
AJS

Austrian Journal of Statistics
January 2021, Volume 50, 74–87.

http://www.ajs.or.at/

doi:10.17713/ajs.v50i1.994

Robust Estimation for a Generalised Ratio Model

Kazumi Wada
NSTAC

Keiichiro Sakashita
NSTAC

Hiroe Tsubaki
ISM

Abstract

It is known that data such as business sales and household income need data transfor-
mation prior to regression estimate as the data has a homoscedastic error. However, data
transformations make the estimation of mean and total unstable. Therefore, the ratio
model is often used for imputation in the field of official statistics to avoid the problem.

Our study aims to robustify the estimator following the ratio model by means of M-
estimation. Reformulation of the conventional ratio model with homoscedastic quasi-error
term provides quasi-residuals which can be used as a measure of outlyingness as same as a
linear regression model. A generalisation of the model, which accommodates varied error
terms with different heteroscedasticity, is also proposed.

Functions for robustified estimators of the generalised ratio model are implemented by
the iterative re-weighted least squares algorithm in R environment and illustrated using
random datasets. Monte Carlo simulation confirms accuracy of the proposed estimators,
as well as their computational efficiency. A comparison of the scale parameters between
the average absolute deviation (AAD) and median absolute deviation (MAD) is made
regarding Tukey’s biweight function. The results with Huber’s weight function are also
provided for reference.

The proposed robust estimator of the generalised ratio model is used for imputation
of major corporate accounting items of the 2016 Economic Census for Business Activity
in Japan.

Keywords: ratio imputation, M-estimation, outlier, iteratively re-weighted least squares, R.

1. Introduction

Ratio imputation is a special case of regression imputation (De Waal, Pannekoek, and Scholtus
(2011), pp.244–245). When there are missing values in the target variable y, the observed
auxiliary variable x is used to estimate missing y values. Therefore, x must be chosen from
the variables that are highly correlated with y. The imputation model is

yi = βxi + εi, (1)

where data i = 1, . . . , n of (x, y) are observed n units in the imputation class of size N . The
true ratio β is obtained by ȳ/x̄; however, it is usually unknown due to the existence of missing
values in y. The estimated ratio

β̂ =

∑n
i=1 yi∑n
i=1 xi

,
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is used to substitute for the missing y values such that

ŷi = β̂xi.

The ratio model (1) is a best linear unbiased estimator (BLUE) under the following two
conditions: (i) the relationship between variables y and x is a straight line through the origin
and (ii) the variance of y about this line is proportional to x (Cochran (1977), pp. 158-159.).
The model (1) looks like a single regression model without intercept,

yi = βxi + εi, (2)

however; the error term of a linear regression model is εi ∼ N(0, σ2) while that of the ratio
model is εi ∼ N(0, xiσ

2).

The ratio model is useful for imputation, as it accommodates heteroscedastic data without
transformation. On the other hand, the ratio model is easily affected by outliers just like
regression models (e.g. Farrella and Salibian-Barrerab (2006)).

In this paper, the idea of M-estimation for regression models is briefly explained, and refor-
mulation of the ratio model is described so that it has the homoscedastic error term as same
as a regression model. Then generalisation of the ratio model, and a robustified estimator for
the generalised ratio model is proposed in section 2. Estimation of the proposed model by
the iteratively re-weighted least squares (IRLS) algorithm is explained in section 3. Reasons
for selecting Tukey’s biweight function and its tuning constant with relation to the scale pa-
rameter are also discussed in the section. R functions based on the robustified estimator are
implemented and evaluated in section 4. Monte Carlo simulation is conducted with random
datasets to compare their accuracy and computational efficiency with different scale param-
eters regarding Tukey’s biweight function. The results with Huber’s weight function are also
provided in Appendix. Application to a real dataset is illustrated in section 5, and section 6
concludes the paper.

