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Abstract

In this article, we considered the statistical inference for the unknown parameters of
exponentiated exponential distribution based on a generalized progressive hybrid censored
sample under classical paradigm. We have obtained maximum likelihood estimators of
the unknown parameters and confidence intervals utilizing asymptotic theory. Entropy
measures, such as Shannon entropy and Awad sub-entropy, have been obtained to measure
loss of information owing to censoring. Further, the expected total time of the test and
expected number of failures, which are useful during the execution of an experiment, also
have been computed. The performance of the estimators have been discussed based on
mean squared errors. Moreover, the effect of choice of parameters, termination time T,
and m on the ETTT and ETNF's also have been observed. For illustrating the proposed
methodology, a real data set is considered.

Keywords: entropy, maximum likelihood estimates, generalized progressive hybrid censoring,
total expected number of failures, total time of the test.

1. Introduction

To capture the true behaviour of a system, a number of probability models are available in
statistical literature. Among these, exponential distribution is the oldest, simplest, and widely
used model for lifetime data. Exponentiated exponential distribution(EED) is a generalization
of exponential distribution, introduced by Gupta and Kundu 1999. Later, Gupta and Kundu
(2001a) showed that EED is a good alternative to gamma and Weibull distributions, and have
further discussed its advantages over these two commonly used distributions. The estimation
of the parameters of EED have been attempted by Gupta and Kundu (2001b). EED is
endowed with several desirable properties, including good interpretations, and can be easily
generated. All these properties point to why it is widely used. Taking cognisance of the facts
discussed above, EED is considered in the present article. The probability density function


http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v50i1.952
www.osg.or.at

Austrian Journal of Statistics 25

of exponentiated exponential distribution is given as,
f(z|a, B) = aBe (1 — e P*) Lz > 0,0, >0 (1)
The cumulative distribution function and survival function are given by
F(z|a, ) = (1 - e P)® (2)

and
S(zla,B)=1-1—e ")z >0a,8>0, (3)

respectively. The corresponding hazard function is given by

aﬁe‘ﬁx(l — (3_535)“_1
1— (]_ _ e—,B:c)a ’ (4)

h(z|a, B) =

where « is the shape parameter and 3 is the scale parameter of the considered distribution.
Due to the scale and shape parameters, it offers some flexibility for analyzing different types
of lifetime data. It has an increasing and decreasing hazard rate, depending on the choice of
the shape parameter.

In life testing experiments, censoring is a common feature and may occur naturally or owing
to some constraint. Among the conventional Type-I, Type-II, and hybrid censoring schemes,
the latter is quite popular among life testing experiments, which was introduced by Epstein
(1954). The details regarding statistical inferences and applications of exponential distribu-
tion under hybrid censoring can be found in Balakrishnan (1996) and Childs et al. (2003).
In conventional censoring schemes, the surviving units can be removed only at the terminal
point of the experiment. However, there are certain situations where the removal of live
units is not confined to the terminal points of the experiment but allowance of intermediate
removals is equally important. Kundu and Joarder (2006) and Childs et al. (2008) have con-
sidered the Type-I progressive hybrid censoring scheme(Type-I PHCS) in the context of life
testing experiments where n identical units are tested with the progressive censoring scheme
(R1, Ra, -, Ryy,), where R; is the number of removals at ith failure and the experiment is ter-
minated at time 7% = min{ X,.;mm, T}, where T' € (0,00) and 1 < m < n are fixed in advance
and X1.nn < Xognen < --- < Xyunen are ordered failure times from the experiment. One
can navigate through Balakrishnan and Aggarwala (2000) and Balakrishnan (2007) to gather
information regarding the detailed description about the above-mentioned censoring scheme.
The advantage of this censoring scheme is that the test can never go beyond T'. In this way,
this scheme controls the time and cost of the experiment. However, if an unknown average
lifetime is comparatively high when compared to stopping time 7', there is the possibility of
lesser than m failures, which eventually reduces the efficiency of the inferences based on such
censored data. Keeping this point in mind, Childs et al. (2008) proposed the Type-II progres-
sive hybrid censoring scheme that terminates the experiment at a time 7% = max (X,:mm, 1)
which ensures at least m number of failures and establishes more than a desired level of ef-
ficiency. When X,,.m., > T, the experiment is terminated at m!" failure with withdrawals
occurring at each failure as per the pre-specified progressive scheme (Ry, Ra, -, Ry,). It is
important to consider that this may lead to a significant increase in the time of termination.
On the other hand, when X, < T', we observe failures upto time T'. If D represents the
number of failures that occur before time 7', then the progressive censoring scheme, in this
case, is (Ry, Ra,+, Rpm, Rm+1, -, Rp), where R, = R,,41 = -+ = Rp = 0. Thus, we see
that in this censoring scheme, the termination time is unknown to the experimenter. From
the above discussion, we note that the Type-I hybrid censoring scheme keeps the termination
time of the experiment below a prefixed value by forfeiting the efficiency, whereas Type-I1
hybrid censoring ensures efficiency more than the prefixed level but forfeits the termination
time. Therefore, the need for a censoring scheme controlling termination time and efficiency
was felt simultaneously. For example, it should ensure the bare minimum number of failures
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and place restrictions on the time as well. Cho et al. (2015b) introduced the generalized pro-
gressive hybrid (GPH) censoring scheme, which assimilates the features of both (Type-I1 PHC
and Type-II PHC), as well as irons out their lacunas. Recently, Cho et al. (2015a) computed
the estimated entropy of the Weibull distribution for generalized progressive hybrid censored
data. The work presented here investigates estimated Shannon entropy, Awad sub-entropy,
expected total time of the test, and the expected total number of failure based on a GPH
censored data for exponentiated exponential distribution.

