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Abstract

In present article, we propose a likelihood ratio test and a non-parametric test for test-
ing the load sharing effect observed in the two component parallel load sharing system.
We have modeled the load sharing phenomenon observed in such system by the exponen-
tiated conditional distribution function based load sharing model proposed by Sutar and
Naik-Nimbalkar (2016). We have taken component baseline distribution as Weibull distri-
bution and linear failure rate distribution. The simulation study to see the performance
of proposed test procedures is reported. We analyze two data sets for illustrative purpose.
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1. Introduction

The systems in which the failure of a component increases or decreases the load on other
surviving components, thereby decreasing or increasing their chances of survival are known
as load sharing systems. Such systems are also referred to as dynamic reliability systems
and have several practical applications. Examples of load sharing systems include fibrous
composite materials, power plants, automobiles, two jet engines of an airplane among others
(Liu (1998)). These load sharing models have many applications in various fields engineering
(Singh and Gupta (2012)).

The earliest work on load sharing was carried by Daniels (1945). Then, many authors con-
tribute to the load-share models, for instance, Birnbaum and Saunders (1958), Coleman
(1958), Rosen (1964), Gross, Clark, and Liu (1971), Phoenix (1978), Singpurwalla (1995),
Hollander and Peña (1995), Kamps (1995), Cramer and Kamps (1996), Cramer and Kamps
(2001), Cramer and Kamps (2003), Lynch (1999), Drummond, Vázquez, Sánchez-Colón,
Martinez-Gómez, and Hudson (2000), Durham and Lynch (2000), Kim and Kvam (2004),
Kvam and Pena (2005), McCool (2006), Peña (2006), Amari, Misra, and Pham (2006),
Suprasad, Krishna, and Hoang (2008), Amari and Bergman (2008), Deshpande, Dewan, and
Naik-Nimbalkar (2010), Dewan and Naik-Nimbalkar (2010), Jain and Gupta (2012), Singh
and Gupta (2012), Mohammad, Kalam, and Amari (2013), Gurov and Utkin (2014), Yang,
Zeng, and Guo (2015), Sutar and Naik-Nimbalkar (2014), Sutar and Naik-Nimbalkar (2016),
Krivtsov, Amari, and Gurevich (2018), Kim (2018) and Sutar and Naik-Nimbalkar (2019)
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some of the references cited there in.

Sutar and Naik-Nimbalkar (2016) have considered a k-out-of-m system and proposed load
sharing model through exponentiated conditional distributions of the order statistics. It leads
to a new family of multivariate distributions for the ordered r.v.’s, which is different from the
one introduced by Kamps (1995) and Cramer and Kamps (1996), Cramer and Kamps (2001)
for sequential order statistics. In the present article, we consider a model for k-out-of-m load
sharing systems proposed by Sutar and Naik-Nimbalkar (2016). We consider a two component
parallel load sharing system and propose the two tests namely the likelihood ratio test (LRT)
and the non-parametric test for testing the load sharing effect observed in such system. The
performance of the proposed test procedures is also evaluated with extensive simulation study.
The rest of this article is organized as follows.

In Section 2, we restate the load sharing model for a two component parallel system, in a
general setup and also when the initial lifetimes of the components having Weibull and linear
failure rate distributions. For the general setup, we propose a LRT and non-parametric tests to
test the hypothesis that, the component failures occurs independently against the alternative
that they show the load sharing phenomenon in Section 3. In Section 4, simulation study
showing the performance of the test procedures is reported. We report the illustrations in
Section 5 and conclusions are given in the last section.

2. The model and the associated parameter estimation procedure

2.1. General setup

We consider a two component parallel system with U1, U2 as the component lifetimes, being
independent and identically distributed (i.i.d.) with common probability density function
(p.d.f.) f(·;λ) where λ may be scalar or vector valued parameter. Let F (·;λ) and F̄ (·;λ)
denote corresponding cumulative distribution function (c.d.f.) and survival function (s.f.).
Let X = min(U1, U2) denote the first failure time and Y = max(U1, U2) denote the second
failure time. The density of X is

kX(x, λ) = 2f(x;λ)F̄ (x;λ), x > 0.

According to load sharing model proposed by Sutar and Naik-Nimbalkar (2016), the condi-
tional density of Y given X = x is

kY |X=x(y;β, λ) = β

[
1− F̄ (y;λ)

F̄ (x;λ)

]β−1
f(y;λ)

F̄ (x;λ)
, 0 < x < y <∞, β > 0. (1)

and the joint density of (X,Y ) is

k(x, y;β, λ) = 2β

[
1− F̄ (y;λ)

F̄ (x;λ)

]β−1

f(x;λ)f(y;λ), 0 < x < y <∞, β > 0. (2)

We note that, β = 1 implies independent setup whereas β 6= 1 implies dependent or load
sharing setup. Let {(xi, yi), i = 1, 2, · · · , n} be a random sample of size n from the joint
density given in (2). We use the two step procedure proposed by Sutar and Naik-Nimbalkar
(2016) for estimating the unknown parameters. This procedure is described as follow.

Step (i): Estimate λ based on observations on X, the first failure time.
That is we can estimate λ by maximizing the following log-likelihood, logLX(λ),based
on X,

logLX(λ) = n log 2 +
n∑
i=1

log f(xi;λ) +
n∑
i=1

log
(
F (xi;λ)

)
. (3)
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Step (ii): Estimate β by using conditional distribution of Y given X = x and by plugging in
the estimates of λ as λ̂ (say), obtained in step (i).
Thus, the estimate β̂ of β is given by

β̂ =

[
− 1

n

n∑
i=1

log

(
1− F̄ (yi; λ̂)

F̄ (xi; λ̂)

)]−1

. (4)

In the next subsection, we discuss the same setup when baseline distributions are Weibull and
LFR.

