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Abstract

This article deals with the problem of testing for two normal sub-mean vectors when
the data set have two-step monotone missing observations. Under the assumptions that
the population covariance matrices are equal, we obtain the likelihood ratio test (LRT)
statistic. Furthermore, an asymptotic expansion for the null distribution of the LRT
statistic is derived under the two-step monotone missing data by the perturbation method.
Using the result, we propose two improved statistics with good chi-squared approximation.
One is the modified LRT statistic by Bartlett correction, and the other is the modified
LRT statistic using the modification coefficient by linear interpolation. The accuracy of
the approximations are investigated by using a Monte Carlo simulation. The proposed
methods are illustrated using an example.

Keywords: asymptotic expansion, bias correction, likelihood ratio test, maximum likelihood
estimator, missing data, modified likelihood ratio test, Monte Carlo simulation, stochastic
expansion.

1. Introduction

Standard statistical methods have been developed for analyzing complete rectangular data
sets; however, incomplete data sets are often encountered. In this study, we consider the
problem of testing for two normal mean vectors on a subvector when the data set has two-
step monotone missing observations. The two-step monotone missing data can be written as
below:
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where“*”indicates a missing observation. That is, we have complete data forN
(i)
1 observations

with p dimensions and incomplete data for N
(i)
2 observations with p1 + p2 dimensions, where

N (i) = N
(i)
1 +N

(i)
2 , i is the population number.

Many statistical methods have been developed for analyzing data with missing observations
(see, e.g., Anderson (1957); Anderson and Olkin (1985); Bhargava (1962); Jinadasa and
Tracy (1992); Little and Rubin (1986); Shutoh, Kusumi, Morinaga, Yamada, and Seo (2010);
Srivastava and Carter (1986); Yu, Krishnamoorthy, and Pannala (2006). As a previous study
closely related to this study, Kanda and Fujikoshi (1998) discussed the distribution of the
maximum likelihood estimators (MLEs) for two-step, three-step, and general k-step monotone
missing data. For a two-step monotone missing pattern, Seko, Kawasaki, and Seo (2011)
derived Hotelling’s T 2 type statistic and the likelihood ratio test (LRT) statistic for testing
two normal mean vectors and their approximate upper percentiles, and Kawasaki and Seo
(2016a) derived the stochastic expansion of Hotelling’s T 2 type statistic for a large sample
with a one-sample problem. Kawasaki, Shutoh, and Seo (2018) discussed the asymptotic
distribution of T 2 type statistic with two-step monotone missing data under a large-sample
asymptotic framework.

Recently, a test for sub-mean vectors with two-step monotone missing data under a one-
sample problem was discussed by Kawasaki and Seo (2016b). They derived the likelihood
ratio (LR) criterion for testing the (p2 + p3)-mean vector under the given mean vector of
p1-dimensions. Subsequently, they proposed an approximation of the upper percentile of the
LRT statistic using linear interpolation based on Rao’s U statistic for complete data sets.
Naito T (2018) gave the T 2 type test statistic and simultaneous confidence intervals using the
approximate upper percentiles of the T 2 type test statistic in one- and two-sample problems
with tests for sub-mean vectors. Further, they considered simultaneous confidence intervals
for pairwise multiple comparisons using Bonferroni’s approximation in the k-sample problem.
In this article, we extend the results of a one-sample problem given by Kawasaki and Seo
(2016b) to a two-sample problem. In addition, a modified LRT statistic is given using the
asymptotic expansion of the null distribution of the obtained LRT statistic. Moreover, we
propose a modified LRT statistic using a modified coefficient by linear interpolation. These
studies still have problems extending to k-step monotone missing data, although these are
very complicated. In this article, we will first discuss in two-step monotone missing data.

The rest of the article is organized as follows. In Section 2, we review the test for a subvector
based on non-missing data when the first p1 dimensions of the mean vector µ(i) are equal.
Then, we describe the definition and some notations and derive the MLEs and the LRT
statistic for two-step monotone missing data. In Section 3, an asymptotic expansion and its
distribution of the LRT statistic are derived, and we provide two modified LRT statistics. The
accuracy of the approximate solutions is investigated by Monte Carlo simulation in Section
4. The results of Section 3 are illustrated using a numerical example in Section 5. Finally,
Section 6 concludes this article. The proof of a result is completed in the appendix.
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2. The LRT statistic

2.1. Non-missing data case

In this section, we discuss the tests on subvector in two-sample case with non-missing data.
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the likelihood ratio λ is given by

λ =

( |B22.1 +W22.1|
|W22.1|

)−N
2

,

where W22.1 = W22 −W21W
−1
11 W12, B22.1 = B22 − B21S

−1
B11B12. Under the null hypothesis

in (1), the LRT statistic −2 log λ is asymptotically distributed as χ2 with p − p1 degrees of
freedom when N (i) → ∞, i = 1, 2. The problems treated in this article concern making the
modified LRT statistic based on the two-step monotone missing data.

