851±0.013 0.857±0.012
0.2 0.2 0.815±0.012 0.824±0.011 0.838±0.012 0.842±0.012 0.847±0.013 0.852±0.012 0.856±0.011
0.3 0.35 0.818±0.013 0.830±0.012 0.840±0.010 0.848±0.013 0.854±0.013 0.856±0.012 0.859±0.012
0.4 0.5 0.821±0.012 0.832±0.011 0.846±0.011 0.853±0.012 0.857±0.012 0.862±0.013 0.866±0.013
0.5 0.7 0.824±0.013 0.840±0.013 0.852±0.013 0.860±0.012 0.863±0.011 0.868±0.014 0.872±0.012
0.6 0.9 0.830±0.012 0.844±0.013 0.857±0.012 0.866±0.012 0.873±0.011 0.876±0.013 0.881±0.011
0.7 1.2 0.835±0.012 0.853±0.012 0.864±0.013 0.873±0.012 0.878±0.013 0.882±0.013 0.888±0.012
0.8 1.6 0.839±0.012 0.855±0.012 0.871±0.013 0.880±0.013 0.886±0.014 0.890±0.015 0.894±0.014
0.9 2.3 0.843±0.012 0.864±0.011 0.880±0.014 0.890±0.014 0.897±0.014 0.897±0.013 0.904±0.014

Table 5: The critical values, Dq
cv, from the quantile analysis for Case IIIa.

p η Dq
n=30 Dq

n=50 Dq
n=100 Dq

n=200 Dq
n=500 Dq

n=1000

0 0 1.055±0.020 1.064±0.018 1.072±0.020 1.080±0.021 1.083±0.016 1.086±0.018
0.1 0.1 1.054±0.019 1.064±0.019 1.074±0.019 1.078±0.018 1.085±0.017 1.085±0.018
0.2 0.2 1.058±0.018 1.064±0.018 1.074±0.018 1.080±0.019 1.085±0.018 1.086±0.022
0.3 0.35 1.057±0.016 1.064±0.019 1.075±0.016 1.081±0.019 1.082±0.017 1.085±0.019
0.4 0.5 1.054±0.018 1.066±0.019 1.072±0.019 1.079±0.019 1.083±0.017 1.085±0.016
0.5 0.7 1.054±0.017 1.066±0.021 1.074±0.021 1.080±0.021 1.084±0.018 1.083±0.019
0.6 0.9 1.057±0.017 1.065±0.018 1.077±0.020 1.077±0.018 1.086±0.020 1.086±0.019
0.7 1.2 1.056±0.018 1.065±0.018 1.075±0.019 1.083±0.018 1.084±0.017 1.085±0.019
0.8 1.6 1.056±0.021 1.064±0.018 1.076±0.020 1.080±0.021 1.082±0.019 1.086±0.017
0.9 2.3 1.057±0.017 1.065±0.017 1.074±0.018 1.077±0.017 1.084±0.020 1.088±0.019

Table 6: The critical values, Dq
cv, from the quantile analysis for Case IIIb.

p η Dq
n=30 Dq

n=50 Dq
n=100 Dq

n=200 Dq
n=500 Dq

n=1000

0 0 1.281±0.024 1.289±0.022 1.301±0.024 1.302±0.028 1.310±0.025 1.310±0.023
0.1 0.1 1.301±0.026 1.307±0.023 1.314±0.023 1.320±0.024 1.322±0.025 1.323±0.027
0.2 0.2 1.283±0.026 1.293±0.023 1.299±0.026 1.308±0.025 1.306±0.026 1.307±0.026
0.3 0.35 1.255±0.023 1.262±0.025 1.270±0.023 1.273±0.024 1.284±0.023 1.281±0.024
0.4 0.5 1.224±0.022 1.233±0.021 1.241±0.022 1.246±0.024 1.250±0.027 1.257±0.022
0.5 0.7 1.194±0.021 1.203±0.022 1.212±0.020 1.214±0.021 1.223±0.022 1.227±0.023
0.6 0.9 1.171±0.020 1.177±0.019 1.189±0.023 1.193±0.020 1.194±0.023 1.198±0.023
0.7 1.2 1.144±0.020 1.154±0.021 1.162±0.023 1.169±0.021 1.174±0.021 1.179±0.022
0.8 1.6 1.122±0.019 1.136±0.021 1.142±0.024 1.148±0.020 1.153±0.022 1.154±0.021
0.9 2.3 1.100±0.019 1.110±0.021 1.125±0.022 1.124±0.020 1.131±0.018 1.136±0.019

6. Discussion of the results
The truncation in the analysis can be defined three equivalent ways: 1) τL, the value be-
low which all data is removed/absent, 2) p the percentage of data removed/absent by the
truncation procedure, and 3) the generalised truncation parameter η ≡

( τL
α

)β. These three
parameters are related by the equations

p = 1− e−( τLα )β = 1− e−η . (23)

All of these parameters will be used throughout this paper, depending on which is the most
convenient.
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6.1. Estimation of the Weibull parameters

Identifying and analyzing the distribution which represents the data set is our main focus,
since it is the source of the predictability. Figure (1) is an errorbar plot of the MLE estimates
of the parameters α̂ (Upper left, in Case II and Lower left in Case IIIa) and β̂ (Upper
right in Case II, Lower right in Case IIIb) for various sample sizes n and truncation levels
p. Here the true values are taken as α0 = 400 and β0 = 0.58. From these plots one can
see that as the sample size increases the variance in the estimation of α̂ and β̂ decreases in
all cases. Furthermore as the truncation level increases the variance in estimation of α̂ and
β̂ increases continuously in Case II, while in Case IIIb it increases initially then decreases.
Finally, in Case IIIa the estimation of the parameter is totally insensitive to the truncation,
see Figure(1c).
In summary, the estimation is better in Cases II and IIIb when the sample size is larger
and the truncation is smaller. The single parameter estimates are far better than the double
parameter estimates as expected. Case IIIa, where the shape parameter β is known, and the
scale parameter α is unknown, is superior to Case IIIb with the unknown shape parameter
β and known scale parameter α, since in Case IIIa the CVs are independent of truncation
and the estimation of α is more precise, which is the optimum scenario. Comparisons on
estimation of parameters show that the variance is reduced by 75% in α and by 50% in β
between the two parameter and one parameter cases.