2.2. Weibull distribution

We consider a two component parallel load sharing system, with the component lifetimes
being i.i.d. Weibull r.v.’s with shape parameter λ and scale parameter θ, with p.d.f.

f(ui) = θλuλ−1
i e−θu

λ
i , ui > 0, λ > 0, θ > 0, i = 1, 2. (5)

Then, the first failure time, X is a Weibull random variable with shape parameter λ and scale
parameter 2θ. The conditional density of Y given X = x as

kY |X=x(y) = βλθyλ−1
{

1− e−θ(yλ−xλ)
}β−1

e−θ(y
λ−xλ), 0 < x < y <∞, λ > 0, θ > 0, β > 0.

(6)
The joint density of (X,Y) can be written as

k(x, y) = 2βλ2θ2(xy)λ−1
{

1− e−θ(yλ−xλ)
}β−1

e−θ(y
λ−3xλ), 0 < x < y <∞, λ > 0, θ > 0, β > 0.

(7)

Estimation procedure

We adopt two step estimation procedure proposed by Sutar and Naik-Nimbalkar (2016) and
the two step estimation procedure for estimating (λ, θ, β) is as follow.

Step (i): Estimation of λ and θ

The log-likelihood based on X as

logLX = n log 2 + n log θ + n log λ+ (λ− 1)
n∑
i=1

log xi − 2θ
n∑
i=1

xλi .

The maximum likelihood estimates (λ̂, θ̂) of (λ, θ) by solving the following log-likelihood
equations by iterative procedures such as Newton-Raphson method,

∂ logLX
∂θ

=
n

θ
− 2

n∑
i=1

xλi = 0,

∂ logLX
∂λ

=
n

λ
+

n∑
i=1

log xi − 2θ
n∑
i=1

(log xi)x
λ
i = 0.

Step (ii): Estimation of β

Once we get estimates of λ and θ, the estimate of β follows from the expression (4),
thus

β̂ =

[
− 1

n

n∑
i=1

log

{
1− e−θ̂(yλ̂i −xλ̂i )

}]−1

.
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2.3. LFR case

We consider a two component parallel load sharing system, with the component lifetimes
being i.i.d. LFR r.v.’s with parameters λ1, λ2, with p.d.f.

f(ui) = (λ1 + 2λ2ui) exp{−(λ1ui + λ2u
2
i )}, ui > 0, λ1 > 0, λ2 ≥ 0, i = 1, 2. (8)

Then, X has the LFR distribution with parameters 2λ1 = η1 (say) and 2λ2 = η2 (say), with
p.d.f.

kX(x) = {η1 + 2η2x} e−{η1x+η2x2}, x > 0, η1 > 0, η2 > 0.

The conditional density of Y given X = x as

kY |X=x(y) = β {λ1 + 2λ2y}
{

1− e−{λ1(y−x)+λ2(y2−x2)}}β−1
e−{λ1(y−x)+λ2(y2−x2)}, (9)

0 < x < y <∞, λ1, λ2, β > 0.
The joint density of (X,Y ) as

k(x, y) = 2β {λ1 + 2λ2x} {λ1 + 2λ2y}
{

1− e−{λ1(y−x)+λ2(y2−x2)}}β−1
e−{λ1(x+y)+λ2(x2+y2)},

(10)
0 < x < y <∞, λ1, λ2, β > 0.

The two step estimation procedure

Step (i): Estimation of λ1 and λ2

Since, X has the LFR distribution with parameters η1 = 2λ1 and η2 = 2λ2, we employ
same step of Sutar and Naik-Nimbalkar (2016) for finding the estimates of (η1, η2).

Specifically, letting η
(p)
1 and η

(p)
2 denote the estimates of η1 and η2, respectively, at the

pth stage of iteration, η
(p+1)
1 and η

(p+1)
2 are obtained as

η
(p+1)
1 =

{
1

η
(p)
1

+ n−1

(
n∑
i=1

xi −
n∑
i=1

1

(η
(p)
1 + 2η

(p)
2 xi)

)}−1

,

η
(p+1)
2 =

{
1

η
(p)
2

+ n−1

(
n∑
i=1

x2
i −

n∑
i=1

2xi

(η
(p)
1 + 2η

(p)
2 xi)

)}−1

.

Once we get the estimates (η̂1, η̂2) of (η1, η2), we can obtain estimates of (λ1, λ2) as

(λ̂1 = η̂1
2 , λ̂2 = η̂2

2 ).

Step (ii): Estimation of β

We estimate β from the expression (4) as

β̂ =

[
− 1

n

n∑
i=1

log
{

1− e−{λ̂1(y1−xi)+λ̂2(y2i−x
2
i )}
}]−1

.

In the next section, we propose a test procedures for testing the load sharing effect.

3. The proposed test procedures

We consider a two component parallel load sharing system and our interest is to test whether
the lifetimes of the system components are independent against the alternative that there
exits a load sharing phenomenon. We propose a LRT and non-parametric test for testing the
load sharing effect. We set the null hypothesis as H0 : β = 1, i.e. the first failure does not
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affect the lifetime of the second component and the alternative hypothesis as H1 : β 6= 1,
i.e. the first failure affects (stochastically changes) the lifetime of the second component.
The data consist of n i.i.d. pairs of ordered component lifetimes and is denote by, (x,y) =
{(xi, yi) : xi ≤ yi; i = 1, 2, ..., n}. The joint density of (X,Y ) in terms of conditional of Y given
X = x and marginal density of X can be written as

k(X,Y )(x, y;β, λ) = kY |X=x(y;β, λ)kX(x;λ), x < y, β > 0, λ > 0.

