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Abstract

Empirical likelihood method has been applied to short-memory time series models by
Monti (1997) through the Whittle’s estimation method. Yau (2012) extended this idea to
long-memory time series models. Asymptotic distributions of the empirical likelihood ratio
statistic for short and long-memory time series have been derived to construct confidence
regions for the corresponding model parameters. However, it experiences the undercov-
erage issue which causes the coverage probabilities of parameters lower than the given
nominal levels, especially for small sample sizes. In this paper, we propose a modified
empirical likelihood which combines the advantages of the adjusted empirical likelihood
and the transformed empirical likelihood to modify the one proposed by Yau (2012) for
autoregressive fractionally integrated moving average (ARFIMA) model for the purpose
of improving coverage probabilities. Asymptotic null distribution of the test statistic has
been established as the standard chi-square distribution with the degree of freedom one.
Simulations have been conducted to investigate the performance of the proposed method
as well as the comparisons of other existing methods to illustrate that the proposed method
can provide better coverage probabilities especially for small sample sizes.

Keywords: modified empirical likelihood, long-memory time series, ARFIMA model, coverage
probability .

1. Introduction

Owen (1988), Owen (1990), Owen (1991) introduced empirical likelihood (EL) method which
is the data-driven method combining the advantages of parametric and nonparametric meth-
ods. The most appealing property of the EL method is that the associated empirical likelihood
ratio statistics asymptotically follows standard chi-square distribution, which is same as the
one used in parametric analysis. Since then, it has been widely used to make statistical in-
ference of parameters and construct confidence regions. See Owen (2001) for more details.
However, when the data is dependent, it becomes difficult to apply the empirical likelihood
method as it is originally designed for independent observations. Using EL method to address
dependent data problems has been studied by many researchers. Mykland (1995) established
the connection between the dual likelihood and the empirical likelihood through the martin-
gale estimating equations and applied it to time series model. Monti (1997) developed the idea
of extending the EL method to short-memory stationary time series by using the Whittle’s

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v49i5.983
www.osg.or.at


Austrian Journal of Statistics 69

(1953) method to obtain an M-estimator of the periodogram ordinates of time series models
which are asymptotically independent. However, his method can not be applied directly to
long-time memory time series model. Kitamura (1997) developed the blockwise empirical like-
lihood method for time series models. For long-memory or long-range dependence time series
data, Hurvich and Beltrao (1993) showed that the normalized periodogram ordinates obtained
from a Gaussian process are asymptotically neither independent identically distributed nor
exponentially distributed. Nordman and Lahiri (2006) developed frequency domain empirical
likelihood based on the spectral distribution through the fourier transformation to study short
and long range dependence. Yau (2012) extended Monti’s idea to autoregressive fractionally
integrated moving average (ARFIMA) model by showing that the dependence in periodogram
only applies to a small portion of the periodogram ordinates with fourier frequencies tending
to zero. However, the profile empirical likelihood function computation which involves con-
strained maximization requires the convex hull of the estimating equation to have zero vector
as an interior point. When the solution does not exist, Owen (2001) suggested assigning −∞
to the log-EL statistic. Chen, Variyath, and Abraham (2008) pointed out the drawbacks in
doing so and proposed an adjusted empirical likelihood (AEL) method by adding a pseudo
term which always guarantees the existence of a solution. They further showed that the
asymptotic results of the AEL are similar to that of the EL. Moreover, it achieves improved
coverage probabilities without using Bartlett-corrections. Adapting their method, Gamage,
Ning, and Gupta (2017) proposed an adjusted empirical likelihood procedure to modify the
one proposed by Yau for the ARFIMA model and achieved better coverage probabilities of
parameters. Jing, Tsao, and Zhou (2017), instead of considering the convex hull issue, de-
veloped the transformed empirical likelihood (TEL) to improve the coverage probabilities as
well as preserving the properties of the original EL method with a simple form.

In this paper, we extend Yau’s EL method for ARFIMA model by proposing a transformed
adjusted empirical likelihood method (TAEL). The rest of the article is organized as follows.
In Section 2, we briefly go over the AEL procedure proposed by Gamage et al. (2017) for a
stationary ARFIMA model. In section 3, we proposed a transformed adjusted empirical like-
lihood (TAEL) based on the AEL by Chen et al. (2008) and the TEL by Jing et al. (2017) for
a stationary ARFIMA model. Corresponding asymptotic results are also discussed. Simula-
tions are carried out in section 4 to compare the coverage probabilities of the proposed TAEL
method to other methods including original EL, TEL, and AEL for different distributions
for the white noise term. In addition, coverage probabilities are calculated to illustrate the
effectiveness of AEL method as compared to EL method with and without Bartlett-correction
for different values of the parameters, different sample sizes and different distributions for the
white noise term. Section 5 provides some discussion.