The present article is comprised of eight sections. Section 2 describes the considered censoring
scheme in detail. Section 3 contains the procedure for obtaining the maximum likelihood
estimate. In Section 4, ETTT and ETNF are computed. Section 5 presents the Shannon
entropy and Awad sub-entropy estimation for the considered censoring scheme. Section 6
considers a real dataset for illustrating the procedures discussed in the previous sections.
Furthermore, a simulation study is conducted and the results are summarized in Section 7.
Finally, a concluding remark is presented in Section 8.

2. The censoring scheme

Suppose n units are put on test. Keeping in mind the desired minimum efficiency and cost
of the items, we prefix integers k,m € {1,2,---,n} such that & < m. The lifetimes of the
sample units X1, Xo, ---, X, are independent and identically distributed random variables from
a distribution with cumulative density function (cdf) F'(-) and probability density function
(pdf) f(-) as given in equations(2) and (1), respectively. The removal scheme is such that R;
units are to be randomly removed at i failure, satisfying the condition S Ri+m =n.
The test continues until the stopping time T = maz{ Xg.pm.n, min{ Xpmm, T'}} is reached,
and, at this stage, the remaining units are removed from the experiment. It may be noted that
instead of observing m number of failures, this scheme guarantees a bare minimum number of
k failures. Let D denotes the number of failures up to time 7'. Thus, three cases arise under
this scheme, giving the set of observations as given below:

Case-I: Xtmmns s X2y s Xkeemens if T < Xkmens
Case-I1: Xtmms s Xkemany = XDimens if Xpomn <T < Xmmn,
Case-III: Ximmy s Xkeemens ***  Xmemens if Xpomen < Xemen < T

A pictorial representation of this censoring scheme is given in Figure 1. Note that for Case-I,
Xkt t:mms -+ Xmom:n are not observed; likewise, for Case-II, Xpi1:mm,- - -y Xmm:n are not
observed. The likelihood functions and log-likelihood function for {Case-I, Case-II and Case-
1T} denoted by {Ly, Lir, & Lyrr} and {l1,lr7, & l111}, respectively are given below:

*

k—1
Case-I: L[(a,ﬁ) = K, H f(l'j;m:n)[l - F(-fj:m:n)]ij(xk:m:n)[l - F($k:m:n)]Rk7

j=1
D
Case-Il: Lys(c, B) = Ko [ [ f(@jomn)[1 — F(@jmen)] ¥ [1 — F(T)] 041, (5)
j=1
Case-TIT: Lyys(a, B) = K [ [ f(@jummn)[1 = F(jmn)]™,
j=1

where Ky = [[Tj_ X0, (Re + D], Ko = [[17% S5 (Re + D] Kz = [[17%, S5, (Ri +
1], Ry = [n—k— Zf:_f R;] and RBH:[n - D - Zizl R;].
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Figure 1: Schematic representation of generalised progressive hybrid censoring scheme

3. Maximum likelihood estimation

27

Maximum likelihood estimation is one of the most widely used methods under classical

paradigm to obtain the estimator of the parameter of proposed distribution. In this sec-

tion, we find the MLEs of o and S of the considered distribution. The MLEs & and B of
«a and f, respectively can be obtained by maximizing the likelihood function. Using the

equations(1) and (2), the likelihood functions of o and (3 are presented as follows:

Case-I: L; x (aﬂ) (1 — @_ﬁxk)a 1 —51’Ic[ (1 _ —ﬂ:r:k)a]Rk*

-1
H 1 —e ,BSCJ)OC 1 —,BCCJ [1 _ (1 _ e—,BSCj)Oc]Rj’
7=1
D

Case-IL: L;; ()P H(l —e
j=1

—5%')0‘_16_51?]'[1 _ (1 _ e—ﬂ:vj)a]RJ
[1—(1—e P72 Ebsa,
m
Case-III: LIII X Ogﬁ H 1 — e—,@mj a—1 _ﬁwj [1 _ (1 _ e—ﬂﬁ?j)a]Rj

The corresponding log-likelihood functions {l7,{r7, & lrrr} are:

k
Case-I: [;(a,f) x k In(af) + (a—1 Z (1 — e Pui)
k-1
£ 3 Ryl — (1= e 4 Rpnfl — (1 — %) Zarj,

Jj=1
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Case-IL: I;7(v, 8) x D In(af) + (a — 1 Z (1 — e B75)

+ > Rylnfl = (1= )% + Rpyyy Infl = (1— e 7T)° BZ%,

Case-IIL: [;7;(c, ) x m In(afB) + (v — 1) Z (1 — e i)

m m
-3 Rl = (=)= Y
j=1
Furthermore, all three cases can be joined to give the combined likelihood function as:
L(a. MJH e P e P = (L= e P x W), (6)
1, if J=k,m