Then the complete likelihood, L(X,Y ), based on data (x,y) is given by

L(X,Y ) =
n∏
i=i

kYi|Xi=xi(yi;β, λ)kXi(xi;λ) = LY |X=x(β, λ;x,y)LX(λ,x),

where LY |X=x(β, λ;x,y) =
∏n
i=i kYi|Xi=xi(yi;β, λ), is the likelihood based on conditional den-

sity of Y given X = x and LX(λ,x) =
∏n
i=i kXi(xi;λ), is the likelihood based on marginal

density of X.

In the next subsections, we propose two test procedures for testing the load sharing effect.

3.1. Likelihood ratio test

The LRT statistic for testing H0 against H1 is

µ∗(x,y) =

sup
Θ0

{
LY |X=x(β, λ;x,y)LX(λ,x)

}
sup

Θ

{
LY |X=x(β, λ;x,y)LX(λ,x)

} ,
where Θ0 = {(β;λ) | β = 1, λ ≥ 0}, Θ1 = {(β;λ) |β 6= 1, λ ≥ 0} and Θ = {Θ0 ∪Θ1} =
{(β;λ) | β > 0, λ ≥ 0}.
We modify the usual LRT statistic by estimating β and λ using the two step procedure
discussed in the previous section. Let these estimators be denoted by β̂ and λ̂. We also note
that, sup

Θ0

{LX(λ,x)} = sup
Θ
{LX(λ,x)} as the marginal density of X remains the same in both

H0 and H1 setups. Thus, the test statistic can be written as

µ(x,y) =

sup
Θ0

{
LY |X=x(β, λ;x,y)

}
sup

Θ

{
LY |X=x(β, λ;x,y)

} =
LY |X=x(β, λ;x,y)|(β0,λ̂)

LY |X=x(β, λ;x,y)|(β̂,λ̂)

. (11)

Lemma 1. λ̂ is consistent estimator of λ0 (true parameter). That is, as n→∞,

λ̂
p→ λ0. (12)

Proof. The consistency of λ̂ follows from the Cramer-Huzurbazar theorem (Kale (2005)). As
the all regularity conditions of the Cramer-Huzurbazar theorem is satisfied by the density
k(x, λ) of, the first failure, X. We claim that k(x) = 2f(x;λ)F̄ (x;λ) belongs to the Cramer
class.

Lemma 2. β̂ is consistent estimator of β0 (true parameter). That is, as n→∞,

β̂
p→ β0. (13)

Proof. By using Taylor series expansion of
∂ logLY |X=x(β,λ)

∂β

∣∣∣
(β̂,λ̂)

around (β0, λ̂), we get

∂ logLY |X=x(β, λ)

∂β

∣∣∣∣∣
(β̂,λ̂)

=
∂ logLY |X=x(β, λ)

∂β

∣∣∣∣∣
(β0,λ̂)

+ (β̂ − β0)
∂2 logLY |X=x(β, λ)

∂β2

∣∣∣∣∣
(β∗,λ̂)

,

(14)
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where, β∗ = aβ0 + (1− a)β̂, a ∈ (0, 1).

As
∂ logLY |X=x(β,λ)

∂β

∣∣∣
(β̂,λ̂)

= 0,
∂2 logLY |X=x(β,λ)

∂β2

∣∣∣∣
(β∗,λ̂)

= − n
(β∗)2

,

we have

(β̂ − β0) = β∗2

 1

n

∂ logLY |X=x(β, λ)

∂β

∣∣∣∣∣
(β0,λ̂)

 .
Now, we expand 1

n

∂ logLY |X=x(β,λ)

∂β

∣∣∣
(β0,λ̂)

around (β0, λ0) by using Taylor series expansion as

1

n

∂ logLY |X=x(β, λ)

∂β

∣∣∣∣∣
(β0,λ̂)

=
1

n

∂ logLY |X=x(β, λ)

∂β

∣∣∣∣∣
(β0,λ0)

+
(λ̂− λ0)

n

∂2 logLY |X=x(β, λ)

∂β∂λ

∣∣∣∣∣
(β0,λ∗)

,

where λ∗ = bλ0 + (1− b)λ̂, b ∈ (0, 1).
Consider first term,

1

n

∂ logLY |X=x(β, λ)

∂β

∣∣∣∣∣
(β0,λ0)

=
1

n

n∑
i=1

∂ log kYi|Xi=xi(yi;β, λ)

∂β

∣∣∣∣∣
(β0,λ0)

,

where kYi|Xi=xi(yi;β, λ); i = 1, 2, · · · , n is the conditional density of Yi given Xi = xi and is

defined as in (1). Let Ui =
∂ log hYi|Xi=xi (yi;β,λ)

∂β

∣∣∣∣
(β0,λ0)

. But as (Xi, Yi) are i.i.d., we can claim

that Ui’s are also i.i.d. with E(U1) = 0. Thus, by weak law of large numbers,

1

n

∂ logLY |X=x(β, λ)

∂β

∣∣∣∣∣
(β0,λ0)

p→ 0.

Consider second term,

(λ̂− λ)

n

∂2 logLY |X=x(β, λ)

∂β∂λ

∣∣∣∣∣
(β0,λ∗)

.

As λ̂ is consistent for λ and λ∗ = bλ0 + (1− b)λ̂, b ∈ (0, 1), we have λ∗
p→ λ0. Also we know

that if m(·) is continuous function then, by invariance property of consistent estimator, we

have m(λ∗)
p→ m(λ0). Therefore, we can claim that, 1

n

∂2 logLY |X=x(β,λ)

∂β∂λ

∣∣∣∣
(β0,λ∗)

is bounded in

probability. Thus, by using above arguments and from Lehmma 1, we have (β̂−β0)
p→ 0.