6.2. Critical values as a function of sample size n

Figure 2 depicts, for Cases II and IIIb, the dependence of the critical values, (given in Table 4
and Table 6) on n for a range of truncation levels, p (or truncation parameter η). For clarity
the x−axis is plotted on a log scale. Both the cases show a distinctive separation between
the lines for different truncation levels, indicating a dependence on the truncation level p.
On the other hand in Case I, the critical values are independent of truncation and only depend
on n. As predicted by the theory, Equation (17), we also note that truncation has no noticeable
effect on the critical values in Case IIIa as well. According to Miller’s formula, Miller (1956),
which was derived for the out sample, untruncated case namely Case I, the critical values are
quadratic in 1/

√
n

Dcv(n) =
√
−1

2 log αH2 −
0.167√
n
− A
n

for n > 20 (αH = 0.05, 95% confidence level) . (24)

where the first term in above expression is Simirnov’s asymptotic formula and calculated as
1.358 and

A ≡ 0.090
(
− log10

αH
2

)3/2
+ 0.015

(
log10

αH
2

)2
− 0.085αH2 − 0.111

= 0.109 .

Although Miller’s formula, Equation (24), is designed to be used for only Case I, where
both the parameters are known a priori, we will however use it as a guide to investigate the
functional dependence of the critical values on the sample size n for all cases. This can be
achieved by fitting the critical values given in Tables 3 - 6 for each value of p to the function

Dcv(p|n) = Ã(p) + B̃(p)√
n

+ C̃(p)
n

. (25)
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(b) β̂ – Case II.
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(c) α̂ – Case IIIa.
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(d) β̂ – Case IIIb.

Figure 1: The mean value of the MLE of Weibull parameters α and/or β as a function of
n and p (the percentage data removed by truncation). The error bars show one standard
deviation in the estimated values of the parameters. The horizontal dashed line shows the
true value of the parameters that was used to generate the data for α0 = 400 and β0 = 0.58.

Table 7: Results of fitting Dq
cv(p|n) to quadratic and linear functions in 1/

√
n. The critical

values, Dq
cv, obtained as a function of sample size n from the quadratic fit on to left-truncated

data of Case I for each truncation level p, truncation parameter η. Ã(p|n), B̃(p|n) and C̃(p|n)
are the fit parameters in Equation (25), Ã1(p|n), B̃1(p|n) in Equation (26).

p η Ã(p) B̃(p) C̃(p) Ã1(p) B̃1(p)
0 0 1.355±0.004 -0.193±0.117 0.087±0.588 1.354±0.002 -0.177±0.024
0.1 0.1 1.353±0.003 -0.086±0.081 -0.484±0.408 1.356±0.003 -0.179±0.032
0.2 0.2 1.354±0.009 -0.128±0.223 -0.297±1.124 1.355±0.005 -0.185±0.048
0.3 0.35 1.357±0.008 -0.125±0.203 -0.354±1.026 1.359±0.005 -0.193±0.046
0.4 0.5 1.355±0.008 -0.116±0.221 -0.468±1.116 1.358±0.005 -0.206±0.052
0.5 0.7 1.358±0.010 -0.200±0.265 0.004±1.334 1.358±0.005 -0.199±0.054
0.6 0.9 1.359±0.004 -0.207±0.094 0.043±0.475 1.359±0.002 -0.199±0.019
0.7 1.2 1.359±0.007 -0.228±0.170 0.178±0.858 1.358±0.004 -0.194±0.036
0.8 1.6 1.356±0.002 -0.154±0.046 -0.266±0.234 1.358±0.002 -0.205±0.018
0.9 2.3 1.355±0.008 -0.128±0.218 -0.290±1.100 1.356±0.005 -0.184±0.047
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The fit results are tabulated in Table 7 for Case I where the values of C̃(p) are quite variable
and the standard deviation in C̃(p) is greater than the value itself. This suggests thatDq

cv(p|n)
is better approximated by a function that is linear in 1/

√
n instead of quadratic, i.e.,

Dcv(p|n) = Ã1(p) + B̃1(p)√
n

. (26)

Table 8: The critical values obtained from the quantile analysis fitted to the linear function
for a range of truncation level p for Case II, Case IIIa and Case IIIb. Ã1(p|n), B̃1(p|n) are
the fit parameters defined in Equation (26).

Case II Case IIIa Case IIIb
p η Ã1(p) B̃1(p) Ã1(p) B̃1(p) Ã1(p) B̃1(p)
0 0 0.896±0.001 -0.211±0.012 1.093±0.002 -0.204±0.022 1.318±0.005 -0.197±0.047
0.1 0.1 0.859±0.002 -0.223±0.018 1.093±0.004 -0.207±0.034 1.329±0.002 -0.154±0.020
0.2 0.2 0.859±0.002 -0.238±0.024 1.093±0.002 -0.194±0.021 1.314±0.007 -0.160±0.065
0.3 0.35 0.864±0.002 -0.243±0.023 1.092±0.004 -0.188±0.034 1.288±0.005 -0.186±0.048
0.4 0.5 0.870±0.003 -0.262±0.029 1.093±0.004 -0.203±0.038 1.261±0.004 -0.201±0.034
0.5 0.7 0.877±0.004 -0.273±0.039 1.093±0.006 -0.200±0.051 1.232±0.004 -0.208±0.040
0.6 0.9 0.885±0.002 -0.295±0.021 1.093±0.005 -0.196±0.041 1.204±0.005 -0.179±0.047
0.7 1.2 0.892±0.004 -0.298±0.039 1.093±0.005 -0.200±0.050 1.185±0.002 -0.222±0.016
0.8 1.6 0.900±0.005 -0.322±0.047 1.093±0.005 -0.195±0.045 1.162±0.005 -0.205±0.047
0.9 2.3 0.911±0.006 -0.346±0.062 1.093±0.004 -0.200±0.033 1.143±0.007 -0.227±0.061