2. Adjusted empirical likelihood for ARFIMA models

With the definition of pj = P (X = xj), the empirical likelihood ratio for any value β ∈ B is
defined by

λ̂(β) = sup

n∏
j=1

pj

/
n∏
j=1

1

n
= sup

n∏
j=1

npj ,

subject to the constraints:(i)
∑n

j=1 ψ(xj , β)pj = 0, (ii)
∑n

j=1 pj = 1, and (iii) pj ≥ 0 ,
(j = 1, 2, ...n). The maximization under the Lagrange multiplier method gives

pj = [n{1 + ξ(β)′ψ(xj , β)}]−1 (j = 1, 2, ..., n),

where ξ(β) is the Lagrangian multiplier satisfying constraint (i). The empirical likelihood
ratio statistic is thus defined

Ŵ (β) = −2 ln λ̂(β) = 2

n∑
j=1

ln{1 + ξ(β)′ψ(xj , β)} (1)



70 Modified Empirical Likelihood for Long-memory Time Series

Owen (1988) showed that Ŵ (β) is asymptotically distributed as χ2. For time series data,
the M-estimator, β0, which is used to estimate the parameter β is based on the periodogram
using the Whittle’s method. It is the solution of

n∑
i=1

ψ(xi, β) = 0,

where ψ(xi, β) is an estimating equation which is defined by Eψ(Xi, β) = 0. Under some
moment conditions on estimating equations (Owen, 2001), the convex hull of the estimating
equation ψ(xi, β), {

∑
piψ(xi, β)|pi ≥ 0,

∑
pi = 1, i = 1, 2, · · · , n} contains 0 as its interior

point with probability 1 as n → ∞. When the parameter β is not close to the true value
β0, or when n is small, there is a good chance that the solution to constraint doesn’t exist
which raises some computational issues as mentioned by Chen et al. (2008). When the so-
lution does not exist, Owen (2001) suggested assigning −∞ to the empirical log-likelihood
ratio statistic. To overcome this difficulty, Chen et al. (2008) proposed an adjusted empirical
likelihood (AEL) ratio function by adding a pseudo term, ψn+1-th term, to guarantee the
zero to be an interior point of the convex hull of estimating equations, therefore, the required
numerical maximization always has the solution. By doing so, they modified Owen’s method
and applied to independent observations with the establishment of the Wilks’ theorem for
AEL statistic same as the one Owen obtained for EL statistic.

The EL-based method proposed by Monti (1997) which used the asymptotically independent
periodogram ordinates, cannot be directly used in the long-memory scenario. However, Yau
(2012) showed that the periodogram ordinates obtained by the long-memory time series can
be considered asymptotically independent, hence the EL method could be extended to the
long-memory time series models. Consider a stationary ARFIMA(p,d,q) process Zt given by

Φ(B)(1−B)dZt = Θ(B)at, (2)

for some −1
2 < d < 1

2 where B is the backward shift operator (BZt = Zt−1), with Θ(B) =
1 + θ1B + θ2B

2 + ... + θqB
q and Φ(B) = 1 − φ1B − φ2B2 − ... − φpBp. The absolute values

of the roots of these two polynomials are all greater than 1 to guarantee the stationarity and
invertibility of the model. We also assume that Θ(B) and Φ(B) have no common factors to
avoid the redundancy of the parameters. Similar to Gamage et al. (2017), we consider the
values of d to be between 0 and 0.5 since this is the only condition under which the dependence
structure of periodogram ordinates has been established (Yau 2012).

Let β = (β(1), σ
2), where β(1) = (φ1, ..., φp, θ1, ..., θq, d) is the parameter of interest. Denote

ψj = ψj(β) = ψ(xj , β) and ψ̄n = ψ̄n(β) = 1
n

∑n
j=1 ψj . For some positive constant an, define

ψn+1 = ψn+1(β) = −an
n

n∑
j=1

ψj = −anψ̄n.

Here we choose an = max(1, log(n)/2) coupled with a trimmed version of ψ̄n when appropriate
suggested by Chen et al. (2008).