Lemma 3. As n→∞,

− 1

n

∂2 logLY |X=x(β, λ)

∂β2

∣∣∣∣∣
(β̂,λ̂)

p→ IY |x(β0, λ0), (15)

where IY |x(β0, λ0) = E

[
− ∂2 log hY |X(Y ;β,λ)

∂β2

∣∣∣∣
(β0,λ0)

]
,
∂2 logLY |X(Y ;β,λ)

∂β2

∣∣∣∣
(β̂,λ0)

= −n
β̂2

.

Proof. As β̂
p→ β0 and β0 > 0 , we have the result

− 1

n

∂2 logLY |X=x(β, λ)

∂β2

∣∣∣∣∣
(β0,λ̂)

p→ IY |X=x(β0, λ0) =
1

β2
0

(<∞).
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Lemma 4. Asymptotic normality of β̂. That is

√
n(β̂ − β0)

D→ N
(
0, β2

0

)
. (16)

Proof. By using Taylor series expansion, we expand
∂ logLY |X=x(β,λ)

∂β

∣∣∣
(β̂,λ̂)

around (β0, λ0) as

∂ logLY |X=x(β, λ)

∂β

∣∣∣∣∣
(β̂,λ̂)

=
∂ logLY |X=x(β, λ)

∂β

∣∣∣∣∣
(β0,λ0)

+ (β̂ − β0)
∂2 logLY |X=x(β, λ)

∂β2

∣∣∣∣∣
(β0,λ0)

(
λ̂− λ0

) ∂2 logLY |X=x(β, λ)

∂β∂λ

∣∣∣∣∣
(β0,λ0)

+
(β̂ − β0)2

2!

∂3 logLY |X=x(β, λ)

∂β3

∣∣∣∣∣
(β∗,λ∗)

+

(
λ̂− λ0

) (
β̂ − β0

)
2!

∂3 logLY |X=x(β, λ)

∂β2∂λ

∣∣∣∣∣
(β∗,λ∗)

+
(λ̂− λ0)2

2!

∂3 logLY |X=x(β, λ)

∂β3

∣∣∣∣∣
(β∗,λ∗)

,

(17)
where, β∗ = aβ0 + (1− a)β̂, a ∈ (0, 1) and λ∗ = bλ0 + (1− b)λ̂, b ∈ (0, 1).
By using the following results

∂ logLY |X=x(β, λ)

∂β
|(β̂,λ̂) = 0, − 1

n

∂2 logLY |X=x(β, λ)

∂β2
|(β0,λ0) =

1

β2
0

(<∞),

− 1

n

∂3 logLY |X=x(β, λ)

∂β3
|(β∗,λ∗) =

2

β∗3
(<∞),

1

n

∂3 logLY |X=x(β, λ)

∂β2∂λ

∣∣∣∣∣
(β0,λ0)

= 0,

∂3 logLY |X=x(β, λ)

∂λ2∂β

∣∣∣∣∣
(β0,λ0)

=
∂3 logLY |X=x(β, λ)

∂λ∂β2

∣∣∣∣∣
(β0,λ0)

= 0, β̂
p→ β0, λ̂

p→ λ0,

the expression (17) becomes

√
n(β̂ − β0)

d
= β2

0

(
1√
n

∂ logLY |X=x(β, λ)

∂β
|(β0,λ0)

)
.

Define, Ui =
∂ log kYi|Xi=xi(yi;β, λ)

∂β

∣∣∣∣∣
(β0,λ0)

. As (Xi, Yi) are i.i.d. pairs, we claim that the Ui’s

are also i.i.d. with

E(U1) = 0, V (U1) = E

− ∂2 log kY |X(y, β, λ)

∂β2

∣∣∣∣∣
(β0,λ0)

 = IY |X=x(β0, λ0) =
1

β2
0

(<∞).

By the central limit theorem (CLT), we have∑n

i=1
Ui−nE(U1)√
nV (U1)

L→ Z ∼ N(0, 1).

That is

1√
n

∑n
i=1 Ui

L→ Z ∼ N
(
0, 1

β2
0

)
.

By Slutsky’s theorem on convergence of random variables, we have the following result

√
n(β̂ − β0)

L→ Z ∼ N(0, β2
0).

Theorem 1. Under the Cramer regularity conditions (Cramer (1946)), the asymptotic null
distribution of the test statistic, −2 logµ(X,Y) is χ2 distribution with 1 degree of freedom.
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Proof. The joint density of (X,Y ) can be written as

k(x, y) = k(y|x;β, λ)k(x;λ), x < y, β > 0. (18)

We assume that the joint density k(x, y) of (X,Y ) satisfies the usual regularity conditions.
For shake of simplicity, we take λ = λ i.e. scalar parameter and note that the same steps can
be extended to λ. The conditional density of Y given X = x is

kY |X=x(y) = β

[
1− F̄ (y;λ)

F̄ (x;λ)

]β−1
f(y;λ)

F̄ (x;λ)
, x < y, β > 0.

Thus,

∂ log kY |X=x(y)

∂β
=

1

β
+ log

[
1− F̄ (y;λ)

F̄ (x;λ)

]
,
∂2 log kY |X=x(y)

∂β2
=
−1

β2
.