The linear function is a better fit to the data Dq
cv(p|n), in the sense that there is no significant

change in the adjusted r-squared goodness of fit statistic, but the standard deviation in B̃
over all values of p is an order of magnitude better when Equation (26) is used instead
of Equation (25). The results for Ã1(p|n) and B̃1(p|n) given by fitting Dcv(p|n) are in very
good agreement with Miller’s formula, Equation (24). The fit results are given in Table 8 for
Case II, Case IIIa and Case IIIb, respectively.
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(a) Both α and β are unknown – Case II.

n
30  50  100 200 500 1000

D
cv

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4
p=0
p=0.1
p=0.2
p=0.3
p=0.4
p=0.5
p=0.6
p=0.7
p=0.8
p=0.9

(b) β is unknown and α is known – Case
IIIb.

Figure 2: Critical values as function of n for a range of truncation level p.

6.3. Critical values as a function of left-truncation parameter eta

To determine the relationship between the critical values and the truncation parameter η, we
plot in Figure 3 the critical values given in Tables 3-6, as a function of √η for
n = (30, 100, 1000, 10000) for all cases. We have also included a plot of the Brownian Bridge
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Figure 3: The critical values as a function of √η for a range of n values. The circled dashed
line with the error bars are the Brownian Bridge calculation.

results (with error bars) for all cases, since that provides an alternative way of estimating Dcv

in the limit n → ∞. For out-sample data the critical values are independent of truncation
and this is verified in Figure 3a. We see that there is no variation in the critical values
as a function of √η. On the other hand Figure 3b for Case II shows that the critical values
initially decrease but then increase as the truncation level increases (boomerang shape), which
is totally different behaviour from the out-sample case (Case I). In Figure 3c for Case IIIa
the CV’s do not change as η increases, similar to Case I in that for a fixed value of n the
critical values are independent of the truncation. These results are consistent with the theory
we outlined in Equation (17). Case IIIb in Figure 3d, on the other hand, shows that CV’s
initially slightly increase then decrease as the truncation level increases.

In summary, the CV’s in Cases I and IIIa are truncation independent while in Cases II and
IIIb they are not. For all cases the asymptotic critical value analysis from the Brownian
Bridge confirms the same η dependence as we found in the quantile analysis. This section
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deals with formulating the critical values as a function of truncation parameter η. In both
Case II and Case IIIb, the CV’s are truncation dependent and among the many fit functions
tried to describe the data we found that the quadratic ratio function

Dq
cv(η|n) =

C(n) +B(n)√η +A(n)η
E(n) +D(n)√η + η

, (27)

fited best. Its parameters are given in Tables 9 and plotted in Figs. 4c,g and 4d,h for n = 30
and n = 10000, respectively. In the figure the light shaded grey, tick band shows the error
range on Dq

cv(η|n) values whereas the darker shaded grey area between the dashed lines is
the error band on the fit values. In addition the asymptotic critical values from the Brownian
Bridge analysis (squares) are shown in the figures for only n = 10, 000.

Table 9: The critical values obtained by fitting the ratio function to the data from the quantile
analysis for various sample sizes, n. The fit parameters defined in Equation (27) are given for
each n values and for Cases II and IIIb.

Case II
n A(n) B(n) C(n) D(n) E(n)
30 0.870±0.008 -0.197±0.102 0.207±0.040 -0.182±0.131 0.241±0.046
50 0.902±0.017 -0.218±0.196 0.295±0.079 -0.184±0.252 0.340±0.091
100 0.933±0.026 -0.080±0.306 0.372±0.108 0.000±0.387 0.425±0.124
200 0.934±0.014 -0.279±0.150 0.359±0.060 -0.240±0.189 0.407±0.068
500 0.955±0.032 -0.118±0.340 0.407±0.126 -0.035±0.426 0.458±0.142
1000 0.940±0.017 -0.250±0.200 0.332±0.070 -0.209±0.247 0.374±0.079
10000 0.954±0.015 -0.207±0.169 0.383±0.062 -0.148±0.208 0.428±0.069

Case IIIb
n A(n) B(n) C(n) D(n) E(n)
30 1.096±0.047 -1.079±0.395 0.896±0.156 -0.913±0.291 0.700±0.120
50 1.115±0.040 -1.150±0.353 0.910±0.146 -0.957±0.260 0.706±0.112
100 1.139±0.033 -1.274±0.306 0.955±0.137 -1.040±0.223 0.737±0.104
200 1.125±0.043 -1.135±0.380 0.918±0.154 -0.939±0.277 0.707±0.117
500 1.138±0.028 -1.209±0.252 0.952±0.107 -0.988±0.183 0.730±0.081
1000 1.137±0.023 -1.193±0.211 0.992±0.088 -0.973±0.153 0.759±0.067

6.4. The modified critical values as a function of n and eta

In this section both the sample size, n, and truncation dependence, η, are combined to give
one formula for the critical values as a function of n and η.
Case II and Case IIIb that both are sensitive to the truncation parameters. The critical values
in Tables 4 and 6 can be fitted to the two dimensional function

Dq
cv(η, n) = A+ B√

n
+ C
√
η +D

√
η
√
n

+ E η + F η3/2 , (28)

and the fit results are given in Table 10.

Table 10: The fit parameters in Equation (28) are presented here for Cases II and IIIb.