Gamage et al. (2017) extended the EL approach for the long-memory time series models and
proposed an adjusted empirical likelihood (AEL) ratio statistic as follows.

Ŵ ∗(β(1)) = 4

n+1∑
j=1

ln
[
1 + ξ(β(1))

′ψ̃j(I(ωj), β(1))
]
, (3)

where ψ̃-function defined as

ψ̃j{I(ωj), β(1)} =
I(ωj)

g1j (β(1))

∂ ln{g1j (β(1))}
∂β(1)

, (4)
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with ψ̃n+1 as defined above, and ξ(β(1)) satisfies,

n+1∑
j=1

[1 + ξ(β(1))
′ψ̃j{I(ωj), β(1)]

−1
ψ̃j{I(ωj), β} = 0.

Here g1j is the profile spectral density function of the model, and I(ωj) is the periodogram

ordinate evaluated at Fourier frequency ωj . Same discuss as Chen et al. (2008), because
¯̃
ψn =

1
n

∑n
i=1 ψ̃i and ψ̃n+1 are on the opposite of 0, therefore, the convex hull of ψ̃i, i = 1, 2, · · · , n+

1, that is, {
∑
piψ̃i|pi ≥ 0,

∑
pi = 1}, contains 0 as an interior point for any given β(1). Con-

sequently, W ∗(β(1)) is well defined for any given β(1). Moreover, Ŵ ∗(β(1)), defined in (3) has
an asymptotic χ2 with k = p+ q+ 1 degrees of freedom (Gamage et al. 2017). As mentioned
by Yau (2012), this result also applies to ARFIMA process with d ∈ [δ, 0.5− δ] for any fixed
δ > 0, since β belongs to a compact space.

3. Transformed adjusted empirical likelihood for ARFIMA models

The undercoverage problem in the EL method where the coverage probability tends to be
lower than the nominal level, is partly due to the convex hull constraint which defines the
confidence region inside a bounded region in the parmeter space (Tsao 2013). This could be
serious especially in small sample and in multidimensional scenarios. A transformed version
of the EL (TEL) has been proposed by Jing et al. (2017) as a solution to the undercoverage
problem in EL as follows. Define

gT (l(θ); γ) = l(θ)×max{1− l(θ)/n, 1− γ}, (5)

for a constant γ ∈ [0, 1], where l(θ) is the original empirical log-likelihood ratio (Owen 2001).
Thus gT (l(θ); γ) is a truncated quadratic transformation of l(θ). By default, Jing et al. (2017)
sets γ = 1/2. Hence, the transformed empirical log-likelihood ratio (TEL), lT (θ) is,

lT (θ) = gT (l(θ); γ = 1/2) = l(θ)×max{1− l(θ)/n, 1/2}, (6)

which is equivalent to,

`T (θ) =

{
`(θ)[1− `(θ)/n] `(θ) ≤ n/2
`(θ)/2 `(θ) > n/2.

(7)

Jing et al. (2017) showed that the confidence region based on gT (l(θ), γ = 1/2) is the ex-
pansion of the original empirical likelihood confidence region, that is, {θ : l(θ) ≤ c} ⊆ {θ :
gT (l(θ), γ = 1/2) ≤ c} where c is the (1−α)− th quantile of χ2

d. Consequently, TEL improves
the coverage probabilities of EL. Moreover, Jing et al. (2017) also showed that TEL shares
the same asymptotic properties with the EL. See Jing et al. (2017) for more details.

Consider the ARFIMA (p,d,q) model in (2) where the AEL ratio test statistic is given by
(3) which has an asymptotic χ2 distribution with p + q + 1 degrees of freedom. If we apply
the transformation to this test statistic, then the resulting transformed AEL (TAEL) ratio
statistic, WT (β(1)), satisfies the following criterions:

a. for any β(1), 0 ≤WT (β(1)) ≤ Ŵ ∗(β(1)),

b. WT (β1) ≤WT (β2) iff Ŵ ∗(β1) ≤ Ŵ ∗(β2) for any β1, β2 ∈ Θ,

c. limiting distribution of WT (β0) is same as that of Ŵ ∗(β0), and

d. WT (β) contours have data driven shape and they are centered around β̃.
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By incorporating the suggestion on transformation for the EL by Jing et al. (2017) to the
AEL ratio statistic, we consider the following transformation:

ŴT (β(1)) = Ŵ ∗(β(1))×max
{

1−
Ŵ ∗(β(1))

n+ 1
, 1− γ

}
, (8)

where γ ∈ [0, 1]. As follows we check if the transformed adjusted empirical likelihood (TAEL)
ratio satisfies the four conditions given above.