2.2. Setting and problem

This section describes the missing data treated in this paper and the hypothesis testing
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where µ
(i)
(23) = (µ

(i)′
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3 )′. The situation when a component of µ may be known is not rare.
In some situations, partial information concerning the population means may be available.
Srivastava (2002) introduced the motivation of this study for non-missing data with numerical
example. Eaton and Kariya (1975) derived tests for the independence of two normally dis-
tributed subvectors when an additional random sample is available. Provost (1990) obtained
explicit expressions when the MLEs of all parameters of the multi-normal random vector are
given and the LRT statistic for testing the independence between subvectors is obtained. We
discuss the problem of hypothesis (2) for data sets with two-step monotone missing observa-
tions in the two-sample case. In this section, we derive the MLEs of µ(i) and Σ, and the MLE
of µ(= µ(1) = µ(2)) and Σ under H0. Using these MLEs, we propose the LRT statistic.

2.3. MLEs and the LRT statistic

In this section, we consider the LRT statistic for (2). To derive the LRT statistic, we first
consider the MLEs under the null hypothesis. Let the MLEs of µ(i) and Σ be denoted by
µ̂(i) and Σ̂, respectively, and be partitioned in the same manner as µ(i) and Σ (i = 1, 2). We

assume that the observation vectors are distributed as Np(µ
(i),Σ) and N
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necessary and sufficient condition for the existence and uniqueness of the MLEs of µ(i) and
Σ. That is, the likelihood function is given by
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3. Two approximate solutions

In this section, we propose two approximate modified LRT statistics. Under H0, −2 log λ
is asymptotically distributed as a χ2 distribution with p2 + p3 degrees of freedom when

N
(i)
1 , N (i) →∞ with N

(i)
1 /N → (0, 1). However, the chi-square approximation is very simple,
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distribution. For general theory of modified likelihood ratio statistics, see Muirhead (1982).
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We note that the stochastic expansions are derived under µ(1) = µ(2) = 0 and Σ = Ip. From
the above conditions, we have the following theorem.
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Theorem 1. An asymptotic expansion of the distribution of the likelihood ratio test statistic,
−2 log λ, can be presented as

Pr(−2 log λ ≤ x) = Gp2+p3(x) +
(p2 + p3)c

2N
{Gp2+p3+2(x)−Gp2+p3(x)}+ o(N−1),

where Gf (x) is the distribution function of the χ2 distribution with f degrees of freedom,
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{
1

2
p2(2p1 + p2 + 4) +

1

δ1
p3(p+ 3)− 1

2δ1
p3(p3 + 2)

}
.

Proof. See the Appendix.

Using an asymptotic expansion of the null distribution of −2 log λ, the Bartlett correction
coefficient of the LRT statistic is given by ρ = 1 − c/N . Then, we can derive the modified
LRT statistic, −2ρ log λ, and

Pr(−2ρ log λ ≤ x) = Gp2+p3(x) +O(N−2),

where ρ = 1− c/N .

3.2. Modified statistic Q∗

The modified LRT statistic, −2ρ log λ, given in Section 3.1, is a theoretical result; however,
the equation is slightly complicated. In addition, although we will investigate this in detail in
Section 4, the approximation is not always accurate. In this section, we propose an approx-
imate solution of the upper percentiles, which is simpler approximate for the modified LRT
statistic.

The coefficient of the modified LRT statistics for non-missing data is obtained by substituting
p3 = 0 and p2 = p2 + p3 for the coefficient c given in section 3.1. If we denote the coefficients
of the modified LRT statistic in the case of non-missing data cases N and N1 by ρN and
ρN1 , respectively, then it may be noted that ρ∗ is between ρN and ρN1 , where ρ∗ is the
coefficient of the modified LRT statistic −2ρ∗ log λ. From the linear interpolation, we propose
an approximation to the modified LRT statistic n the case of two-step monotone missing data.
Then, we can obtain an approximate modified LRT statistic with two-step monotone missing
data

Q∗ = −2ρ∗ log λ,

where

ρ∗ = ρN1
+
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p

(ρN − ρN1
) = 1− p+ p1 + 4

2N1

(
1− p3N2

pN

)
.