2. Methodology

2.1. M-estimation for regression models

A regression model,

yi = β0 + β1xi1 + · · ·+ βpxip+ εi = x>i β + εi, (3)

has a homoscedastic error term εi, which is assumed to be normal with a mean of 0 and
constant variance, V (εi) = σ2, where xi = (1, xi1, . . . , xip)

>, β = (β0, β1, . . . , βp)
>, and

p is number of explanatory variables. The estimation equation of β can be expressed as∑n
i=1(yi − x>i β)xi = 0 (e.g. Huber and Ronchetti (2009), p. 155).

Huber (1973) extended his idea of M-estimation for a location parameter (Huber 1964) to the
case of linear regression. The proposed estimation equation is

n∑
i=1

wi(yi − x>i β)xi = 0,

where wi is the weight function wi = w(ei) based on the standardised residuals ei = ri/σ̂.
The idea of M-estimation is controlling influence of outliers by weights wi derived by a weight
function. The value of wi, which is within the range between 0 and 1, is determined according
to the magnitude of a standardised residual. A smaller weight is allocated to an outlying
observation, and then the observation has less influence to the parameter estimation.
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2.2. Reformulation and gerenalisation of the ratio model

The obstacle of M-estimation for the ratio model is its heteroscedastic error term εi. Because
of the error term’s characteristic, residuals of the ratio model cannot be used as a measure
of outlyingness. Therefore, we first reformulate the conventional ratio model so that it has a
homoscedastic error term like a regression model.

The error term of a regression model (3) is assumed to be normal with a mean of 0 and
constant variance, which can be written as εi ∼ N(0, σ2). Meanwhile, the error term εi of the
ratio model (1) is proportional to

√
x; i.e., the variance of εi is proportional to x and can be

written as εi ∼ N(0, xσ2). The ratio model can be expressed in the following form:

yi = βxi +
√
xiεi, (4)

as these two different error terms have the relationship of εi =
√
xiεi. We refer to εi in the

ratio model hereafter as the quasi-error term because the true error term of the model is εi.
Then, we also propose extending the model (4) to obtain an error term that is proportional
to xγi as follows:

yi = βxi + xγi εi. (5)

The corresponding estimator of the generalised ratio model is

β̂ =

∑n
i=1 yix

1−2γ
i∑n

i=1 x
2(1−γ)
i

, (6)

and its quasi-residual ři,

ři =
yi − β̂xi
xγi

. (7)

The model (5) and the estimator (6) broaden the definition of the conventional ratio model.
Model (5) encompasses different models according to the value of γ. A few examples are
shown in Table 1. The original ratio estimator corresponds to the case B’.

Table 1: Variations in the estimator depending on γ

Case γ Model Estimator Quasi-error term

A’ γ = 1 yi = βxi + εixi β̂ = 1/n
∑

(yi/xi) εi = yi/xi − β ∼ N(0, σ2)

B’ γ = 1/2 yi = βxi + εi
√
xi β̂ =

∑
yi/
∑
xi εi = yi/

√
xi − β

√
xi ∼ N(0, σ2)

C’ γ = 0 yi = βxi + εi β̂ =
∑
yixi/

∑
x2i εi = yi − βxi ∼ N(0, σ2)

Cases A’, B’ and C’ have different features. In this paper, we discuss about cases A’ and B’
in particular, since our focus is on the models with a heteroscedastic error term. Case C’ is
a regression model without an intercept and has a homoscedastic error.

As the ratio β of case B’ is estimated by the sum of y divided by the sum of x regarding
observed data, the value is mostly decided by very large-scale observations. This estimator
has a relatively small variance compared with case A’ inherent to its definition, even when
x and y contain extreme values. One may be able to demonstrate under what conditions
estimator A’ has smaller sampling variance than estimator B’. On the other hand, influence
of very large observations is much smaller in the case A’ since the estimation is made by the
mean of ratios of each observation; however, this definition makes the value of β̂ relatively
unstable especially when there are very small observations in x. Scatter plots of data sets
following these models are shown as Figure 1 to render the differences. The size of the data
sets are n = 1000, and the explanatory variables of these data sets follows x ∼ N(5, 1) and
β = 2. Objective variables y are derived based on each model with normally distributed quasi
error term ε ∼ N(0, 1).
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Figure 1: Random data following each model.