Case II
A B C D E F

0.894±0.001 -0.196±0.01 -0.178±0.007 -0.096±0.02 0.263±0.012 -0.092±0.006
Case IIIb

A B C D E F
1.311± 0.003 -0.164± 0.028 0.187±0.17 -0.036±0.041 -0.495±0.028 0.198±0.013

6.5. Exploring CV’s for the dependence of Weibull parameter ranges

This section numerically explores the effects of the range of the Weibull parameters on the
critical values as discussed in section 3. For this purpose, we consider various combinations
of the scale parameter α = 1, 400, 1000, 2000 and shape parameter, β = 0.2, 0.35, 0.58, 0.8, 1.
The results are displayed in Figure 5, where the critical values plotted as a function η for
sample sizes n = 30(left) for Case II, Case IIIb. All the curves for different parameter
combinations overlap with each other to show the insensitivity to different parameter values.
In Case I and IIIa the CV’s are independent of parameter, as is well known.
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(c) β is unknown and α is known – Case IIIb.

n = 10000

p
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

D
cv

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Dcv(, = 0:05)
Dcv ' <

Fit : (A + Bx + Cx2)=(x2 + Dx + E)
Fit Error

DBB
n!>1 ' <

(d) β is unknown and α is known – Case IIIb

Figure 4: Critical values obtained from the quantile analysis and their fits are plotted as a
function of √η for a sample sizes n = 30 (left), n = 10, 000 (right).

6.6. Comparison of the results with literature

Comparison of our CV’s with those already published are shown in Tables 11-14. We can see
that there is excellent agreement. All of the previous studies in the literature only considered
complete (untruncated) data, whereas our study considers a range of truncations, including
the untruncated case. Therefore, we can only compare the complete case results with the
literature. Also, we wish to remind the reader that the Weibull distribution is a special case
of the generalised extreme value distribution.
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Figure 5: Critical values versus η for various combinations of α and β. α = 1, 400, 1000, 2000,
β = 0.2, 0.35, 0.58, 0.8, 1 ranges for n = 30.

Table 11: Comparison of our results with the available literature for Case I (α and β are
known). To the best of our knowledge, no data is available for the CV’s of left-truncated
Weibull distribution. For complete data sets, (τL = 0 = η = 0 = p = 0, our error is ±0.025).

Authors Estimation Distribution n Dcv(95%) Our Results
Smirnov 1948 Smirnov (1948) - all ∞ 1.36 1.356
Massey 1951 Massey (1951) - all 30 1.32 1.323

- all ∞ 1.36 1.356
Birnbaum 1952 Birnbaum (1952) - all 30 1.3238 1.323

- all 50 1.3322 1.329
- all 100 1.3400 1.337
- all ∞ 1.3581 1.356

Miller 1956 Miller (1956) - all 30 1.324 1.323
- all 50 1.332 1.329
- all 100 1.340 1.337
- all ∞ 1.358 1.356

Table 12: Comparison of our results with the available literature for Case II (α and β are
unknown). To the best of our knowledge, no CV’s of left-truncated Weibull distributions are
available. For complete data sets, (τL = 0 = η = 0 = p = 0, our error is ±0.015).

Authors Estimation Distribution n Dcv(95%) Our Results
Littell et al. 1979 Littell et al. (1979) MLE Weibull 30 0.854 0.858
Parsons & Wirsching 1982 Parsons and Wirsching (1982) MLE Weibull 30 0.854 0.858

MLE Weibull ∞ 0.865 0.896
Chandra et al. 1981 Chandra et al. (1981) MLE extreme value 50 0.856 0.865

MLE extreme value ∞ 0.874 0.896
D’Agostino & Stephens 1986Agostino and Stephens (1986) MLE extreme value 50 0.856 0.865

MLE extreme value ∞ 0.874 0.896
Evans et al. 1989 Evans, Johnson, and Green (1989) MLE Weibull 30 0.8599 0.858

MLE Weibull 50 0.8697 0.865
MLE Weibull 100 0.8740 0.874
MLE Weibull 200 0.8796 0.881
MLE Weibull ∞ 0.8982 0.896
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Table 13: Comparison of our results with the available literature for Case IIIa (α unknown
and β known). To the best of our knowledge, no CV’s of left-truncated Weibull distributions
are available. For untruncated (complete) data sets, (τL = 0 = η = 0 = p = 0, our error is
±0.020).

Authors Estimation Distribution n Dcv(95%) Our Results
Lilliefors 1969 Lilliefors (1969) MLE Exponential 30 1.052 1.055

MLE Exponential ∞ 1.060 1.093
Durbin 1975 Durbin (1975) MLE Exponential 30 1.0580 1.055

MLE Exponential 50 1.0668 1.065
MLE Exponential 100 1.0753 1.073

Chandra et al. 1981 Chandra et al. (1981) MLE extreme value 50 1.067 1.064
MLE extreme value ∞ 1.094 1.093

Woodruff et al 1983 Woodruff, Moore, Dunne, and Cortes (1983) MLE Weibull 30 1.057 1.055
D’Agostino & Stephens 1986 Agostino and Stephens (1986) MLE Exponential 50 1.061 1.065

MLE Exponential 100 1.072 1.073
MLE Exponential ∞ 1.094 1.093

Shorack & Wellner p 239 Shorack and Wellner (2009) MLE Exponential ∞ 1.094 1.093

Table 14: Comparison of our results with the available literature for Case IIIb (α known and
β unknown). To the best of our knowledge, no CV’s of left-truncated Weibull distributions
are available. For untruncated (complete) data sets, (τL = 0 = η = 0 = p = 0, our error is
±0.025).