[1—(1—ePT)]er it j= D,
and hence, the log-likelihood function will be

where W (o, 8) =

I(a, B) ocJ x In(aB) + (e — 1) Zlnl—e By
J J (7)
+ZR In[l — (1 — e P*3)°] Zs@%—an( ,B),

Jj=1 Jj=1

Differentiating it with respect to the parameters o and 3, respectively, we get:

«a 7 J (1 —e P ) n(1 — e P nW(a
al( 75):{+Zln(l_e,ﬁzj)_ZRJ(1 e Y*In(1 —e )+81 W(a, 8) ®

da = 1—(1—e B%i)a Oa
a.p) _J ) Z i Rja(l — e Briya—1ge=h7; i dln W (a, B) ©
=Z 4 (a— - gnwie,g)
B 5" - —5%) = 1—(1—e Pri)a = B
_e BTHa _e—BTya—1 .
where2!n ‘géa’ﬁ) = 7Rf_+(11(_le_eﬁT w) Xln(lfe_ﬁT) and 22 Vgéa,ﬁ) = ,RDYi‘?il_ei/jT){)y XTe_ﬁT, ifJ=D

and zero otherwise. The MLEs of « and 8 can be obtained by solving likelihood equations
(8) and (9) simultaneously. However, it may be noted that explicit solutions of the above
equations are difficult to find. Therefore, this underscores the need for an alternative method,
i.e., a numerical method to obtain the solution for the above two nonlinear equations. We
have used the optim(-) function, which is available in R-software, to maximize the logarithm
of the likelihood function.

4. Expected total time of the test

In order to envision a successful compilation of a test plan, one should have significant knowl-
edge of the expected total time of the test(ETTT). Therefore, the researchers are enthusi-
astically computing the ETTT to explore the experimental time duration for selecting an
appropriate sampling plan. The ETTT is defined as the expected time required to complete
the experiment. The cost and time duration to complete a test are interrelated. A significant
high ETTT ultimately results into a high cost of conducting an experiment. Hence, impend-
ing need is to find the ETTT. In this section, the expressions for the ETTT under a GPH
cesoring scheme are derived. The expected total time required to complete the experiment
under GPH censoring with fixed number of removals is defined as:

E(TTT) =T x PT[Xk:m:n <T< Xm:m:n] + E(Xm:m:n’Xm:m:n < T)

(10)
X PT[Xm:m:n < T] + E[kan|T < Xk:m:n]Pr[T < kan]
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The expression for conditional expectation of X; given R, for progressive censoring scheme
is given by Eissa et al. (2014) as

i) =o0 32 557 3500 () (5) ()
Xl‘[{f_lllh(si)/ooo tf () FB(t)dt,

where C(r) = [[I_,(n—1+1=-50 2 i), A= 301 Si, h(S;) = S0, (Si+i) and B = h(S;)—
For our considered distribution, the expression comes out as

i —co 35 35 35510t (3) (2) -+ (3) s

=0 52=053=0

(a/@)/ tefﬁt(l _ e*ﬁt)@l(l*‘rB)*ldt’j — k,k + 1’ . '7m o 1
0

0323t (2)(2) - (3) e

—052=053=0 ;=0 i=
> i (a(l+B)—1) rz. o
W’%“”( D) i e

Let J denotes the number of observed failures upto termination time. For considered distri-
bution, the probability mass function of the value J for a prefixed value of T is

Pr(J =k = Pr[Xpmm > T] = [1 = (1 — e P2 FH! (12)

Pr[J =m] =Pr[Xmmn < T

—Cn 12‘“’” [1—(1—(1—ePTye)yn]

= i

(13)

m—1
PT[Xk:m:n <T< Xm:m:n] = Z P(Xj <T< Xj+1)
=k

P(X; <T < Xj1) = (1= (L—e Ph)o)itie;

Fan 35 e (02

=1 mi=0 ' (14)
i(_l)l <am1 +a— 1> 1 — e TAUAD)

— l Bl +1)

ii=kk+1,---m—1

Where')/j:n_j+1+zzini§1§j§m>cj—l:ngl%';lgjfmv
1

k=i

a;j = Hk# 1 ;1 <4 < j <m;see Hemmati and Khorram (2013).

PriXgmn > T

fwk(x|kan > T) =
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fwm (w‘Xm:m:n < T) :Pr[);'f:j:n(:)< T]
i — > k _
f _CJ*—lzam (aB) Z( ) 1 <7k 1) Z(_l)k2 (a 14};a 1)
k1=0 ! ko=0 2
(efﬁa:)(kzﬂ);j — k,m

T
E(Xm’Xmmn < T) :/ xfxm (.’L’|Xmmn < T)dx
0

9] 1
“pre e e L (7))

00 e (15)
Z (—1)ks <ak1 +a— 1>
)
lea=0
—BT(k
1 [ 1 e BT (k2+1) B Te*ﬁT(k2+1)];
Bka +1) Blka+1) Bk +1)
E(Xk’Xk:m:n > T) :/ fEka (.I‘kan > T)dx
T
Ck k e Vi 1
_ . .
Pr [kan>T Zalk of) 2 (-1 < k1 )
o e (16)
S (o)
)
lea=0
1 o—BT(ka+1)