2.3. Robustification

The robustified estimator for the generalized ratio model (5) is derived by means of M-
estimation as follows:

β̂rob =

∑
wiyix

1−2γ
i∑

wix
2(1−γ)
i

, (8)

where wi is a weight function of quasi residuals ř. The role of the weight function is to
alleviate influence of the observations with large residuals. There are a variety of choices in
Holland and Welsch (1977) and Zhang (1997), for examples. The following two are the most
popular functions among them. One is Tukey’s biweight function,

wi = w

(
ři
σ̂

)
= w(ei) =

{ [
1− (ei/c)

2
]2
|ei| ≤ c

0 |ei| > c,
(9)

described in Beaton and Tukey (1974), and the other is Huber’s weight function,

wi = w

(
ři
σ̂

)
= w(ei) =

{
1 |ei| ≤ k
k/|ei| |ei| > k,

proposed by Huber (1964). The standardised residuals ei are quasi-residuals ři divided by an
estimated scale parameter σ̂. The selection of a scale parameter and tuning constants c and
k are discussed in the next section. Quasi-residuals ři based on the homoscedastic quasi-error
term εi are obtained by 7.

The cases with γ = 1, γ = 1/2 and γ = 0 are shown in Table 2. The corresponding models
are similar to those for cases A’, B’ and C’.

Table 2: Robustified estimators.

Case γ Estimator Quasi-residual

A γ = 1 β̂robA =
∑
wi(yi/xi)/

∑
wi ři = yi/xi − β̂robA

B γ = 1/2 β̂robB =
∑
wiyi/

∑
wixi ři = yi/

√
xi − β̂robB

√
xi

C γ = 0 β̂robC =
∑
wiyixi/

∑
wix

2
i ři = yi − β̂robCxi



78 Generalized Robust Ratio Model for Imputation

3. Implementation

3.1. Selection of weight function

It is important to think of the purpose of estimation and policy toward outliers for selecting a
weight function. Among the two described in the previous section, we adopt Tukey’s biweight
function which can eliminate the influence of extreme outliers, since our purpose is imputation.
The underlying policy corresponding to Tukey’s biweight function is to assume that outliers
are not representative for the part of the population under scrutiny. The estimation is made
to complete missing data, and elimination from the estimate for imputation does not mean
exclusion of the outlying observations from the survey results.

In contrast, Huber’s weight function may be prefered if the purpose is a population esti-
mate, since this function does not eliminate any observation from the estimation. Survey
observations should not be wasted for the population estimates unless they are erroneous or
invalid.

Figure 2 shows the difference between these weight functions. While the tails of the biweight
function reach zero when the absolute value of the standardized residuals exceeds a certain
threshold, the tails of Huber’s weight function only approach zero at infinity.
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Figure 2: Features of the major weight functions.

3.2. Scale parameter and tuning constant

Beaton and Tukey (1974) use interquartile range as the scale parameter for Tukey’s biweight
function. Bienias, Lassman, Scheleur, and Hogan (1997) adopts average absolute deviation
(AAD)

σAAD =
1

n

n∑
i=1

|ři|, (10)

instead and recommends the range of tuning constant c from 4 to 8. As for Huber’s weight
function, Huber (1964) adopts median absolute deviation (MAD)

σMAD = median(|ři −median(ři)|).

Holland and Welsch (1977), which proposes the IRLS algorithm, provides tuning constants for
95% asymptotic efficiency under the standard normal distribution for both of these functions
with σMAD as their scale parameter.
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It is known that the scale parameters based on standard deviation σSD and σAAD have the
relation

σAAD =
√

2/π · σSD ≈ 0.80 · σSD,

since
σAAD

σSD
=

E|z|√
E(z2)

=

√
2

π
.