Authors Estimation Distribution n Dcv(95%) Our Results
D’Agostino & Stephens 1986 Agostino and Stephens (1986) MLE extreme value 50 1.29 1.289

MLE extreme value ∞ 1.29 1.317

7. Interpretation and evaluation of results

7.1. The eta-parameter in practical applications

If α and β are unknown then p and hence η are estimated from the sample so that η̂ =
( τL
α̂

)β̂
and p̂ = 1− e−η̂. As η̂ is a non-linear function of α̂ and β̂ then η̂ will be a biased estimate of
η. As discussed in Appendix B, for a sample size n the bias in η is defined as

E [∆η̂] = E [η̂ − η] = E [η̂]− η , (29)

so that an unbiased estimate of η is given in Appendix B by Equation (32) in conjunction with
Equation (36). Estimated η̂ and corrected (unbiased) η̂ values for various sample sizes and
truncation levels are given in the Tables 22 and 23 for Case II and Case IIIb respectively.
Making use of these tables, we demonstrate the passing rates with and without the bias-
correction of η̂ in Tables 15 and 16 for Case II and Case IIIb, respectively. For large sample
size the bias vanishes in accordance with Theorem 1 in Kreer et al. (2015). Furthermore,
for small truncation parameters η the bias is of no relevance. Only for small sample sizes
(n = 30, 50, 100) and truncation levels, p above 0.7 does the correction (unbiasing) formula
need to be applied.
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Table 16: Percentage pass rates in KS-test with and without η̂-correction for 10000 simulations
in Case IIIb (error is less than ±0.5%).

p η n = 30 n=50 n=100 n=1000
η̂ η̂ η̂ η̂ η̂ η̂ η̂ η̂

uncorrected corrected uncorrected corrected uncorrected corrected uncorrected corrected
0 0 95.6 95.6 95.2 95.2 95.0 95.0 95.2 95.2
0.1 0.1 94.7 94.7 95.0 95.0 95.0 95.0 95.2 95.2
0.2 0.2 94.8 94.8 94.6 94.6 94.9 94.9 94.5 94.5
0.3 0.35 95.1 95.0 95.0 94.9 95.1 95.0 94.9 94.9
0.4 0.5 95.7 95.6 95.0 95.0 95.4 95.4 95.0 95.0
0.5 0.7 95.2 95.2 95.4 95.4 95.5 95.5 95.4 95.4
0.6 0.9 95.3 95.3 95.5 95.5 95.2 95.2 95.4 95.4
0.7 1.2 95.2 95.2 95.1 95.1 95.3 95.3 94.9 94.9
0.8 1.6 94.6 94.6 95.0 95.0 94.2 94.2 94.8 94.8
0.9 2.3 95.4 95.4 94.9 94.9 95.5 95.5 95.2 95.2

Table 15: Percentage pass rates in KS-test with and without η̂-correction for 10000 simulations
in Case II (error is less than ±0.5%).

p η n = 30 n=50 n=100 n=1000
η̂ η̂ η̂ η̂ η̂ η̂ η̂ η̂

uncorrected corrected uncorrected corrected uncorrected corrected uncorrected corrected
0 0 95.3 95.3 95.0 95.0 95.2 95.2 95.4 95.4
0.1 0.1 95.1 95.1 94.9 94.9 94.8 94.8 95.5 95.5
0.2 0.2 95.2 95.2 95.2 95.2 94.9 94.9 95.1 95.1
0.3 0.35 94.8 94.8 94.8 94.8 94.8 94.8 94.6 94.6
0.4 0.5 94.2 94.3 94.7 94.6 94.8 94.8 94.6 94.6
0.5 0.7 94.3 94.7 94.4 94.3 95.1 95.0 94.6 94.6
0.6 0.9 93.6 94.5 94.3 94.2 94.9 94.8 95.0 95.0
0.7 1.2 90.5 94.1 93.8 94.7 94.6 94.6 95.2 95.2
0.8 1.6 86.7 94.3 90.7 94.3 93.9 94.6 95.1 95.1
0.9 2.3 76.7 94.6 81.6 94.3 88.6 94.4 94.8 94.9

7.2. Power studies: comparison with other distributions in Case II

In order to answer the question " What is the chance that data drawn from some alterna-
tive distribution will pass the hypothesis test for a Weibull distribution?", the power test is
employed.

We compare the power of our out-sample (Case I) and in-sample (Case II) tests by drawing
the random numbers of our samples from alternative distributions commonly used in the
literature for making goodness-of-fit comparisons. We follow Aho, Bain, and Engelhardt
(1985) and consider as possible alternatives to the 2-parameter Weibull distribution, those
distributions defined on the positive range. In particular, we consider the log-normal, log-
Cauchy, Pareto (power law), log-double exponential, log-logistic and chi-square distributions
with 1, 3 and 4 degrees of freedom (note that the chi-square distribution with 2 deegrees
of freedom is the exponential and thus not in the scope here). We consider the chi-square
distributions with 1, 3 and 4 degrees of freedom as academic only, as they only permit one to
fit one single parameter, i.e. the degree of freedom k. As noted earlier by Aho et al. (1985), for
the complete data set our test performs well for log-Cauchy, Pareto, log-double-exponential
and log-logistic, namely one can rule out these distributions as candidates explaining the
data set. On the other hand, we found that the power-testing does have problems ruling out
χ2-distributions with 1, 3 and 4 degrees of freedom and log-normal distributions. The latter
can be ruled out by a likelihood ratio test in the spirit of Dumonceaux and Antle (1973). The
results are summarized in Table 17 for the complete and the truncated Case I and Case II.
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Table 17: Summary of in-sample KS-test, truncation rate p = 0, 0.5 for Case I and Case II,
number of simulations, N = 1000.

Case I Case II
p = 0 p = 0.5 p = 0 p = 0.5

distribution sample pass pass pass pass
size n rate % rate % rate % rate %

Weibull2d 30 96 96 93 93
Weibull2d 100 95 96 93 93
Weibull2d 500 - - 95 97
log-Cauchy 30 50 4 6 3
log-Cauchy 100 2 1 0 0
log-Cauchy 500 - - 0 0
log-double exp. 30 57 42 39 62
log-double exp. 100 6 1 3 52
log-double exp. 500 - - 0 43
log-logistic 30 46 1 63 85
log-logistic 100 1 0 16 85
log-logistic 500 - - 0 56
log-normal 30 55 65 73 93
log-normal 100 4 17 30 93
log-normal 500 - - 0 89
Pareto 30 0 1 1 42
Pareto 100 0 0 0 52
Pareto 500 - - 0 44
chi-square(k=1) 30 56 78 92 95
chi-square(k=1) 100 8 40 81 96
chi-square(k=1) 500 - - 43 94
chi-square(k=3) 30 0 3 93 89
chi-square(k=3) 100 0 0 92 95
chi-square(k=3) 500 - - 81 95
chi-square(k=4) 30 0 0 92 90
chi-square(k=4) 100 0 0 87 88
chi-square(k=4) 500 - - 63 87