—BT (k2+1)1.
B0 BT T |

The equations (12), (13), (14), (15) and (16) can be put simultaneously in equation (10) to
get the final expression for the ETTT as

3

E(TTT) =T Y (1 - (1 - e #T)oywtic 1Za.am2<1 (e
mi

I=k i'=1 m1=0

> (-1)! amﬁa—l)ﬂ
Xz;( ! ( ! BL+1)
Aq m -8 Cm—1 i — 1
+ cm— 1; - [l—(l—(l—e ey ]mZazm(aﬂ klzo( 1)k ( k1 )
(17)
> (- ak1+a_1> ! ! _ e ATt skt
XkQZ::o( b ( ko Blka +1) | B(ka + 1) Blka + 1) Te

*P*(l*@‘“)“]”_memaﬁ > v ()

k1=0
o~ ke [(OR1Fa—1 1
2 ( ko ),B(k2+1)

ko=0

efﬁT(kZ*Fl)
B(ka +1)

+ TeBT(k2+1):| )

4.1. Expected number of failures (ETNF)

A corollary to ETTT is ETNFs that can also be used to provide an action plan to execute
an experiment. Contrary to ETTT, ETNFs ensures the efficiency of the test conducted.
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A significant large number of failures which occur during the experiment result into high
efficiency but add to the cost of experimentation. Owing to its practical utility, this section is
devoted to its derivation. The expected number of failures based on a GPH censoring scheme
is given by

E(Mgpr) =27 J x PlJ = j]

=1 Vi
m—1 J 00 5 ~ 9
— BT\« m i
+ Y = (1= PN itie 1Y ag(af) Y (<) 1( s ) (18)
Jj=k i =1 m1=0
i(—l)l <am1 +a-— 1) 1 — e TAUHD)
l B(l+1)

5. Entropy estimation in case of the GPH censoring scheme

The entropy as a measure of uncertainty covered by model f(-) having cdf F(-), pioneered by
Shannon (1948), is defined as

H(X) = — / " logf (z)dF (). (19)

—0o0

Consider a life testing experiment with n units. The units are to be observed until its failure.
Suppose the lifetime of n units are independently and identically distributed with cdf F'(-) and
pdf f(-). But owing to some constraints, lifetimes of all n items are not observed and censored
data are available to study. Thus, a natural question which strikes the mind of researcher is
whether the censored sample contain the same or less information as compared to complete
sample. Figuratively speaking, the entropy measure provides us a tool for measuring the loss
of information due to censoring. Following Kaushik et al. (2016), the joint distribution of
observed sample under considered censoring scheme can be written as:

P[l'l:m:ny To2mmy © " ° axj:m:nv Rl; R27 T ij J = .7]
= L<$1:m:nax2:m:n7 R xj:m:n‘Rla R2; Yy Rj7 J = ]) * P['] = .7]
= f*(x)(say)
and hence, Shannon entropy of observed censored sample will be
E(~log*(x)) = [ ~log(f*(«))dF" (o) (20)
where L(-) is given in equation(6) and the probabilities P[J = k], P[J = j] and P[J = m]
are given in equations(12), (13) and (14), respectively. The obtained expression for Shannon

entropy is too complicated to write in closed form. Hence, we propose the use of following
simple algorithm for its computation, which is developed following Kaushik et al. (2016).

Algorithm for computation of entropy:

1. Seti=1,

2. Generate a GPH sample x from EED using the algorithm given in Section 7.

3. Compute H; = —log(f*(x)) and set i =i + 1.
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4. Repeat step 2 to 3 till ¢ < N, where N is a sufficiently large number.
1
5. Compute H:N ZZ]\L 1 H;, which is the approximated value of Shannon entropy.

Furthermore, Shannon entropy in case of complete sample for considered model given in
equation (1) will be,

. =~ [ logs (2)iF (z)

= —loga — logB + (¥(a+1) — (1)) + a; 1,

where, 1(.) denotes the Digamma function.

5.1. Awad sub-entropy measures for GPH censoring scheme

Awad and Alawneh (1987) modified the earlier entropy measure, which was given by Shan-
non (1948). The motivation for considering the new measure was to combat the deficiency
of Shannon measure which sometimes give the negative value as in the case of continuous
distribution. Awad Sub-entropy is defined as

Hpwad = —F <ln JE(?) : (22)

where § = sup f(x).

For our considered model i.e., EED in equation(1), we have,

Inf(z,a,8) =lna+mnp — Bz + (a—1)ln(1 — e )

logf(x.0.8) _ (o Dset
Ox 1 —e P
we get, x = lnga). We put this value of x in f(z), we have

1 a—1
supf(x)zﬁ(l—) sa>1

Q

Since the expression for Awad Sub-entropy is too complicated to write in closed form. Hence,
the same algorithm which is given in Section 5 to compute Shannon entropy, can be used here
too.

6. Real data illustration

We fitted our considered model on a various real dataset. The considered dataset represents
the waiting times (in minutes) before service of 100 bank customers as reported and analyzed
by Ghitany et al. (2008). The dataset consists of the following 100 observations:

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4, 4.1, 4.2, 4.2, 4.3, 4.3,
4.4,4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1,
7.1,7.1,7.4,7.6,7.7,8,82, 86, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11, 11,
11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4,
17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19, 19.9, 20.6, 21.3, 21.4, 21.9, 23, 27, 31.6, 33.1, 38.5.