Condition a: We know that Ŵ ∗(β(1)) > 0. Therefore, if Ŵ ∗(β(1)) < γ(n + 1), then

max
{

1 − Ŵ ∗(β(1))

n+1 , 1 − γ
}

= 1 − Ŵ ∗(β(1))

n+1 , and if Ŵ ∗(β(1)) ≥ γ(n + 1), then max
{

1 −
Ŵ ∗(β(1))

n+1 , 1− γ
}

= 1− γ. Thus, 0 < max
{

1− Ŵ ∗(β(1))

n+1 , 1− γ
}
≤ 1. Furthermore,

ŴT (β(1)) =

Ŵ ∗(β(1))×
[
1− Ŵ ∗(β(1))

n+1

]
, if Ŵ ∗(β(1)) < γ(n+ 1)

Ŵ ∗(β(1))(1− γ) , if Ŵ ∗(β(1)) ≥ γ(n+ 1)

Condition b: We need to prove that the transformed function of AEL ratio, Ŵt(β(1)) is

a monotonically increasing function of Ŵ ∗(β(1)). We consider two cases.

i. When Ŵ ∗(β(1)) ∈ [0, (γ(n + 1)], then ŴT (β(1)) = Ŵ ∗(β(1)) ×
[
1 − Ŵ ∗(β(1))

n+1

]
. So,

ŴT (β(1)) ≥ 0 for all Ŵ ∗(β(1)), which implies that ŴT (β(1)) is monotonically in-

creasing function of Ŵ ∗(β(1)).

ii. When Ŵ ∗(β(1)) > γ(n+ 1), then ŴT (β(1)) = Ŵ ∗(β(1))× (1− γ) > 0, which implies

that ŴT (β(1)) is monotonically increasing function.

Since ŴT (β(1)) is continuous at Ŵ ∗(β(1)) = γ(n+ 1), we can conclude that ŴT (β(1)) is

a monotonically increasing function of Ŵ ∗(β(1)).

Condition c: Gamage et al. (2017) showed Ŵ ∗(β(1)) = op(1) in the equation (A.10).

Thus with probability tending to unity, we have Ŵ ∗(β(1)) ≤ (1− γ)(n+ 1). Combining
them together we obtain,

ŴT (β(1)) = Ŵ ∗(β(1)) + op(1).

Condition d: Let τ1 ∈ [0,∞). Then the τ1-level contour of ŴT (β(1)) is {β(1) : ŴT (β(1)) =

τ1}. Now, if we consider the τ2-level contour of Ŵ ∗(β(1)), {β(1) : Ŵ ∗(β(1)) = τ2}, to have

the same shape as τ1-level contour, then we have {β(1) : gT (Ŵ ∗(β(1))) = τ1} = {β(1) :

Ŵ ∗(β(1)) = τ2}, where gT (Ŵ ∗(β(1))) = ŴT (β(1)). Then, we get Ŵ ∗(β(1)) = g−1T (τ1) =

τ2. This holds, since ŴT (β(1)) is a monotonically increasing function of Ŵ ∗(β(1)). This
proves that the data driven shape is retained in the transformed statistic. Further,
suppose at β̃(1), Ŵ

∗(β(1)) has a unique minimum, and also ŴT (β(1)) is monotonically

increasing. Then, ŴT (β̃(1)) < ŴT (β(1)) for β(1) 6= β̃(1).

Since ŴT (β(1)) satistifies the conditions (a) − (d) and Ŵ ∗(β(1)) ∼ χ2
p+q+1 (Gamage et al.

2017), ŴT (β(1)) ∼ χ2
p+q+1 as n→∞. We can similarly show that the transformed versions of

the empirical likelihood with theoretical Bartlett correction (TB) and the empirical likelihood
with estimated Bartlett correction (EB) satisfies the conditions (a)-(d), thus, both asymptotic
distributions are χ2

p+q+1 as n→∞ for ARFIMA (p,d,q) model. We omit the details here.
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4. Simulations

In this section, we compare the coverage probabilities based on the transformed EL and
AEL methods to the (untransformed) EL and AEL method as well as the EL with estimated
Bartlett correction (EB) for models with different sample sizes and different distributions of
error terms.