8. Application of our modified KS test

8.1. US data on duration of ethnically mixed marriages

Data on the duration of marriages that end in divorce in the US is publicly available at
(http://data.princeton.edu/wws509/datasets/#divorce). Most states in the United States
require a minimum legal separation time prior to divorce, although not all do. The duration
of marriages that ultimately end in a divorce in the database will therefore contain a mixture of
those with a minimum duration (from 0 to 12 months). In order to determine the distribution
that describes the duration of failed marriages in the US, it is therefore necessary to left-
truncate the data.
We have taken a subset of 230 divorced couples where husband and wife belong to different
ethnic groups. We then analyze the duration of the marriages for a range of left-truncation
values, specifically τL = 0.25, 1, 5 and 10 years in Table 18. We observe from the data also
that the smallest life time is bigger than 0.25 years. This is further evidence that the data
is left-truncated. Before starting our Weibull analysis, we firstly generate a Q-Q plot for the
most commonly used alternatives: Weibull, Pareto and log-normal distribution. In our case
the Pareto distribution can clearly be singled out by purely looking at its curved graph in
the Q-Q plot. To decide for either Weibull or log-normal is more delicate as both graphs in
the Q-Q plot are more or less straight lines. Here we use a likelihood ratio test as proposed
firstly by Dumonceaux and Antle (1973) for the discrimination between (un-truncated) log-
normal and (un-truncated) Weibull distributions. As their table covers only sample sizes of
n = 20, 30, 40, 50 we had to extend it to sample sizes n = 100, 200, 300. The likelihood ratio
test gives a clear verdict in favor of the Weibull distribution.3

In the following Weibull analysis, truncation rates p are given as percentage of data which
have been eliminated by the truncation procedure. From the estimated parameters α̂ and

3 The results of Dumonceaux and Antle (1973) have been modified by the authors to account also for
left-truncation.
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β̂ we got η̂ as estimator for our critical value using Equation (28) and the KS distance Dn

is calculated from the data using Equation (12). Due to moderate truncation levels we do
not need to un-bias the value of η̂. Hence, we can not reject the hypothesis, that the data
come from a left-truncated Weibull distribution for a wide range of truncation levels with
β = 1.25 ± 0.07 and α = 11.4 ± 0.06 years. The details of this analysis can be seen in the
Table 18.

Table 18: Duration of ethnically mixed marriages ending in divorce in the US. y indicates
year as a unit.

τL [y] n α̂ [y] β̂ η̂ p[%] Dn Dcv(n, η̂, 0.05)/
√
n H0

- 230 11.5± 0.6 1.29± 0.07 0.00± 0.00 0.0 0.0502 0.0581 Accept
0.25 230 11.3± 0.6 1.25± 0.07 0.01± 0.00 0.0 0.0437 0.0570 Accept
1 222 11.2± 0.7 1.24± 0.07 0.05± 0.01 3.5 0.0425 0.0572 Accept
5 157 11.4± 0.8 1.24± 0.08 0.36± 0.02 31.7 0.0551 0.0672 Accept
10 96 14.0± 0.9 1.50± 0.11 0.60± 0.02 58.3 0.0626 0.0861 Accept

8.2. Time between major terrorist attacks with minimum 10 casualties

The worldwide probability distribution of terrorist attacks has been investigated by
Clauset and Woodard (2013). We utilize the RAND-MIPT database
(available at http://www.rand.org/nsrd/projects/ terrorism-incidents/download.html) con-
taining 13,274 terrorist events worldwide from 1968 to 2007. Like Clauset and Woodard
(2013) we are interested in “major attacks”, defined as terrorist events with at least 10 casu-
alties. We investigate the times between these major attacks and find that a large proportion
of their tail can be described as left-truncated Weibull. From the estimated parameters α̂ and
β̂ we get η̂ as estimator for our critical value using Equation (28) and the KS distance Dn is
calculated from the data using Equation (12). Results are given in Table 19. We note that
the tail of the distribution can be described by a Weibull distribution with shape parameter
β ' 0.50 whereas the short-end is described by something else and does not pass the Weibull
hypothesis.

Table 19: Time between major terrorist attacks with minimum 10 casualties. d indicates day
as a unit.

τL [d] n α̂ [d] β̂ η̂ p[%] Dn Dcv(n, η̂, 0.05)/
√
n H0

- 926 9.1± 0.5 0.61± 0.02 0.00± 0.00 0.0 0.2292 0.0290 Decline
10 204 12.7± 2.0 0.48± 0.03 0.89± 0.07 78.0 0.0491 0.0604 Accept
12 187 12.6± 2.0 0.48± 0.03 0.98± 0.07 79.8 0.0426 0.0632 Accept
14 173 12.5± 2.1 0.48± 0.03 1.06± 0.08 81.3 0.0447 0.0659 Accept
16 161 12.2± 2.1 0.47± 0.03 1.14± 0.08 82.6 0.0465 0.0684 Accept
18 148 15.6± 2.7 0.50± 0.03 1.08± 0.08 84.0 0.0526 0.0711 Accept
20 140 14.4± 2.6 0.49± 0.03 1.17± 0.08 84.9 0.0539 0.0733 Accept
22 132 14.2± 2.7 0.49± 0.03 1.24± 0.09 85.7 0.0557 0.0756 Accept
24 124 15.9± 3.0 0.51± 0.04 1.23± 0.09 86.6 0.0588 0.0779 Accept

8.3. Stock market data

We investigate the difference in arrival times between consecutive orders at the New York
Stock Exchange (NYSE) for a given stock. The free data provided by www.tickdata.com
comprises the entire trading day of shares of ITT Corp. on 11 January 2011, from 9:30 to
16:00 EST. For this example we only look at a snapshot from 12:00:00 to 12:00:21 EST, i.e.
21 seconds of data. The resolution of the arrival times is milliseconds.
Truncation of arrival time differences is the process of taking the differences between con-
secutive arrival times and keeping only those with differences greater than τL = 1, 2, 5, 10
milliseconds. As we did in the previous examples, having singled out the alternatives of
Pareto and log-normal distribution, we estimate the Weibull parameters and perform the
hypothesis test; the results are given in Table 20.

www.tickdata.com
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Table 20: Arrival times of for ITT Corp. orders on NYSE on 11 Jan. 2011, 12:00:00-12:00:21.