The fitting summary along with the MLEs of the parameters o and 8 denoted as é&jsr and
B, respectively and the standard errors(SEs) are given below:
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p-value K-S distance loglikelihood AIC BIC
0.9969  0.0403 -317.0953 638.1906  643.4009
amr SE(amr) BuL SE(BuL)

2.1832  0.3343 0.1591 0.0175

The above summary indicates that EED fits well to the data. For the illustration of our
methodology, from the considered data, we have generated censored data for a prefixed m, k,
T, and number of removals. We have considered different removal patterns by fixing values

of Ri,Rs, -+, R, for a set of values of m, k and T. The schemes have been considered are
as follows:
Sm;n(l): All the removals are at the last failure, i.e., R,, = n —m.
Sm;n@): All the removals are at the first failure, i.e., Ry = n —m.
Snn®: The removals are at the first and last failure, i.e., Ry = Ry, = (n —m)/2.
Spn™: The removals are at middle failure, i.e., Rpyjo = Ryyjogr = (n—m)/2.

We set the values of m, k and T to get the censored data for finding the MLEs and asymptotic
confidence intervals(ACIs). Since the likelihood equations do not have an explicit solution,
the numerical method coupled with R software is maneuvered. Here, the optim(-) function
is used to find the ML estimates of the parameters. Using the concept of the large sample
theory, the asymptotic confidence intervals for a and 3 are also computed as

ACI, = [ayp +£1.96y/V (éarr)] & ACIg = [Barr +1.961/V (Bars)],

respectively. Here, V(-) denotes the asymptotic variance, and it is computed by finding the
inverse of the estimated Fisher information matrix. Table 1 enlists the MLEs, the estimated
95% asymptotic confidence intervals, the estimated Shannon entropies and the estimated
Awad sub-entropies under the GPH censoring scheme for all four removal patterns and the
different choices of m, k and T for the considered real data of waiting times. From Table 1,
one can easily conclude that as the value of m, k and T decreases (increases), the estimated
Shannon entropies decrease (increase) and the length of ACIs increase(decrease). Further-
more, the estimated Shannon entropies and Awad sub-entropies are lowest for Spmn) and
highest for S, Both entropies for Spen ) are higher than the corresponding entropies for
Sm:n(Q). It may be noted here that the estimates obtained under various censoring schemes
are close to those obtained from the complete sample, although variations can be seen from
one scheme to other.

7. Simulation study

Here, a simulation study is conducted to examine the performance of the estimates of the
parameters o and (8 based on mean squared errors(MSEs) under the considered censoring
scheme. It is important to note that the exact expressions for the MSEs cannot be obtained
because the estimators are not found in explicit form. Therefore, the MSEs of the estimators
are estimated based on a simulation study of 10,000 samples. It may be noted here that the
MSEs of the estimators will depend on values of n, k, m, T, a and 3, and hence, various
choices have been made to study the effect thereof. We are proposing the following algorithm
to generate the sample under the considered censoring scheme:

Algorithm: Simulation of GPH Censored Data

1. Generate k independent standard uniform random variables Uy, Us, - - - , Ug.

2. Compute B; = UY%; i=1,---  k, where ~; :n—i+1+zg.n:iRj.

33
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Table 1: The MLEs of the parameters, the estimated 95% ACIs, the estimated Shannon en-
tropies and the estimated Awad sub-entropies under the GPH censoring scheme for considered
real data set.