Similarly,

σMAD = Φ (3/4) · σSD ≈ 0.67 · σSD,

since
σMAD

σSD
=

1

Φ(3/4)
,

where Φ(·) is the cumulative distribution function of the standard normal distribution.

The tuning constants of these three scale parameters for 95% asymptotic efficiency under the
standard normal distribution are obtained by Holland and Welsch (1977). Based on these
figures, the range of the tuning constant k for Huber weight with σMAD corresponding to
Tukey’s c proposed by Bienias et al. (1997) are derived as in Table 3.

Table 3: Tuning constants for 95% asymptotic efficiency.

Tuning 95% asymptotic efficiency Range of tuning constant
constant σSD σMAD σAAD for σAAD

c for Tukey 4.685 3.160 3.738 4 6 8
k for Huber 1.345 0.907 1.073 1.15 1.72 2.30

* The figures first appeared in Wada (2012), then those of σSD are corrected in Wada and Noro (2019).

Wada and Noro (2019) made a comparison between Tukey’s biweight function and Huber’s
weight function with σMAD and σAAD for a simple regression model by Monte Carlo exper-
iments with random error terms following various t-distributions. The results indicate that
Tukey’s biweight is more compatible with σAAD, while Huber’s weight function is better with
σMAD. For the tuning constants, a larger value for Tukeys’ with σAAD is recommended and
a smaller value for Hubers’ with σMAD. Smaller values of these tuning constants make the
estimation more robust but reduce weights and efficiency.

3.3. The algorithm and other settings

Among a few well-known iterative schemes for obtaining M-estimators in regression, which
include Newton’s method, we adopt the iteratively re-weighted least squares (IRLS) algorithm
according to Holland and Welsch (1977). For the weight function and scale parameter, we
choose Tukey’s biweight function with σAAD in accordance with Bienias et al. (1997), as well
as the convergence condition. Our choice of the tuning constant is c = 8 to minimize the
weight and efficiency reduction.

The modified IRLS algorithm for a robust estimator of the generalised ratio model is as follows.
The superscript index in parentheses (j) on each variable shows the iteration number.

i) Compute initial estimator β̂(1) by (6).

ii) Obtain quasi-residuals ř
(1)
i by (7), the scale parameter σ(1) by (10), and initial weights

w
(1)
i based on (9) using the predetermined tuning constant c = 8.
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iii) Compute the ratio estimator β̂(2) of β̂rob according to (8) using w
(1)
i .

iv) Obtain new quasi-residuals ř
(2)
i by (7) corresponding to β̂(2), update the scale parameter

σ(2) by (10), and the weights w
(2)
i by (9).

v) If the scale parameters σ(1) and σ(2) satisfy the convergence condition∣∣∣∣1− σ(j)

σ(j−1)

∣∣∣∣ < 0.001,

then make β̂(2) the final estimator β̂rob and stop iteration. Otherwise increment index
j by 1 and go back to iii).

R functions shown in Table 4 are implemented together with a parent function named RE-
GRM, which calls an appropriate child function according to the arguments. An R package
containing all those functions is created and stored at the repository, https://github.com/
kazwd2008/REGRM.

Table 4: List of the functions implemented.

Tukey’s biweight function Huber’s weight function
Name of function Model γ Scale Name of function Model γ Scale

RrTa.aad A 1 AAD RrHa.aad A 1
RrTb.aad B 1/2 AAD RrHb.aad B 1/2
RrTc.aad C 0 AAD RrHc.aad C 0
RrTa.mad A 1 MAD RrHa.mad A 1
RrTb.mad B 1/2 MAD RrHb.mad B 1/2
RrTc.mad C 0 MAD RrHc.mad C 0

3.4. Illustration

To see the effect of robustification, experiments are conducted with 30% contaminated two-
variable datasets as shown in Figure 3 and 4. One dataset is size 1000 and the other, 15.
The 70% normal data follow a normal distribution with correlation of 0.6. Outliers, which
follow a normal distribution without correlation, are placed with some distance away from
normal data. The results of estimator A and B are shown together with the experiments of
estimator A’ and B’ with all data, normal data (excluding outliers) and outliers (excluding
normal data).