τL [ms] n α̂ [ms] β̂ η̂ p[%] Dn Dcv(n, η̂, 0.05)/
√
n H0

- 100 - - 0 0 - 0.0874 Decline
1 61 128± 38 0.46± 0.05 0.1073 39% 0.0684 0.1064 Accept
2 57 169± 46 0.51± 0.05 0.1041 43% 0.0734 0.1100 Accept
5 54 190± 49 0.55± 0.06 0.1352 46% 0.0797 0.1127 Accept
10 51 179± 50 0.53± 0.06 0.2168 49% 0.0839 0.1155 Accept

From Table 20 we see that we can not reject the hypothesis that our truncated samples come
from a Weibull distribution. However when we analyse the complete (untruncated) sample we
see by a similar computation that it leads to the rejection of the Weibull hypothesis as the zero-
inflated data with arrival time differences below 1 millisecond prevent the MLE converging
onto a solution. One millisecond truncation seems to corrupt the estimation of the Weibull
parameters due to the error in time measurement of ±1 millisecond. From 2 millisecond
truncation onwards one finds consistent parameter estimation. Taking the weighted means
and errors from the truncated data sets with truncations of 2, 5 and 10 milliseconds we find
for the parameters α̂ = 179± 37 milliseconds and β̂ = 0.53± 0.04.

8.4. Time intervals for radioactive decay of Americium-241

Since the pioneering work of Geiger and Rutherford (1910) the counting process of the particles
arising from radioactive decay have been found to be described by a Poisson process. Due to
the so-called “dead time” of the detection device, certain decay events might not be measured
because the detector is still busy with “detecting” the previous event. Thus, the data set will
be incomplete due to “truncation”. This has given rise to certain corrections for the Poisson
process. Only 60 years later it was possible to measure waiting times between radioactive
decay events with acceptable accuracy using multichannel analyzers. Garfinkel and Mann
(1968) did one of the first measurement using a probe of 0.2 µCi Americium-231 as a nearly
pure α-source Their entire data set, comprising some 300’000 time intervals, was evaluated
later by Berkson (1975) albeit under the assumption of a Poisson process and performing a
χ2-test on the bin-ed data. Here, we want to demonstrate our analysis of a smaller sample
which is displayed in Garfinkel and Mann (1968) on page 709. We use the second, third and
fourth block only because the first block contains some control measurements for calibration.
Our data sample comprises 300 measurement points describing the time between subsequent
α-particles. The dead time was estimated by the authors to be 2.54 T.U.(1 T.U. denotes
a time unit and corresponds to the pulse frequency of 370 kHz). Our results are displayed
in Table 21. We recover as expected a shape parameter β = 1 indicating that the waiting
times are exponentially distributed giving rise to the Poisson process discovered in Geiger
and Rutherford (1910).

Table 21: Time intervals for radioactive decay of Americium-241. T.U. indicates time unit.

τL [T.U.] n α̂ [T.U.] β̂ η̂ p[%] Dn Dcv(n, η̂, 0.05)/
√
n H0

- 300 15605± 947 1.00± 0.05 0.00± 0.00 0.0 0.0491 0.0510 Accept
3 300 15596± 947 1.00± 0.05 0.00± 0.00 0.0 0.0493 0.0508 Accept
10 300 15576± 948 1.00± 0.05 0.00± 0.00 0.0 0.0498 0.0507 Accept
100 298 15597± 951 1.00± 0.05 0.01± 0.01 0.6 0.0500 0.0504 Accept

9. Conclusion
The Weibull distributions with a shape parameter less than one is known as “heavy-tailed”
because it has significant probabilities quite far from its mean. In insurance and other in-
dustries the cost of rare events due to “heavy tails” can be very high, so it is important to
determine exactly how rare they actually are. This can only be done by taking the available
data and testing it against hypothesized distributions.
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Data obtained from real life examples are often left-truncated. To test the hypothesis that the
data are sampled from a left-truncated Weibull distribution, one can perform a Kolmogorov-
Smirnov goodness-of-fit test. If the shape and scale parameters are not known they must be
estimated from the data itself. The commonly used maximum likelihood estimator does not
always give a non-trivial solution to estimating the shape and scale parameters, especially for
small sample sizes. For a small sample size there is a chance that the solution of the maximum
likelihood estimate lie on the trivial boundaries where either one or both of the parameters
vanish. A criterion for determining when non-vanishing solutions for the parameters exist
was given in this paper. We demonstrated also that with increasing sample size non-trivial
estimates exist with probability tending to one and these estimates are consistent, asymp-
totically normal, and efficient. Having obtained non-trivial estimates, a goodness-of-fit can
be judged using a Kolmogorov-Smirnov test. If either the shape and/or scale parameters are
unknown the critical values differ significantly from those when the parameters are known. If
both the parameters or only the shape parameter are unknown the critical values depend on
the truncation value as well the number of data.
The modified critical values presented here should be used to test if a set of data is sampled
from a left-truncated Weibull distribution with a known truncation point but unknown shape
and/or scale parameter. When both the parameters or only the shape parameter are unknown
and the truncation level is greater than 10%, then the dependence of the critical value on the
truncation level must be included, otherwise incorrect conclusions from the hypothesis tests
will be drawn. We provided the modified CVs in Tables (3) - (6) for various sample sizes and
truncation ranges and also formulas Equation (27) and Equation (28) where one can calculate
them for any desired p (or η) for given n and for combination of (p (or η), n), respectively.
Although the results presented here on the left truncated Weibull distribution can be applied
to a wide range of applications in many disciplines we are not aware of any other compre-
hensive studies that discuss the effects of truncation dependence on the critical values and
parameter estimation. We are in the process of applying our techniques to investigate finan-
cial, insurance, and real estate data using our tables and models for the critical values which
include the dependence on truncation and sample size.
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A. Left-truncated Weibull random variates and their represen-
tation by exponential variates
Let ui ∈ (0, 1) denote the standard uniform random variable. Then from the cdf in equation
(1) we obtain for the left-truncated Weibull random variable τi

τi = α ·
[(

τL
α

)β
+ log 1

ui

]1/β

= α · [η + yi]1/β (30)

where yi is a standard exponentially distributed random variable and η ≡ (τL/α)β.