m k T R oz (95% ACI) Barr(95% ACT) H Hewad
80 20 20 Sp, 2.3041(2.2288,2.3794) 0.1685(0.1644,0.1726) 3.1255 38.9631
S 2.4367(2.3529,2.5206)  0.1643(0.1602,0.1683) 3.1444  40.1485
S 2.3401(2.2619,2.4182)  0.1644(0.1605,0.1684) 3.1538  40.4796
Smm™  2.0545(1.9873,2.1218)  0.1482(0.1442,0.1521)  3.2240 43.9639
80 20 16 Sp.,  2.3072(2.2317,2.3826) 0.1686(0.1644,0.1727) 3.1195 38.7704
Smm®  2.5537(2.4628,2.6446)  0.1737(0.1692,0.1781)  3.1207 38.8773
S 2.4106(2.3284,2.4927)  0.1683(0.1642,0.1725) 3.1374  39.6879
Smm™  2.1107(2.0387,2.1827)  0.1533(0.1492,0.1576)  3.1847  40.5632
80 40 20 Sp,M 2.3157(2.2397,2.3917) 0.1686(0.1644,0.1727) 3.1264  39.0206
Smen®2.2271(2.1527,2.3015)  0.1605(0.1565,0.1645) 3.1638  40.8808
S 2.2884(2.2134,2.3634)  0.1622(0.1583,0.1661)  3.1653  40.9941
Smm™  2.0476(1.9802,2.1149)  0.1476(0.1436,0.1516)  3.2271  44.1249
80 40 16 Sp.,V  2.3275(2.2512,2.4038) 0.1696(0.1655,0.1738) 3.1253 38.9716
Smm® 2.0977(2.0262,2.1694)  0.1624(0.1582,0.1668) 3.1381  39.3361
S 2.0812(2.0122,2.1502)  0.1558(0.1517,0.1598)  3.1576  40.4125
Smn® 2.3108(2.2314,2.3903)  0.1686(0.1641,0.1732) 3.1857 40.9767
60 20 20 Sp,V 2.2774(2.1941,2.3607) 0.1673(0.1622,0.1723) 3.1047 38.1885
S 2.5718(2.4725,2.6711)  0.1695(0.1648,0.1742) 3.1108 38.8675
S 2.0695(1.9964,2.1426)  0.1529(0.1484,0.1573)  3.1206 39.1071
Smm™  2.5407(2.4496,2.6318)  0.1911(0.1856,0.1966) 3.1423 40.1341
60 20 16 Spm, 2.3129(2.2280,2.3977) 0.1693(0.1642,0.1744) 3.1003  38.1456
Smm®  2.5003(2.4014,2.5993)  0.1718(0.1667,0.1769)  3.1045 38.1885
Smn® 2.2660(2.1849,2.3471)  0.1588(0.1544,0.1633)  3.1105 38.7701
Smn ™ 2.2805(2.1962,2.3649)  0.1706(0.1651,0.1763)  3.1108  39.0403
60 40 20 Sp,) 2.0762(2.0013,2.1512) 0.1445(0.1403,0.1487) 3.1218 38.2667
S 2.2959(2.2116,2.3802)  0.1618(0.1630,0.1731)  3.1259  39.0138
S 2.5762(2.4798,2.6725)  0.1729(0.1681,0.1776)  3.1476  39.2222
Smm™®  2.4359(2.3488,2.5232)  0.1807(0.1754,0.1862)  3.1688  40.2381
60 40 16 Sp.,Y 2.3038(2.2193,2.3884) 0.1686(0.1636,0.1737) 3.1087 38.1974
Smm®  2.2991(2.2105,2.3877)  0.1691(0.1640,0.1742)  3.1150 38.7592
S 2.1478(2.0711,2.2246)  0.1585(0.1539,0.1631)  3.1217  38.9332
Spmen® 2.6717(2.5724,2.7709)  0.2026(0.1967,0.2086) 3.1649  39.0408
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3. Start with Vy = 1 and compute V; = B;V;_1 and Uy =1 -V, Vr=1,--- k.
4. If Ug.ppon, > F(T), then Goto Step-6, Else | = k 4+ 1 and Goto Step-5.
5. While V;_; > 1 — F(T) and [ < m Do:

(a) Generate a uniform random variable U.
1

(b) Define B; = U= "%+ and V; = V;_; x By.
(c) 1=141.

6. XJ(II) — Fe(l _ ‘/3)’ J = 17 ,l7 and Stop

Here F'<(-) is the inverse CDF function defined as F* (p) = inf{z € R : F(z) > p}. Table 2
contains the results obtained through the simulation study for the GPH censored sample,
considering only one removal pattern for various values of n, m, k(T fixed) to observe the
effect of these on entropy. In Table 2, three choices of n, i.e., n=30(small), 50(moderate),
100(large) are considered. The value of k and m are set to be 50% and 72% of n, respectively.
The removal pattern is taken as Spmn Y ie., Ry = Ryjoy1 = (n—m)/2. Table 2 also

contains MSEs of the parameters denoted by M SE(aasr) and MSE(By1), the estimated 95%
asymptotic confidence intervals, the estimated Shannon entropies and Awad sub-entropies. It
is worthwhile to mention that for considered distribution with @ < 1, the Awad sub-entropy
does not exist; hence; the results are reported for o > 1. From Table 2, we can conclude that
for fixed «, as (B increases, the MSEs of § increase. Similarly, for fixed 3, as « increases, the
MSEs of « increase. For fixed o and f3, as n increases(for fixed k, m and T), the MSEs of
both the parameters decrease. The estimated Shannon entropies for fixed o and 8 generally
increase as n increases for fixed k, m, and T'. For some of the values of o and 3, the estimated
Shannon entropies in the censored case show the negative value.

Table 2: The MLEs of the parameters along with the MSEs, the estimated 95% ACIs, the
estimated Shannon entropies and the estimated Awad sub-entropies based on simulation study
for various censoring schemes considering removal pattern S