4.1. Coverage probabilities

ARFIMA (0,d,0) model

Monte Carlo simulations are conducted to compute the coverage probabilities to examine the
efficiency and accuracy of the transformed EL and AEL methods for ARFIMA model. We
compare the results to the coverage probabilities of the untransformed (or original) EL and
AEL methods and EB. We consider the simplest model, ARFIMA(0,d,0) given below:

Zt = (1−B)−dat

Simulations are carried out for different sample sizes, values of d (d = (0.1, 0.2, 0.3, 0.4)) and
three different distributions of the white noise term, namely, N(0, 1), t5, and χ2

5 distribu-
tions. In t5 and χ2

5 distributions, the mean is subtracted from the white noise process in
order to make the white noise process to have mean zero. Under each case, 1000 series of
size T = (50, 70, 100, 200, 1000) are drawn and the coverage probabilities are computed. We
choose an = log(n)/2 as in the definition of ψn+1. The transformed empirical likelihood cover-
age probabilities and the transformed adjusted empirical likelihood coverage probabilities are
compared to the coverage probabilities of the (untransformed) empirical likelihood and ad-
justed empirical likelihood and EB respectively. Table 1 shows the results for the simulations
with a nominal level of 95%. It can be seen that the coverage probabilities computed using
the transformed EL and transformed AEL are higher than their untransformed counterparts.
Comparing to EB, TAEL provides better coverage probabilities always while TEL performs
better most times. Also when the sample size is small, the transformed AEL performs better
and gives accurate results than the other methods.

ARFIMA (0,d,1) model

We consider ARFIMA (0,d,1) model:

(1−B)dZt = (1 + θB)at,

where at is the white noise process with mean zero and variance σ2. The value of the model
parameter, θ is set to be 0.5. We consider three different error distributions for the white
noise process at: N(0,1), t5, and χ2

5. The last two distributions are centered around zero
by subtracting their corresponding mean values. Four different d values are considered:
d = (0.1, 0.2, 0.3, 0.4). Table 2 shows that the coverage probability for models under dif-
ferent white noise distributions are different as it changes to adapt the differences in error
distributions depicting the non-parametric property. Further, when the sample size is small,
the transformed EL and AEL methods give better coverage probability as compared to the
untransformed ones. Similar to Table 1, TAEL performs better in all scenarios while TEL
performs better most times comparing to EB.
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Table 1: Coverage probabilities for the parameter of ARFIMA(0,d,0) model

n Method d = 0.1 d = 0.2 d = 0.3 d = 0.4
Model: at ∼ N(0, 1)

T=50

EL 0.670 0.668 0.675 0.69
EL.T 0.692 0.693 0.692 0.713
AEL 0.673 0.677 0.685 0.699
AEL.T 0.701 0.702 0.702 0.726
EB 0.680 0.683 0.690 0.705

T=70

EL 0.706 0.706 0.699 0.699
EL.T 0.072 0.716 0.710 0.716
AEL 0.712 0.713 0.705 0.712
AEL.T 0.727 0.724 0.718 0.730
EB 0.717 0.716 0.709 0.720

T=100

EL 0.749 0.746 0.741 0.747
EL.T 0.755 0.756 0.754 0.755
AEL 0.753 0.754 0.750 0.755
AEL.T 0.760 0.759 0.760 0.762
EB 0.753 0.755 0.754 0.758

T=200

EL 0.766 0.769 0.774 0.774
EL.T 0.769 0.773 0.778 0.776
AEL 0.768 0.772 0.780 0.777
AEL.T 0.774 0.780 0.783 0.779
EB 0.771 0.777 0.784 0.788

T=1000

EL 0.906 0.908 0.913 0.917
EL.T 0.907 0.909 0.916 0.919
AEL 0.908 0.913 0.921 0.930
AEL.T 0.908 0.914 0.921 0.931
EB 0.907 0.911 0.918 0.924

Model: at ∼ t5

T=50

EL 0.714 0.712 0.710 0.695
EL.T 0.732 0.722 0.722 0.707
AEL 0.720 0.715 0.714 0.700
AEL.T 0.738 0.733 0.730 0.720
EB 0.725 0.716 0.716 0.709

T=70

EL 0.719 0.727 0.732 0.738
EL.T 0.730 0.738 0.744 0.750
AEL 0.728 0.731 0.741 0.746
AEL.T 0.736 0.740 0.749 0.754
EB 0.729 0.733 0.742 0.750