B. Bias in estimates of eta
The estimated value of η (i.e. η̂ = (τL/α̂)β̂), will have an estimation error ∆η̂. In this sense,
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both η̂ and ∆η̂ are random variables whereas η is a fixed real number:

η = η̂ −∆η̂ ⇒ η = E[η̂]− E[∆η̂] . (31)

By definition η ≥ 0 hence we use an un-biasing formula motivated by Equation (31)

η = max {0, η̂ − E[∆η̂]} (32)

where the individual η̂ is unbiased by a correction term E[∆η̂] subject to η ≥ 0.
Defining the parameter estimation vector (suppressing the index n) as θ̂ = (α̂, β̂) and the
true parameter vector as θ0 = (α0, β0), from Section 2 for large sample size n the difference√
n(θ̂− θ0) is asymptotically normal with vector mean zero and covariance matrix Z−1(θ0),

the inverse of the Fisher matrix Equation (11). Thus

∆θ̂ = θ̂ − θ0 ∼ N
(

0, 1
n
Z−1

)
. (33)

To estimate the effect of errors in η due to errors in θ̂ we write similarly

α̂ = α0 + ∆α̂ β̂ = β0 + ∆β̂ (34)

where E
[[

∆α̂
∆̂β

]
[∆α̂ ∆̂β]

]
=

[
σ2
α̂ σα̂β̂

σα̂β̂ σ2
β̂

]
= Z−1 . (35)

Here, we have used Equation (33) to calculate the expectation. Then the Taylor expansion
of ∆η̂ gives

∆η̂ = ∂η̂

∂α̂
∆α̂+ ∂η̂

∂β̂
∆β̂ + 1

2
∂2η̂

∂α̂2 ∆α̂2 + 1
2
∂2η̂

∂β̂2
∆β̂2 + ∂2η̂

∂α̂ ∂β̂
∆α̂∆β̂ + · · ·

E[∆η̂] = 1
2
∂2η̂

∂α̂2 σ
2
α̂ + 1

2
∂2η̂

∂β̂2
σ2
β̂

+ ∂2η̂

∂α̂ ∂β̂
σα̂ β̂ + · · ·

= η̂

{[ 1
2α̂2 β̂(1 + β̂)

]
σ2
α̂ +

[
1

2β̂2
log η̂2

]
σ2
β̂
− 1
α̂

[1 + log η̂] σα̂ β̂ + · · ·
}
. (36)

Note that in Equation (36) we take the expectations only over the ∆α̂ and ∆β̂ but not
over the estimates α̂ or β̂. Estimated η̂ (uncorrected) values and corrected (unbias) η̂ using
Equation (36) for various sample sizes and truncation levels are given in Table 22 for Case II
and in Table 23 for Case IIIb .

Table 22: Estimated η̂ and unbiased η̂ for 10,000 simulations for sample sizes n =
30, 50, 100, 1000 in Case II.

p η n = 30 n=50 n=100 n=1000
η̂ η̂ − unbias η̂ η̂ − unbias η̂ η̂ − unbias η̂ η̂ − unbias

0 0 0 0 0 0 0 0 0 0
0.1 0.1 0.106 0.106 0.103 0.104 0.102 0.102 0.100 0.100
0.2 0.2 0.212 0.203 0.205 0.203 0.202 0.201 0.200 0.200
0.3 0.35 0.382 0.327 0.360 0.343 0.355 0.349 0.351 0.350
0.4 0.5 0.583 0.433 0.528 0.476 0.512 0.498 0.502 0.501
0.5 0.7 0.895 0.548 0.767 0.629 0.719 0.677 0.701 0.698
0.6 0.9 1.291 0.647 1.040 0.744 0.946 0.844 0.902 0.897
0.7 1.2 2.084 0.763 1.496 0.894 1.300 1.059 1.202 1.192
0.8 1.6 3.149 0.900 2.307 1.063 1.827 1.252 1.611 1.587
0.9 2.3 5.629 1.092 4.405 1.245 2.968 1.528 2.319 2.254
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Table 23: Estimated η̂ and unbiased η̂ for 10,000 simulations for sample sizes n =
30, 50, 100, 1000 in Case IIIb.

p η n = 30 n=50 n=100 n=1000
η̂ η̂ − unbias η̂ η̂ − unbias η̂ η̂ − unbias η̂ η̂ − unbias

0 0 0 0 0 0 0 0 0 0
0.1 0.1 0.097 0.104 0.097 0.101 0.099 0.101 0.100 0.100
0.2 0.2 0.191 0.201 0.195 0.201 0.197 0.200 0.200 0.200
0.3 0.35 0.034 0.347 0.342 0.348 0.346 0.349 0.350 0.350
0.4 0.5 0.488 0.497 0.493 0.497 0.497 0.499 0.500 0.500
0.5 0.7 0.693 0.697 0.696 0.698 0.698 0.699 0.700 0.700
0.6 0.9 0.898 0.899 0.898 0.899 0.899 0.900 0.900 0.900
0.7 1.2 1.205 1.202 1.203 1.201 1.201 1.201 1.200 1.200
0.7 1.6 1.608 1.603 1.608 1.604 1.604 1.602 1.600 1.600
0.9 2.3 2.288 2.281 2.297 2.292 2.302 2.298 2.301 2.301
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