The experiments reveal estimator B’ is affected more than A’ by outliers with larger values,
while estimator A and B are successfully provide similar results of B’ with normal data.

4. Evaluation of the proposed estimators

Monte Carlo simulation with random data is performed based on the models A’, B’, and C’
shown in Table 2. In the simulation, variable x is uniformly distributed random numbers from
1 to 10 and the ratio is β = 5. The quasi-error term εi is also random following a t-distribution
with degrees of freedom 1, 2, 3, 5, 10, and infinity. The objective variable y is calculated based
on each model equation of Table 2 using the above-mentioned components. The experiments
to estimate ŷ by the estimators A, B, and C with σAAD and σMAD are performed k = 100, 000
times with the size n = 100 by each degree of freedom of the t-distribution for the quasi-error
term. Hereafter, we describe the estimators A, B, and C with σAAD as AAAD,BAAD, and
CAAD, and those with σMAD as AMAD,BMAD, and CMAD.

https://github.com/kazwd2008/REGRM
https://github.com/kazwd2008/REGRM
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Figure 3: Experiment 1 (n = 1000). Figure 4: Experiment 2 (n = 15).

4.1. Accuracy

For the above-mentioned data, observed values of y contain errors, while true values are
known and derived by y = βx. Comparisons among the three sets of the estimators, i.e.,
(A′,AAAD,AMAD), (B′,BAAD,BMAD), and (C′,CAAD,CMAD), are made based on RMSEA,RMSEB,
and RMSEC, respectively. They are defined as follows:

RMSEA =
1

k

k∑
j=1

√√√√∑n
i=1

{(
β̂xij − yij

)
/xij

}2

n
,

RMSEB =
1

k

k∑
j=1

√√√√∑n
i=1

{(
β̂xij − yij

)
/
√
xij

}2

n
,

RMSEC =
1

k

k∑
j=1

√√√√∑n
i=1

{(
β̂xij − yij

)}2

n
.

Then relative efficiency is calculated by dividing the RMSE values of AAAD and AMAD by
that of A’, those of BAAD and BMAD by B’, and those of CAAD and CMAD of C’, to see the
improvement by the robustification. Results are shown as Table 5.

The set of 100, 000 experiments was repeated four times regarding each degree of freedom for
the quasi-error term and the figures in table 5 is one of them. Superior figures are underlined
in the table after comparing estimators of a same model with different scale parameter. The
pairs with no underline show disagreement in results among the four set of experiments. Those
figures may not be stable because of the mismatched models (e.g., data following model A
with estimators other than A) or datasets of df=1 which may contain extreme outliers.

Nevertheless, the robust estimators are better alternatives than the non-robust one when the
data fit the model of the estimator. In addition, σAAD is a better choice than σMAD with
Tukey’s biweight function, unless the data are highly contaminated with extreme outliers or
in the ideal situation that the quasi-error term follows the normal distribution.

4.2. Computational efficiency

The maximum number of iteration needed to compute the estimators and mean number of
iteration are shown in Table 6 and 7, respectively. At least two iterations are necessary
because of the algorithm shown in the previous section, and in most cases investigated here,
less than 10 iterations were necessary. Number of iteration tends to increase as the tails of
quasi-error term longer.
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Table 5: Relative efficiency of the robustified estimators.

Data Estimator df=1 df=2 df=3 df=5 df=10 df=Inf.