Censoring Scheme @ B anrr MSE(&nr) ACI for « Barr MSE(Bavr) ACI for 3 H Hawad
n=30k = 15, m = 22, T = 10,
R = (0*10,4*2,0%10) 0.5 0.5 0.5383 0.0107 (0.3177, 0.8051)  0.5576 0.0279 (0.1750, 0.9743)  0.9946
1 0.5399 0.0108 (0.2625, 0.8520) 1.1445 0.1272 (0.3077, 2.0081)  0.2796
2 0.5371 0.0114 (0.2391, 0.9261) 2.3082 0.5348 (0.3552, 3.1962) -0.4292
1 0.5 1.0899 0.0563 (0.4307, 1.4111)  0.5521 0.0181 (0.1950, 0.8519)  1.6506  3.7558
1 1.0813 0.0573 (0.3952, 1.5219) 1.0961 0.0738 (0.2275, 2.4972)  0.9565 1.0771
2 1.1078 0.0637 (0.2946, 1.5731) 2.2036 0.3111 (0.2958, 2.9824) 0.2721  0.1587
2 0.5 2.2165 0.2956 (0.9335, 2.6437)  0.5394 0.0126 (0.2649, 0.8944) 1.9523  7.5093
1 2.1942 0.3163 (0.7759, 2.9151) 1.0731 0.0511 (0.4151, 1.5327) 1.2619 2.4318
2 2.2181 0.3613 (0.6868, 3.1804) 2.1462 0.2035 (0.8680, 2.9058) 0.5715  0.5526
n=>50, k = 25, m = 36,T = 10,
R =(0%17,7%2,0%17) 0.5 0.5 0.5141 0.0058 (0.3803, 0.7506)  0.5408 0.0214 (0.1939, 0.9566)  0.9617
1 0.5261 0.0067 (0.4005, 0.8091) 1.0971 0.0798 (0.3605, 1.6361)  0.2866
2 0.5251 0.0068 (0.4181, 0.8673) 2.1783 0.3341 (0.5477, 2.9520) -0.4021
1 0.5 1.0564 0.0362 (0.6501, 1.3061) 0.5347 0.0116 (0.2904, 0.8181) 1.6603 3.6631
1 1.0635 0.0363 (0.5422, 1.3718) 1.0722 0.0473 (0.4906, 2.4695) 0.9686  1.0804
p 1.0691 0.0382 (0.4307, 1.4445) 2.1502 0.1845 (0.7102, 2.7564) 0.2759  0.1550
2 0.5 2.1955 0.1615 (1.6252, 2.5293)  0.5339 0.0082 (0.2837, 0.6926)  1.9600  7.5920
1 2.1346 0.1694 (1.4588, 2.8245) 1.0372 0.0269 (0.5699, 1.2706) 1.2885  2.5448
2 2.1463 0.175 (1.3083, 3.0440) 2.1209 0.1131 (1.4884, 2.6788) 0.5747  0.5561
n=100, k = 50, m = 72, T = 10,
R = (0*35,14%2,0*35) 0.5 0.5 0.5102 0.0027 (0.4281, 0.6305) 0.5204 0.0081 (0.2795, 0.6976)  0.9893
1 0.5061 0.0028 (0.4171, 0.6540) 1.0352 0.0336 (0.5746, 1.4097)  0.2901
2 0.5112 0.0028 (0.4233, 0.6631) 2.0888 0.1203 (1.4236, 2.8101) -0.3982
1 0.5 1.0293 0.0144 (0.8828, 1.2510) 0.5124 0.0045 (0.3366, 0.6610) 1.6868  3.6509
1 1.0322 0.0151 (0.7975, 1.3467)  1.0391 0.0203 (0.6891, 1.2473) 0.9817 1.0564
2 1.0226 0.0158 (0.7412, 1.4185) 2.0484 0.0774 (1.4574, 2.6569) 0.2972  0.1581
2 0.5 2.0518 0.0781 (1.6328, 2.4194) 0.5113 0.0032 (0.3195, 0.5904)  1.9850  7.8399
1 2.0871 0.0799 (1.4982, 2.6875) 1.0292 0.0143 (0.5879, 1.1312) 1.2901 2.5472
2 2.0803 0.0807 (1.4405, 2.7824) 2.0502 0.0527 (1.6586, 2.5417)  0.6001 0.5941

Table 3 shows the MLEs, the MSEs, and the estimated 95% asymptotic confidence intervals
under the GPH censoring scheme for all four removal patterns taking n = 100 and 7" = 10.
For a small number of removals, i.e., for large m, the MSEs of both the parameters are
lesser for the removal pattern Sm:n@) compared to Sm;n(l), and the MSEs under Sm:n(?’) are
observed to be less than that for Sp,.n (. For large number of removals, the MSEs of both the
parameters are lesser under the removal pattern Sm;n(l) compared to Sm:n@), and the MSEs



36 On the Generalised Progressive Hybrid Censoring

Table 3: The MLEs, the MSEs and the estimated 95% ACIs for different choices of m and k
for T=10, a=2 and =2