Next section, we compare the accuracy of two modified LRT statistics proposed in this section
by simulation.

4. Simulation study

We computed the upper 100α percentiles of the LRT statistic and two modified LRT statis-
tics by Monte Carlo simulation (106 runs) for α = 0.1, 0.05, 0.01 and various conditions of

(p1, p2, p3) and (N
(i)
1 , N

(i)
2 )(i = 1, 2). In particular, we evaluated the asymptotic behavior of

the χ2 approximations and accuracy of the modified upper percentiles of −2 log λ. For con-
venience, we prepared data sets that had equal sample sizes in all simulations. The sample
sizes of the missing samples were set according to the following three cases:

(N
(i)
1 , N

(i)
2 ) =


(10, 10), (15, 15), (20, 20), (40, 40), (200, 200),
(5, 10), (10, 20), (20, 40), (40, 80),
(10, 5), (20, 10), (40, 20), (80, 40),
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and the dimensions were set according to the following four cases:

(p1, p2, p3) = (2, 2, 2), (2, 2, 4), (4, 2, 2), (4, 4, 4).

We simulated the upper 100α percentiles of the LRT statistic (−2 log λ) and modified LRT
statistics (−2ρ log λ and Q∗), and the actual type I error rates for the upper percentiles of
−2 log λ and −2ρ log λ, as well as Q∗ are given by

αL = Pr{−2 log λ > χ2
p2+p3,α},

αML = Pr{−2ρ log λ > χ2
p2+p3,α},

αQ = Pr{Q∗ > χ2
p2+p3,α},

respectively.

From tables, it is seen that the simulated values approach closer to the upper percentiles of

the χ2 distribution when both the sample sizes N
(i)
1 and N

(i)
2 become large. In this article,

(N
(i)
1 , N

(i)
2 ) = (200, 200) is listed as a representative example of a large sample size, hence

it was confirmed that the same tendency was observed in other cases. It may be also that
the upper percentiles of the two modified LRT statistic shows better results in all cases.
It appears from the simulated results that the upper percentiles of −2 log λ and −2ρ log λ
monotonically approach χ2

α, but the upper percentile of Q∗ does not. While −2ρ log λ is
obtained by asymptotic expansion, it is presumed that Q∗ is not monotonic because the ratio
of ρN1

and ρN forming ρ∗ depends on the relationship between p and p3. In addition to the
ones listed in this article, we are conducting simulations in various cases, and we will also
consider their trends. The results for actual type I error rates also show that −2ρ log λ is
a good approximation for small p3/p values, and Q∗ is a good approximation for large p3/p
values. Note that the case where the value of p3/p is small refers to (p1, p2, p3) = (2,2,4), and
in the other cases (2,4,4) and (4,4,8), the same tendency is observed. Cases with large values
of p3/p were (p1, p2, p3) = (2,2,2), (4,2,2), and (4,4,4), and the same tendency was confirmed
at (8,2,2) and (8,4,4) as well.

The following Figures show the distribution of the LRT statistics, modified the LRT statistics,
−2ρ log λ, and χ2 distribution as an asymptotic distribution. The blue histogram represents
the LRT statistic, the pink histogram represents modified LRT statistic, and the red solid line
represents χ2 distribution. Figures 1 to 4 show the behavior of the distribution of statistics
when the dimension is (p1, p2, p3) = (2, 2, 2) and the sample size are moved. From these
figures, we can see that the accuracy of the modified LRT statistic correction is good even
when the sample sizes are small. Figures 5 and 6 show the case where the dimensions are

varied and the sample sizes are (N
(i)
1 , N

(i)
2 ) = (5, 5), i = 1, 2. As shown in Figures 1 and 5,

when the dimension of the missing part increases, the approximation to the χ2 distribution
becomes worse; however, the modified LRT statistic shows better approximation accuracy
than the LRT statistic.
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Table 1: Upper percentiles and type I errors (α = 0.1)

N
(i)
1 N

(i)
2 −2 log λ (αL) −2ρ log λ (αML) Q∗ (αQ)

(p1, p2, p3) = (2, 2, 2) 10 10 10.46 ( 0.214 ) 7.98 ( 0.108 ) 7.85 ( 0.103 )

20 20 8.89 ( 0.146 ) 7.83 ( 0.102 ) 7.78 ( 0.100 )