We estimate λ from the marginal distribution of X and β from conditional distribution of Y
given X = x by plugging the estimate λ̂ of λ.
From (11), we can write,

−2 logµ(x,y) = 2 logLY |X=x(β, λ)|(β̂,λ̂) − 2 logLY |X=x(β, λ)|(β0,λ̂). (19)

Through out the proof β0 = 1, which is the value of β under H0. Let λ = λ0 denote the true
parameter. Now, we expand 2 logLY |X=x(β, λ)|(β0,λ̂) around (β̂, λ̂) by using Taylor series as

2 logLY |X=x(β, λ)|(β0,λ̂) = 2 logLY |X=x(β, λ)|(β̂,λ̂) + 2(β0 − β̂)
∂ logLY |X=x(β, λ)

∂β

∣∣∣∣∣
(β̂,λ̂)

+
2(β0 − β̂)2

2!

∂2 logLY |X=x(β, λ)

∂β2

∣∣∣∣∣
(β̂,λ̂)

+
2(β0 − β̂)3

3!

∂3 logLY |X=x(β, λ)

∂β3

∣∣∣∣∣
(β∗,λ̂)

. (20)

By using (20), equation (19) becomes

−2 logµ(x,y) = −2(β0 − β̂)
∂ logLY |X=x(β, λ)

∂β

∣∣∣∣∣
(β̂,λ̂)

+(β̂ − β0)2

− ∂2 logLY |X=x(β, λ)

∂β2

∣∣∣∣∣
(β̂,λ̂)

+
2(β0 − β̂)3

3!

∂3 logLY |X=x(β, λ)

∂β3

∣∣∣∣∣
(β∗,λ̂)

. (21)

By using the following results
∂ logLY |X=x(β, λ)

∂β

∣∣∣∣∣
(β̂,λ̂)

= 0, −
∂2 logLY |X=x(β, λ)

∂β2

∣∣∣∣∣
(β̂,λ̂)

=
n

β̂2
,

−
∂3 logLY |X=x(β, λ)

∂β3

∣∣∣∣∣
(β̂,λ̂)

= −2n

β̂3
, the expression (21) becomes

−2 logµ(x,y) =

[√
n
(
β̂ − β0

)]2
β̂2

+Rn,

where, Rn = 2n(β0−β̂)3

3!(β∗)3
.

From Lemma 2, Lemma 3 and the fact that 1
(β∗)3

<∞, we can claim that Rn
p→ 0. Thus, by

Lemma 1 to 4, we have the result, that is, as n→∞, −2 logµ(X,Y ) has the χ2 distribution
with 1 degree of freedom.
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3.2. Non-parametric test

In this sub-section, we propose the non-parametric test, for testing H0 : β = 1 against
H1 : β 6= 1. The non-parametric estimate β̃ of β is obtained by replacing F̄ (·) by its empirical
survival function, F̄n, in expression (4) and is given by

β̃ =

[
− 1

n

n∑
i=1

log

(
1− F̄n(yi; λ̂)

F̄n(xi; λ̂)

)]−1

. (22)

We note that, we do not have observations from F (·), baseline distribution, but we do have
observation from the minimum (first failure), X. Suppose the c.d.f. of the minimum is
K(·) = 1 − (1 − F (·))2, then by this assumption, we can write F (·) = 1 −

√
(1−K(·)). Let

Kn denote the empirical distribution function based on observations from K(·), then Fn(·)
can be estimated as 1−

√
(1−Kn(·)).

Theorem 2. Under independent and identical setup and as n approaches infinity, the random
variable

√
n(β̃ − β) converge in distribution to a normal N

(
0, β2

)
. That is

√
n(β̃ − β)

D→ Z ∼ N
(
0, β2

)
. (23)

Proof. For i = 1, 2, · · · , n, consider

Di =

(
F̄n(yi)

F̄n(xi)
− F̄ (yi)

F̄ (xi)

)

≤
∣∣∣∣∣ F̄n(yi)

F̄n(xi)
− F̄ (yi)

F̄ (xi)

∣∣∣∣∣
≤
∣∣∣∣∣ F̄n(xi)

(
F̄n(yi)− F̄ (yi)

)
− F̄ (yi)

(
F̄n(xi)− F̄ (xi)

)
(F̄n(xi)F̄ (xi)

∣∣∣∣∣ .
Thus, by Glivenko-Cantelli theorem (Wasserman (2013)), we have, as n→∞, F̄n(x)

a.s.→ F̄ (x)
and hence, we can show that, (

F̄n(yi)

F̄n(xi)
− F̄ (yi)

F̄ (xi)

)
p→ 0.

Hence, {
−1

n

n∑
i=1

log

(
1− F̄n(yi)

F̄n(xi)

)}
−
{
−1

n

n∑
i=1

log

(
1− F̄ (yi)

F̄ (xi)

)}
p→ 0,

That is, (
1

β̃
− 1

β̂

)
p→ 0.

As 0 < β <∞, we have,
(β̃ − β̂)

p→ 0, (24)

where, β̂ is as given in (4).

To obtain asymptotic distribution of β̂, we define, Zi = − log
(
1− F̄ (yi)

F̄ (xi)

)
, ∀ i = 1, 2, ..., n.

Since, (Xi, Yi) being i.i.d. pairs, we can claim that, Zi are also i.i.d. random variable. By
CLT, we have,

Z̄ =
1

n

n∑
i=1

Zi
D→ Z ∼ N

(
E(Z1),

V (Z1)

n

)
.

By definition,

E(Z1) =

∫
x

∫
y
z1g(x, y)dydx
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= 2β

∫ 0

∞

∫ x

∞

{
− log

(
1− F̄ (yi)

F̄ (xi)

)}(
1− F̄ (yi)

F̄ (xi)

)β−1
f(y)

F̄ (x)
f(x)F̄ (x)dydx.

After putting
(
1− F̄ (yi)

F̄ (xi)

)
= u, we get,

E(Z1) = 2β

∫ 0

∞

∫ 0

1
{− log (u)} (u)β−1 f(x)F̄ (x)dudx = β

∫ 0

1
{− log (u)} (u)β−1 du =

1

β
.