A AAAD 0.0188 0.4395 0.6291 0.7264 0.7693 0.7886
AMAD 0.0634 0.4560 0.6511 0.7419 0.7754 0.7850

B AAAD 0.0208 0.5195 0.7630 0.8983 0.9581 0.9929
AMAD 0.0131 0.5240 0.7840 0.9172 0.9687 0.9932

C AAAD 0.0239 0.6080 0.9181 1.1069 1.1935 1.2524
AMAD 0.0148 0.6013 0.9296 1.1207 1.2022 1.2533

A BAAD 0.0418 0.5847 0.8331 0.9708 1.0345 1.0734
BMAD 0.1466 0.6030 0.8638 1.0012 1.0590 1.0903

B BAAD 0.0335 0.5397 0.7859 0.9219 0.9759 1.0067
BMAD 0.0213 0.5495 0.8120 0.9418 0.9837 1.0017

C BAAD 0.0274 0.4588 0.6803 0.8072 0.8597 0.8920
BMAD 0.0173 0.4622 0.6975 0.8224 0.8666 0.8884

A CAAD 0.0389 0.7984 1.1462 1.3369 1.4289 1.4988
CMAD 0.1408 0.7981 1.1651 1.3755 1.4779 1.5576

B CAAD 0.0248 0.5333 0.7749 0.8965 0.9479 0.9733
CMAD 0.0152 0.5372 0.7969 0.9194 0.9640 0.9827

C CAAD 0.0146 0.2975 0.4193 0.4830 0.5117 0.5226
CMAD 0.0092 0.3030 0.4323 0.4932 0.5157 0.5201

Table 6: Maximum number of iterations.

Data Scale Estimator df=1 df=2 df=3 df=5 df=10 df=Inf

A AAD A 4 4 3 3 3 3
B 4 4 3 3 3 3
C 5 4 4 4 3 4

MAD A 2 2 2 2 2 2
B 7 5 5 4 4 4
C 10 8 7 7 6 6

B AAD A 4 4 3 3 3 3
B 4 4 3 3 3 3
C 4 4 4 3 3 3

MAD A 2 2 2 2 2 2
B 7 5 5 4 3 3
C 10 8 7 5 4 4

C AAD A 4 4 4 4 4 4
B 4 4 3 3 3 3
C 4 4 3 3 3 3

MAD A 2 2 2 2 2 2
B 7 5 4 4 3 3
C 8 6 5 4 4 3

4.3. Other aspects

The problem of nonconvergence of Tukey’s biweight function is reported by Wada (2012) and
Wada and Noro (2019) in the context of estimating a linear model. We did not encounter
the same problem, since the models used in this paper have only one parameter to estimate.
Another problem reported by Wada and Noro (2019) is the phenomenon that all the robust
weights wi reach zero during computation of a robust estimator of Tukey’s biweight function
with the MAD scale. It occurred in our experiments of the estimator A with the MAD scale
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Table 7: Mean number of iterations.

Data Scale Estimator df=1 df=2 df=3 df=5 df=10 df=Inf

A AAD A 2.8084 2.2946 2.0988 2.0171 2.0017 2.0001
B 2.8142 2.3248 2.1353 2.0386 2.0099 2.0018
C 2.8225 2.3717 2.1944 2.0861 2.0387 2.0160

MAD A 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
B 3.4186 2.6419 2.3840 2.1896 2.0768 2.0231
C 3.8091 3.0400 2.7608 2.5365 2.3833 2.2635

B AAD A 2.8239 2.3357 2.1431 2.0470 2.0151 2.0047
B 2.7986 2.2853 2.0971 2.0182 2.0019 2.0001
C 2.7972 2.3143 2.1359 2.0430 2.0119 2.0024

MAD A 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
B 3.3215 2.5485 2.2880 2.0991 2.0219 2.0022
C 3.6258 2.8320 2.5375 2.3109 2.1685 2.0788

C AAD A 2.8644 2.4659 2.3065 2.2109 2.1588 2.1234
B 2.7969 2.2910 2.0968 2.0181 2.0028 2.0004
C 2.7754 2.2707 2.0916 2.0174 2.0018 2.0002

MAD A 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
B 3.2726 2.5268 2.2928 2.1204 2.0420 2.0110
C 3.4828 2.6912 2.3977 2.1763 2.0578 2.0123

for the data of df=1 and 2 as shown in Table 8.