m k scheme  &arr MSE (&) ACT Barr M SE(Barr) ACT
90 80 1 2.066476 0.103388 (1.138250, 2.407360) 2.042237 0.058061 (1.488323, 2.436216)
2 2.075756 0.103132 (1.180978, 2.460310) 2.049595 0.057944 (1.719410, 2.651581)
3 2.052840 0.101210 (1.691138, 2.951062) 2.027009 0.056259 (1.651540, 2.583652)
4 2.062102 0.114260 (1.380109, 2.633879) 2.043124 0.058608 (1.606653, <
90 60 1 2.061703 0.115704 (1.124817, 2.390674) 2.040381 0.059560 (1.407124, <
2 2.061465 0.113962 (1.843901, 3.113122) 2.033742 0.058019 (1.919871, 2.
3 2.058910 0.112016 (1.252982, 2.517435) 2.030587 0.057782 (1.396596, 2.329759)
4 2.053156 0.120246 (1.306811, 2.554721) 2.034836 0.061921 (1.534571, 2.477663)
90 30 1 2.046124 0.121568 (1.025856, 2.280727) 2.033012 0.063480 (1.465792, 2.411406)
2 2.058491 0.118474 (1.858 4, 3.125214) 2.039074 0.061780 (1.874039, 2.802866)
3 2.059288 0.124974 (1.76104 3.026339) 2.018738 0.059318 (1.605753, 2.534342)
4 2.067286 0.128941 (1.703904, 2.961216) 2.031258 0.062405 (1.957114, 2.896094)
70 60 1 2.075321 0.133875 (1.619150, 3.023062) 2.045450 0.086585 (1.501009, 2.630738)
2 2.085135 0.131972 (1.056158, 2.463908) 2.050140 0.085066 (1.032033, 2.076404)
3 2.047350 0.130647 (0.940874, 2. 2.040854 0.085399 (1.107603 193081)
4 2.081162 0.1 (0.965114, 2. 2.063957 0.085998 (1.274893 4293)
70 36 1 2.082882 0.137683 (1.065005, 2.057189 0.088700 (1.323494 457996)
2 2.063547 0.137006 (1.114804, 2.505571) 2.041607 0.087789 (1.468509, 2.510374)
3 2.059103 0.140159 (1.607329, 2.993764) 2.045616 0.087063 (1.710083, 2.796679)
1 2.074983 0.134001 (1.564911, 2.913748) 2.050349 0.086306 (1.649788, 2.752478)
70 26 1 2.076716 0.142758 (1.088847, 2.493386) 2.059148 0.089633 (1.295730, 2
2 2.060624 0.145433 (1.169724, 2.557962) 2.041962 0.089295 (1.270677, *
3 2.058979 0.147125 (1.504139, 2.890774) 2.034955 0.088115 (1.652234, <
4 2.078048 0.154544 (1.170615, 22044) 2.048408 0.089990 (1.257602, -
60 50 1 2.100161 0.164385 (1.044187, 2.557690) 2.071692 0.094140 (1.798537, 3.074634)
2 2.082594 0.165390 (1.538820, 3.022568) 2.042227 0.094156 (1.715922, 2.834334)
3 2.097736 0.167236 (1.311545, 2.811870) 2.055590 0.094006 (1.572450, 2.765790)
4 2.128997 0.161462 (1.185802, 2.635758) 2.035375 0.094156 (1.444809, 2.648181)
60 30 1 2.120908 0.171504 (1.259250, 2.791819) 2.083512 0.096559 (1.567340, 2.845599)
2 2.094219 0.172358 (1.313636, 2.806128) 2.070493 0.108508 (1.748715, 2.878989)
3 2.079722 0.187976 (1.694354, 3.178912) 2.049811 0.096559 (1.660919, 2.850893)
4 2.085206 0.170271 (1.194272, 2.607764) 2.063325 0.096559 (1.188641, 2.403386)
60 20 1 2.086946 0.192076 (1.754881, 3.255669) 2.060715 0.100773 (1.256656, 2.524292)
2 2.069992 0.192820 (1.356879, 2.828304) 2.057084 0.113084 (1.204728,
3 2.080707 0.199272 .017878, 2.502310) 2.062675 0.103052 (1.594846,
s 2.050080 0.198170 (1.529825, 2.913788) 2.087373 0.113285 (1.221228,

under Sm;n(4) are less than that for S’m;n(?’), i.e., the trend shows a reversal from the small
number of removals. The ETNF's decrease with increasing 3, but when a threshold value of
« is achieved, ETNFs’ plot tends to converge.

The diagrammatic representation for the ETTT and the ETNFs are given in Figure 2 and
Figure 3. From Figure 2, the effect of T" and m on the ETTT can be seen and it may be noted
that as the value of T increases, the ETTT increases; however, the effect of m is very low.
Moreover, as 3 increases or « decreases, the ETTT increases. Furthermore, from Figure 3,
it can be observed that as m increases, the ETNFs increase, and increasing T increases the
ETNFs, but with a slow rate. These magnitude of changes are noted to be decreasing for
increasing a. However, the ETNF's increase as « increases, but the rate of increase decreases;
and when a threshold value of « is achieved, it becomes more or less constant. The value of
« is smaller for larger values of m and 7. Also, as 8 decreases or « increases, the ETNF's
increase.

8. Conclusion

The estimators of the parameters of EED under the GPH censoring scheme have been ob-
tained. The performances of the estimators have been studied based on their MSEs. From
the discussions given above, we may conclude that the MSEs of the proposed estimators are
less when the number of removals is small(i.e., m is large), and it occurs at first failure, com-
pared to when removals occur at last failure. Similarly, when removals occur in the mid, the
MSES of the estimators are observed to be less compared to when removals occur at first and
last failures. On the other hand, when the number of removals is large(i.e., m is small), the
reverse trend is observed. Furthermore, it is observed that the MSEs of both the parameters
increase when the minimum number of failures decreases. It is also noted that the ETNFs
decrease with an increase in the value of 5 when « is less than 2.5. It is found that the
ETTT and the ETNF's can be controlled by parameters, 7" and m. Thus, using the proposed
estimator is recommended under the considered censoring scheme with a proper termination
time and number of failures. The work can be extended by applying different methods of
estimation, such as maximum product spacing, method of least square, etc., to estimate the
model parameters. The Bayesian counterpart of the current work may be beneficial. This
article would be a great resource for learning about the GPH censoring scheme and its scope.
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