Using similar argument, we can show that, E(Z2
1 ) = 2

β2 . Hence, the variance of Z1, V (Z1) is

= 1
β2 . Thus, we claim that

Z̄

(
=

1

β̂

)
D→ Z ∼ N

(
1

β
,

1

nβ2

)
.

By Delta method, we have,

β̂ =

{
−1

n

n∑
i=1

log

(
1− F̄ (yi)

F̄ (xi)

)}
D→ Z ∼ N

(
β,
β2

n

)
. (25)

Thus, by law of convergence, we have the result.

4. Simulation study

In the present section, we carry out a simulation study to examine the power and the level
attained by the LRT discussed in the Sub-section 3.1. In each case 10000 samples were
generated for the different combinations of the sample sizes (n) and the parameter values
from the respective densities. There is evidence against H0, if the value of the test statistic is
≥ 3.84, which is the critical value at 0.05 of the χ2 distribution with 1 degree of freedom. In
order to estimate power of LRT in case of Weibull, we generate 10000 samples of sample sizes,
n = 10, 30 and 50 with parameters (λ, θ) as (1,1), (1,2), (2,1), (0.5,1), (0.5, 2) and β as 0.5,
0.8, 1.5, 1.8 from the density given in (7). To see the level attained by the test, we generated
10000 samples of sample sizes, n = 30, 50, 100 with parameters (λ, θ) as (1,1), (1,2), (2,1),
(0.5, 1), (0.5, 2) and β = 1. We report the level attained in Table 1 and the estimated power
of LRT for Weibull in Table 2. From Table 2, it is observed that the power improves as the
sample size increases and as the parameter β moves away from 1. But we need a large sample
size to attain 0.05 level. Similarly, in order to estimate power of LRT in case of LFR, we
generate 10000 samples of sample sizes, n = 10, 30 and 50 with parameters (λ1, λ2) as (1,1),
(1,2), (2,1) and β as 0.5, 0.8, 1.2, 1.5, 1.8 from the density given in (10). To examine the level
attained by the test, we generate 10000 samples of sample sizes, = 30, 50, 200, 300, 500 with
parameters (λ1, λ2) as (1,1), (1,2), (2,1) and β = 1. We report the level attained in Table 3
and the estimated power of LRT for LFR in Table 4. From Table 4, it is observed that the
power improves as the sample size increases and as the parameter β moves away from 1. To
achieve 0.05, the desired level of significance, we need a large sample size.

The simulation study of the non-parametric test, discussed in the Sub-section 3.2, is also
presented. To see the estimated power and level attained, we generate 10000 samples for
different combinations of sample sizes and parameter values from the respective densities.
Under H0 : β = 1, the distribution of test statistic

√
n(β̃ − 1) for testing H0 : β = 1 against

H1 : β 6= 1 is N(0, 1) and we use standard normal cutoff for the proposed non-parametric
test procedure. Thus, we reject H0, if the calculated value of test statistic ≥ 1.96, the critical
value at 5% of standard normal variate. We have observations from K(·) = 1− (1− F (·))m,
the distribution function of first failure. Thus, we replace F (·) by 1− (1−K(·))(1/m) and use
the empirical distribution function based on K(·). To estimate power of the test with Weibull
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Table 1: Level attained by LRT in Weibull case for different sample sizes (n).

λ θ β n = 30 n = 50 n = 100

1.0 1.0 1.0 0.057 0.053 0.047

1.0 2.0 1.0 0.053 0.051 0.045

2.0 1.0 1.0 0.056 0.052 0.048

0.5 1.0 1.0 0.057 0.051 0.046

0.5 2.0 1.0 0.055 0.049 0.047

Table 2: Power of LRT in Weibull case for different sample sizes (n).