T=100

EL 0.753 0.760 0.765 0.774
EL.T 0.761 0.767 0.775 0.779
AEL 0.757 0.763 0.771 0.778
AEL.T 0.768 0.771 0.784 0.787
EB 0.757 0.764 0.780 0.787

T=200

EL 0.788 0.787 0.788 0.776
EL.T 0.791 0.790 0.789 0.783
AEL 0.789 0.788 0.789 0.791
AEL.T 0.795 0.795 0.797 0.795
EB 0.790 0.792 0.794 0.796

T=1000

EL 0.919 0.917 0.921 0.923
EL.T 0.921 0.918 0.922 0.923
AEL 0.921 0.920 0.931 0.936
AEL.T 0.921 0.921 0.932 0.936
EB 0.920 0.921 0.926 0.929

Continued on next page
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Table 1 – continued from previous page
n Method d = 0.1 d = 0.2 d = 0.3 d = 0.4

Model: at ∼ χ2
5 − 5

T=50

EL 0.680 0.680 0.686 0.696
EL.T 0.703 0.705 0.701 0.713
AEL 0.690 0.691 0.694 0.703
AEL.T 0.714 0.717 0.709 0.721
EB 0.698 0.696 0.698 0.710

T=70

EL 0.722 0.726 0.723 0.722
EL.T 0.739 0.740 0.736 0.738
AEL 0.730 0.732 0.730 0.731
AEL.T 0.742 0.745 0.742 0.743
EB 0.732 0.734 0.733 0.736

T=100

EL 0.740 0.743 0.739 0.739
EL.T 0.751 0.753 0.749 0.751
AEL 0.746 0.751 0.745 0.750
AEL.T 0.752 0.758 0.761 0.756
EB 0.748 0.751 0.750 0.757

T=200

EL 0.782 0.790 0.791 0.789
EL.T 0.786 0.796 0.795 0.794
AEL 0.784 0.794 0.796 0.801
AEL.T 0.787 0.799 0.802 0.802
EB 0.785 0.795 0.799 0.808

T=1000

EL 0.928 0.931 0.926 0.932
EL.T 0.929 0.933 0.929 0.933
AEL 0.929 0.934 0.94 0.94
AEL.T 0.932 0.935 0.941 0.942
EB 0.929 0.934 0.937 0.933

EL= empirical likelihood;
EB=EL with estimated Bartlett correction; AEL=Adjusted EL
‘.T’ represents the transformed statistics
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Table 2: Coverage probabilities for the parameter of ARFIMA(0,d,1) model

n Method d = 0.1 d = 0.2 d = 0.3 d = 0.4
Model: at ∼ N(0, 1)

T=50

EL 0.312 0.418 0.321 0.311
EL.T 0.483 0.494 0.465 0.496
AEL 0.421 0.425 0.424 0.416
AEL.T 0.512 0.516 0.517 0.523
EB 0.410 0.411 0.413 0.417

T=70

EL 0.453 0.502 0.508 0.509
EL.T 0.543 0.543 0.543 0.542
AEL 0.522 0.523 0.524 0.525
AEL.T 0.557 0.554 0.553 0.558
EB 0.515 0.523 0.525 0.518

T=100

EL 0.546 0.622 0.624 0.623
EL.T 0.631 0.632 0.632 0.632
AEL 0.628 0.629 0.631 0.629
AEL.T 0.634 0.634 0.634 0.637
EB 0.601 0.628 0.629 0.628

T=200

EL 0.716 0.717 0.722 0.715
EL.T 0.742 0.738 0.739 0.737
AEL 0.736 0.734 0.732 0.73
AEL.T 0.752 0.752 0.748 0.741
EB 0.728 0.731 0.727 0.721

T=1000

EL 0.891 0.911 0.917 0.915
EL.T 0.925 0.921 0.921 0.921
AEL 0.909 0.914 0.933 0.925
AEL.T 0.938 0.937 0.937 0.932
EB 0.910 0.911 0.923 0.921

Model: at ∼ t5

T=50

EL 0.412 0.413 0.404 0.403
EL.T 0.581 0.582 0.581 0.573
AEL 0.599 0.599 0.597 0.596
AEL.T 0.606 0.607 0.607 0.605
EB 0.514 0.504 0.513 0.499