Although this study does not focus on the comparison of the two weight functions, resuls of
the estimators of Huber’s weight function with the same datasets are shown in Appendix.

Table 8: Number of aborts due to all weights being zero (in 100, 000 experiments).

Data Other conditions df=1 df=2

A 1622 3
B Estimator A with MAD scale 1616 8
C 1889 2

5. Application with real data

The robust estimators for the generalized ratio model proposed in this paper was developed
for the imputation of the 2016 Economic Census for Business Activity in Japan. The 2016
Census was conducted by the Ministry of Internal Affairs and Communications and the Min-
istry of Economy, Trade and Industry on June 1, 2016. It aims to identify the structure of
establishments and enterprises in all industries at the national and regional levels, and to
obtain basic information to conduct various statistical surveys by investigating the economic
activities of these establishments and enterprises.

The major corporate accounting items, such as sales, expenses, and salaries, surveyed by the
census require imputation to avoid bias. Although ratio imputation was a leading candidate
at the beginning, it is well known that the estimation is very sensitive to outliers; therefore,
we needed to take appropriate measures for the problem.

After implemented the functions based on the robust estimator of the generalised ratio model,
estimator A and B were compared using previous census data by Monte Carlo simulation.
Estimator B was selected to estimate missing sales by expenses, salaries by expenses, and
expenses by sales.

The estimator B has a problem to be influenced by extremely large observations in spite of the
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robustification. Such observations are not regarded as outliers even when they have different
tendencies compared to the majority of other observations. Figure 5 shows a good example.

Figure 5: Industry 55A: Agents and brokers.

The left side of the scatter plot shows the whole enterprises in the industry together with
the results of estimator A and B. There are a few extremely large values, and estimator B is
affected by them seriously. The right side plot closes-up the smaller observations with higher
density in the same dataset. To cope with the problem, extremely large outliers if any in each
imputation class were removed from estimation in the course of data processing for the 2016
Census.

6. Conclusions

The proposed generalised ratio model broadens the conventional definition of the ratio model
with regards to the variance of the error term. Robustified estimators based on the model
effectively alleviate the influence of outliers.

Application of the robust estimator may contribute to the accuracy of official statistics, as
the survey data tend to have longer tails. The R functions based on the proposed estimator
are implemented, evaluated and provided at a public repository.

Users’ policy toward outliers may reflect the choices of a weight function, and a suitable scale
parameter for Tukey’s biweight function is AAD regarding longer tailed datasets.

As for the conventional ratio model, the robustified estimator is highly affected by very large
observations; therefore, removing extremely large outliers may necessary before estimation.

7. Future work

Simulations in this paper are with uniformally distributed x values to have fatter tails than
normal distribution. However, further simulation may also be needed for economic data with
lognormally distributed x, since it would be more realistic.

Another interesting topic is an application for restricted data. Economic surveys gather
multiple financial variables for each establishment, for an example. Those variables may
contain some restrictions such as a total and its components. Further study is necessary.
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Appendix

The results of Monte Carlo simulation for the estimators with Huber’s weight function are
shown in this appendix. The datasets used is identical with thosed used in section 3. The
table 9, 10 and 11 are comparable with Table 5, 6 and 7.

Table 9: Relative efficiency of the robustified estimators with Huber weight.

Data Estimator df=1 df=2 df=3 df=5 df=10 df=Inf.