λ θ β n = 10 n = 30 n = 50

1.0 1.0 0.5 0.869 0.960 0.997

1.0 2.0 0.5 0.881 0.963 0.993

2.0 1.0 0.5 0.871 0.959 0.999

0.5 1.0 0.5 0.882 0.967 1.000

0.5 2.0 0.5 0.878 0.965 0.999

1.0 1.0 0.8 0.177 0.254 0.352

1.0 2.0 0.8 0.199 0.258 0.383

2.0 1.0 0.8 0.188 0.243 0.370

0.5 1.0 0.8 0.183 0.238 0.393

0.5 2.0 0.8 0.191 0.247 0.346

1.0 1.0 1.5 0.415 0.571 0.808

1.0 2.0 1.5 0.414 0.586 0.786

2.0 1.0 1.5 0.405 0.597 0.822

0.5 1.0 1.5 0.394 0.581 0.812

0.5 2.0 1.5 0.393 0.557 0.814

1.0 1.0 1.8 0.872 0.967 0.998

1.0 2.0 1.8 0.871 0.975 1.000

2.0 1.0 1.8 0.852 0.964 0.999

0.5 1.0 1.8 0.876 0.968 0.997

0.5 2.0 1.8 0.848 0.974 0.998

distribution as baseline distribution, we generate 10000 samples of sample sizes n = 30, 50
and 100 with parameters (λ, θ) as (1,1), (1,2), (2,1), (2,2), (0.5,1), (0.5,2) and β as 0.5, 0.8,
1.5, 1.8 from the density given in (7). To examine the level attained, we generate 10000
samples of sample sizes n = 30, 50, 100 and 200 with parameters (λ, θ) as (1,1), (1,2), (2,1),
(0.5, 1), (0.5, 2) and β = 1. In Tables 5 and 6, respectively, report the level attained and the
estimated power of the non-parametric test, with Weibull distribution as baseline distribution.
From Table 6 it is observed that the power improves as the sample size increases and as the
parameter β moves away from 1. But we need a large sample size to attain 0.05 as level of
significance. Similarly, in order to estimate power of the non-parametric test in case of LFR,
we generate 10000 samples of sample sizes n = 10, 30 and 50 with parameters (λ1, λ2) as (1,1),
(1,2), (2,1), (2,2) and β as 0.5, 0.8, 1.5, 1.8 from the density given in (10). To examine at the
level attained by the test, we generate 10000 samples of sample sizes n = 30, 50, 200 and 300
with parameters (λ1, λ2) as (1,1), (1,2), (2,1), (2,2) and β = 1. We report the level attained
and the estimated power of non-parametric test in Table 7 and Table 8 respectively, for LFR
baseline distribution. Here also, it is observed that the power improves as the sample size
increases and as the parameter β moves away from 1. We note that, to achieve the desired
level of significance by the non-parametric test, we need a larger sample size as compare to
the LRT. We have used R software for computation purpose.
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Table 3: Level attained by LRT in LFR case for different sample sizes (n).

λ1 λ2 β n = 30 n = 50 n = 200 n = 300 n = 500

1.0 1.0 1.0 0.140 0.150 0.100 0.058 0.048

1.0 2.0 1.0 0.130 0.110 0.090 0.048 0.046

2.0 1.0 1.0 0.160 0.113 0.087 0.053 0.047

Table 4: Power of LRT in LFR case for different sample sizes (n).

λ1 λ2 β n = 10 n = 30 n = 50

1.0 1.0 0.5 0.562 0.950 1.000

1.0 2.0 0.5 0.554 0.960 0.990

2.0 1.0 0.5 0.523 0.910 0.990

1.0 1.0 0.8 0.130 0.250 0.390

1.0 2.0 0.8 0.160 0.280 0.450

2.0 1.0 0.8 0.210 0.273 0.320

1.0 1.0 1.5 0.430 0.660 0.830

1.0 2.0 1.5 0.460 0.570 0.800

2.0 1.0 1.5 0.370 0.660 0.810

1.0 1.0 1.8 0.510 0.810 0.960

1.0 2.0 1.8 0.600 0.840 0.916

2.0 1.0 1.8 0.590 0.800 0.970

Table 5: Level attained by non-parametric test in Weibull case for different sample sizes (n).

λ θ β n = 30 n = 50 n = 100 n = 200

1.0 1.0 1.0 0.229 0.198 0.064 0.058

1.0 2.0 1.0 0.234 0.199 0.068 0.057

2.0 1.0 1.0 0.231 0.188 0.059 0.058

2.0 2.0 1.0 0.261 0.191 0.061 0.056

0.5 1.0 1.0 0.246 0.192 0.064 0.056

0.5 2.0 1.0 0.262 0.194 0.068 0.058
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Table 6: Power of non-parametric test in Weibull case for different sample sizes (n).

λ θ β n = 10 n = 30 n = 50

1.0 1.0 0.5 0.599 0.716 0.876

1.0 2.0 0.5 0.612 0.723 0.885

2.0 1.0 0.5 0.613 0.743 0.895

2.0 2.0 0.5 0.628 0.761 0.894

0.5 1.0 0.5 0.632 0.743 0.918

0.5 2.0 0.5 0.627 0.732 0.874

1.0 1.0 0.8 0.463 0.491 0.536

1.0 2.0 0.8 0.451 0.489 0.535

2.0 1.0 0.8 0.449 0.468 0.563

2.0 2.0 0.8 0.487 0.476 0.529

0.5 1.0 0.8 0.461 0.486 0.546

0.5 2.0 0.8 0.453 0.489 0.556

1.0 1.0 1.5 0.693 0.877 0.926

1.0 2.0 1.5 0.685 0.868 0.925

2.0 1.0 1.5 0.675 0.876 0.928

2.0 2.0 1.5 0.689 0.874 0.928

0.5 1.0 1.5 0.681 0.874 0.928

0.5 2.0 1.5 0.702 0.873 0.927

1.0 1.0 1.8 0.856 0.959 0.989

1.0 2.0 1.8 0.837 0.955 0.988

2.0 1.0 1.8 0.844 0.957 0.988

2.0 2.0 1.8 0.875 0.955 0.989

0.5 1.0 1.8 0.896 0.955 0.989

0.5 2.0 1.8 0.884 0.955 0.988

Table 7: Level attained by non-parametric test in LFR case for different sample sizes (n).

λ1 λ2 β n = 30 n = 50 n = 200 n = 300

1.0 1.0 1.0 0.203 0.117 0.069 0.054

1.0 2.0 1.0 0.240 0.130 0.068 0.053

2.0 1.0 1.0 0.239 0.131 0.063 0.054

2.0 2.0 1.0 0.240 0.130 0.065 0.054

5. Illustrations

In present section, we report two illustrations with two data sets namely appendectomy in
Australian twins and motors data, to see how the proposed test procedures work.

5.1. Appendectomy in Australian twins

The Australian Twins Data (Duffy, Martin, and Mathews (1990)) was derived from a ques-
tionnaire mailed to 5967 twin pairs, over the age of 18 years registered with the Australian
Twin Registry during the period from November 1980 to March 1982. Subjects were asked
if they had undergone appendectomy and at what age the procedure was performed (onset).
A total of 3, 808 complete pairs returned the questionnaire. We have taken only the pairs of
twins who had undergone appendectomy. There were 339 such pairs. Out of the 339 pairs of
twins we discarded 6 pairs of twins for whom the appendectomy was performed at the same
age, treating these observation as ties.
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Table 8: Power of non-parametric test in LFR case for different sample sizes (n).