T=70

EL 0.612 0.609 0.604 0.603
EL.T 0.644 0.645 0.641 0.642
AEL 0.648 0.649 0.652 0.648
AEL.T 0.652 0.651 0.653 0.653
EB 0.629 0.633 0.626 0.622

T=100

EL 0.678 0.677 0.675 0.674
EL.T 0.684 0.686 0.678 0.676
AEL 0.686 0.683 0.682 0.682
AEL.T 0.686 0.686 0.685 0.686
EB 0.686 0.685 0.684 0.681

T=200

EL 0.778 0.777 0.775 0.772
EL.T 0.784 0.786 0.785 0.786
AEL 0.784 0.781 0.778 0.776
AEL.T 0.786 0.785 0.782 0.781
EB 0.782 0.779 0.778 0.774

T=1000

EL 0.896 0.893 0.897 0.892
EL.T 0.902 0.904 0.904 0.904
AEL 0.913 0.917 0.917 0.916
AEL.T 0.935 0.936 0.936 0.927
EB 0.909 0.904 0.906 0.906

Continued on next page
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Table 2 – continued from previous page
n Method d = 0.1 d = 0.2 d = 0.3 d = 0.4

Model: at ∼ χ2
5 − 5

T=50

EL 0.252 0.258 0.265 0.281
EL.T 0.544 0.555 0.555 0.555
AEL 0.423 0.442 0.453 0.448
AEL.T 0.628 0.639 0.635 0.644
EB 0.410 0.421 0.432 0.445

T=70

EL 0.502 0.502 0.502 0.497
EL.T 0.675 0.675 0.675 0.673
AEL 0.597 0.597 0.597 0.598
AEL.T 0.714 0.714 0.714 0.712
EB 0.531 0.532 0.578 0.563

T=100

EL 0.708 0.709 0.706 0.704
EL.T 0.741 0.742 0.749 0.747
AEL 0.732 0.731 0.731 0.734
AEL.T 0.748 0.753 0.76 0.752
EB 0.732 0.731 0.728 0.721

T=200

EL 0.869 0.871 0.872 0.876
EL.T 0.881 0.880 0.881 0.881
AEL 0.875 0.879 0.878 0.882
AEL.T 0.884 0.884 0.886 0.884
EB 0.872 0.875 0.874 0.878

T=1000

EL 0.893 0.899 0.895 0.896
EL.T 0.908 0.907 0.908 0.902
AEL 0.912 0.919 0.911 0.912
AEL.T 0.923 0.923 0.929 0.937
EB 0.907 0.906 0.905 0.904

EL= empirical likelihood; EL.T=EL with the transformation;
AEL=Adjusted EL; AEL.T=EL with the transformation;
‘.T’ represents the transformed statistics
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4.2. Power curves for ARFIMA (1,d,0) models

For ARFIMA(1,d,0) model, we consider the behavior of power of the transformed empircal likelihood
and transformed adjusted empirical likelihood under three different distributions for the white noise
process at: N(0, 1), t5, and χ2

5. The latter two distributions are centered around zero. In these cases,
we consider φ = 0.2 with four different values for d: d = (0.1, 0.2, 0.3, 0.4). We also consider four
different sample sizes (n = 50, 70, 100, 200) under each error distribution. Figure 1 below provides the
power curves for ARFIMA(1,d,0) model at various sample sizes and orders of differencing (d) for given
error distributions. The black solid line is for the EL, red dotted line is for the EL with transformation,
blue dotdash line is for the AEL and green dotdash line is for the AEL with transformation. It also
indicates the patterns we observe from the Table 1 & Table 2.
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Figure 1: Power curves for ARFIMA(1,d,0) models

5. Discussion

In this paper, we propose a transformed adjusted empirical likelihood (TAEL) to extend the method
by Gamage et al. (2017) for long-memory time series models, specifically ARFIMA models. Such a
method combines the advantage of the adjusted empirical likelihood (AEL) by Chen et al. (2008) on
ensuring the existence of the solutions in optimizing the profile empirical likelihood ratio, and the
advantage of the transformed empirical likelihood (JEL) by Jing et al. (2017) on improving coverage
probabilities while maintaining the same asymptotic properties and simple form. The asymptotic
null distribution of the TAEL statistic for long-memory time series models has been established as a
standard chi-square distribution. Simulations have been conducted for different ARFIMA models with
various sample sizes and error distributions to compare the performance between the proposed TAEL
and the other existing methods. Results indicate that the TAEL provides better coverage probabilities
especially for small sample sizes.
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