A AAAD 0.0380 0.4636 0.6424 0.7305 0.7709 0.7895
AMAD 0.0331 0.4767 0.6657 0.7496 0.7796 0.7845

B AAAD 0.0716 0.6209 0.8580 0.9832 1.0404 1.0753
AMAD 0.0679 0.6332 0.8883 1.0170 1.0711 1.0991

C AAAD 0.0621 0.8704 1.2142 1.3962 1.4792 1.5307
AMAD 0.0614 0.8580 1.2268 1.4295 1.5252 1.5857

A BAAD 0.0440 0.5488 0.7808 0.9052 0.9610 0.9956
BMAD 0.0151 0.5492 0.8019 0.9272 0.9755 0.9975

B BAAD 0.0561 0.5681 0.8032 0.9273 0.9780 1.0077
BMAD 0.0246 0.5749 0.8311 0.9518 0.9888 1.0007

C BAAD 0.0478 0.5635 0.7940 0.9103 0.9536 0.9759
BMAD 0.0176 0.5631 0.8173 0.9364 0.9746 0.9893

A CAAD 0.0520 0.6438 0.9424 1.1174 1.1957 1.2530
CMAD 0.0170 0.6291 0.9495 1.1305 1.2075 1.2586

B CAAD 0.0447 0.4835 0.6953 0.8125 0.8613 0.8937
CMAD 0.0199 0.4833 0.7128 0.8299 0.8710 0.8904

C CAAD 0.0377 0.3120 0.4285 0.4884 0.5125 0.5279
CMAD 0.0136 0.3154 0.4430 0.5011 0.5184 0.5248

Table 10: Maximum number of iterations.

Data Scale Estimator df=1 df=2 df=3 df=5 df=10 df=Inf

A AAD A 4 4 3 3 3 3
B 4 4 3 3 3 3
C 5 4 4 3 3 3

MAD A 2 2 2 2 2 2
B 7 5 4 4 4 3
C 9 7 6 5 5 5

B AAD A 4 4 4 3 3 3
B 4 4 3 3 3 3
C 4 4 4 3 3 3

MAD A 2 2 2 2 2 2
B 6 5 4 3 3 3
C 8 6 5 5 4 4

C AAD A 4 4 4 3 3 3
B 4 4 3 3 3 3
C 4 4 3 3 3 3

MAD A 2 2 2 2 2 2
B 6 5 4 4 3 3
C 9 5 4 4 4 3
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Table 11: Mean number of iterations.

Data Scale Estimator df=1 df=2 df=3 df=5 df=10 df=Inf

A AAD A 2.8559 2.2759 2.0833 2.0116 2.0010 2.0000
B 2.8632 2.3050 2.1171 2.0298 2.0072 2.0015
C 2.8748 2.3516 2.1719 2.0696 2.0293 2.0129

MAD A 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
B 3.3292 2.5609 2.3421 2.1795 2.0795 2.0238
C 3.7026 2.8954 2.6514 2.4817 2.3707 2.2755

B AAD A 2.8751 2.3166 2.1236 2.0358 2.0106 2.0030
B 2.8417 2.2664 2.0818 2.0128 2.0012 2.0001
C 2.8430 2.2959 2.1172 2.0330 2.0088 2.0021

MAD A 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
B 3.2442 2.4850 2.2578 2.0927 2.0212 2.0015
C 3.5348 2.7239 2.4842 2.2987 2.1712 2.0741

C AAD A 2.9243 2.4434 2.2821 2.1843 2.1341 2.1009
B 2.8326 2.2697 2.0820 2.0126 2.0014 2.0002
C 2.8077 2.2515 2.0779 2.0128 2.0014 2.0001

MAD A 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
B 3.1959 2.4693 2.2532 2.1042 2.0352 2.0090
C 3.4034 2.6122 2.3641 2.1690 2.0540 2.0067

When looking at the cases in those models of the data and the estimators are consistent,
results of the simulation indicate Tukey’s biweight function is slightly more efficient than
Hubers’, while Hubers’ converges a little bit faster, except for the unstable results with the
data of df = 1. However, those difference may be negligibly small in practical use.
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