λ1 λ2 β n = 10 n = 30 n = 50

1.0 1.0 0.5 0.632 0.770 0.855

1.0 2.0 0.5 0.619 0.719 0.865

2.0 1.0 0.5 0.653 0.768 0.866

2.0 2.0 0.5 0.628 0.791 0.834

1.0 1.0 0.8 0.474 0.503 0.579

1.0 2.0 0.8 0.428 0.567 0.593

2.0 1.0 0.8 0.476 0.561 0.596

2.0 2.0 0.8 0.473 0.566 0.599

1.0 1.0 1.5 0.851 0.922 0.605

1.0 2.0 1.5 0.885 0.925 0.985

2.0 1.0 1.5 0.853 0.926 0.983

2.0 2.0 1.5 0.884 0.926 0.985

1.0 1.0 1.8 0.954 0.992 1.000

1.0 2.0 1.8 0.966 0.991 0.999

2.0 1.0 1.8 0.952 0.987 1.000

2.0 2.0 1.8 0.961 0.984 1.000

We consider a twin pair as a two component parallel system with the age at appendectomy
as the time to failure. Generally it is assumed that the twins are associated with each other
as far as their health problems are concerned. Our interest is to test whether the age of
appendectomy of one individual is associated with the age of the other. We first apply the
Wilcoxon-Mann-Whitney type test proposed by Deshpande et al. (2010) to test for the load
sharing effect. Here, H0 is that times of appendectomy of twins are independent and H1 is
that the time of appendectomy of one individual is associated with that of the other. The
value of the test statistic is −5.8854 and the p-value = 0.0001, which shows evidence in favor
of H1. Thus we conclude that the time of appendectomy of one twin has an effect on the time
of appendectomy of the other.

Kolmogorov-Smirnov (KS) type test showed that the LFR distribution is appropriate distri-
bution for the component failure time. This test is conservative as we estimated the unknown
parameters by the proposed two step procedure. In case of Weibull the two stage estimates
of λ, θ and β are 2.0849, 0.0012 and 0.8005 respectively and in case of LFR the two stage
estimates of λ1, λ2 and β are 0.0028, 0.0030 and 0.7875 respectively.

In order to investigate whether the load sharing model proposed by Sutar and Naik-Nimbalkar
(2016) provides a better fit to the data than the model proposed by Deshpande et al. (2010),
we use Akaike Information Criteria (AIC) (Akaike (1974)) and Bayesian Information Criteria
(BIC) (Ghosh, Delampady, and Samanta (2007)). We refer to the model proposed by Desh-
pande et al. (2010) as proportional conditional hazard rate (PCHR) model. The AIC and
BIC are defined as

AIC = −2 logL(·) + 2p, BIC = −2 logL(·) + p log(n);

where p represents number of parameters of the model, n represents number of data points
and L(·) is the maximized value of the likelihood function for the estimated model.

From Table 9, it is clear that LFR model is preferable for the Australian Twins Data. Table
10 shows the AIC and BIC values for the proposed PCRHR and PCHR models with initial
component lifetimes as Weibull and as LFR.

From Table 10, we see that, PCRHR model is more appropriate than the PCHR model for
the Australian Twins Data. It also shows that the LFR distribution with the PCRHR model
gives a better fit.



Austrian Journal of Statistics 55

Table 9: AIC and BIC values for Australian Twins Data for Weibull and LFR.

Distribution AIC values BIC values

Weibull 5272.95 5281.95

LFR 5226.10 5235.11

Table 10: AIC and BIC values for Australian Twins Data to compare PCHR and PCRHR
Model.

Model Distribution AIC values BIC values

PCHR Weibull 17682.21 17693.64

PCRHR Weibull 7691.19 7702.61

PCHR LFR 5824.63 5836.05

PCRHR LFR 743.26 754.69

We also apply the LRT described in Section 3.1 to test the load sharing effect. The value of
LRT statistic is 20.6042, which is significant both at 1% and 5% level. Hence we conclude
that for a pair, the age of appendectomy of one twin is associated with that of the other twin.

5.2. Motors data

These data are taken from Reliability Edge Home (Home (2003)). The data set represents a
life test on 18 parallel systems consisting of two electric motors operating continuously. The
data consist of the failure times of both the motors along with their identification labels (A and
B) for each system. We consider the ordered component failure times for each system. Here,
we wish to test whether failures of motors occur independently. Sutar and Naik-Nimbalkar
(2016) have shown that the failure of a motor affects the working motor or there exists a load
sharing phenomenon. They have also shown that the PCRHR model, proposed by Sutar and
Naik-Nimbalkar (2016), is more appropriate than the PCHR model, proposed by Deshpande
et al. (2010), for the motors data in case of both Weibull and LFR distributions as the baseline
distributions of the components.

We also apply LRT to the same data set. The value of LRT statistic is 6.4038, which is
significant both at 1% and 5% level. Hence we may conclude that the failure of a motor
affects the working motor. But the value of non-parametric test statistic is 1.7819 which is
not significant both at 1% and 5% level, since it is also seen from the simulation study that
it reqires larger sample size.

6. Conclusions

We considered the load sharing model proposed by Sutar and Naik-Nimbalkar (2016). We
have proposed a likelihood ratio test and a non-parametric test for tesing the load sharing
effect observed in a two component parallel load sharing system. We report the simulation
study to check the performance of the proposed test procedures for a two component par-
allel load sharing system with baseline distribution as Weibull distribution as well as linear
failure rate distribution. The simulation study shows that the proposed test procedure is
quite satisfactory. To see the practical applicability of the proposed tests, we report the two
illustrations.
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