40 40 8.28 ( 0.120 ) 7.79 ( 0.100 ) 7.76 ( 0.099 )

200 200 7.87 ( 0.104 ) 7.77 ( 0.100 ) 7.77 ( 0.100 )

5 10 18.28 ( 0.464 ) 10.36 ( 0.197 ) 9.75 ( 0.173 )

10 20 10.27 ( 0.205 ) 8.04 ( 0.110 ) 7.87 ( 0.104 )

20 40 8.80 ( 0.142 ) 7.84 ( 0.103 ) 7.77 ( 0.100 )

40 80 8.24 ( 0.119 ) 7.79 ( 0.101 ) 7.76 ( 0.099 )

10 5 10.67 ( 0.224 ) 7.92 ( 0.105 ) 7.83 ( 0.102 )

20 10 8.95 ( 0.149 ) 7.79 ( 0.101 ) 7.76 ( 0.099 )

40 20 8.32 ( 0.123 ) 7.78 ( 0.100 ) 7.77 ( 0.099 )

80 40 8.05 ( 0.110 ) 7.79 ( 0.100 ) 7.78 ( 0.100 )

(p1, p2, p3) = (2, 2, 4) 10 10 16.06 ( 0.311 ) 11.11 ( 0.116 ) 11.84 ( 0.143 )

20 20 12.67 ( 0.176 ) 10.72 ( 0.103 ) 11.01 ( 0.113 )

40 40 11.56 ( 0.133 ) 10.66 ( 0.101 ) 10.80 ( 0.105 )

200 200 10.81 ( 0.106 ) 10.65 ( 0.100 ) 10.67 ( 0.101 )

5 10 56.67 ( 0.844 ) 23.30 ( 0.450 ) 30.22 ( 0.589 )

10 20 15.92 ( 0.304 ) 11.23 ( 0.120 ) 12.20 ( 0.157 )

20 40 12.59 ( 0.173 ) 10.74 ( 0.103 ) 11.12 ( 0.117 )

40 80 11.50 ( 0.131 ) 10.65 ( 0.100 ) 10.83 ( 0.107 )

10 5 16.25 ( 0.318 ) 11.02 ( 0.113 ) 11.51 ( 0.131 )

20 10 12.76 ( 0.180 ) 10.71 ( 0.102 ) 10.90 ( 0.109 )

40 20 11.57 ( 0.133 ) 10.64 ( 0.100 ) 10.73 ( 0.103 )

80 40 11.10 ( 0.166 ) 10.65 ( 0.100 ) 10.70 ( 0.102 )

(p1, p2, p3) = (4, 2, 2) 10 10 11.85 ( 0.272 ) 8.15 ( 0.115 ) 7.71 ( 0.097 )

20 20 9.30 ( 0.164 ) 7.84 ( 0.103 ) 7.67 ( 0.096 )

40 40 8.46 ( 0.128 ) 7.80 ( 0.101 ) 7.72 ( 0.098 )

200 200 7.90 ( 0.105 ) 7.77 ( 0.100 ) 7.76 ( 0.099 )

5 10 48.87 ( 0.771 ) 21.18 ( 0.468 ) 16.29 ( 0.358 )

10 20 11.58 ( 0.259 ) 8.30 ( 0.121 ) 7.72 ( 0.098 )

20 40 9.17 ( 0.158 ) 7.87 ( 0.104 ) 7.64 ( 0.095 )

40 80 8.39 ( 0.125 ) 7.79 ( 0.101 ) 7.69 ( 0.096 )

10 5 12.21 ( 0.288 ) 8.04 ( 0.110 ) 7.73 ( 0.098 )

20 10 9.43 ( 0.170 ) 7.82 ( 0.101 ) 7.71 ( 0.097 )

40 20 8.52 ( 0.130 ) 7.79 ( 0.100 ) 7.74 ( 0.098 )

80 40 8.12 ( 0.114 ) 7.77 ( 0.100 ) 7.75 ( 0.099 )

(p1, p2, p3) = (4, 4, 4) 10 10 25.89 ( 0.517 ) 15.53 ( 0.169 ) 15.10 ( 0.155 )

20 20 17.01 ( 0.231 ) 13.61 ( 0.108 ) 13.46 ( 0.103 )

40 40 14.91 ( 0.152 ) 13.42 ( 0.102 ) 13.36 ( 0.100 )

200 200 13.63 ( 0.108 ) 13.36 ( 0.100 ) 13.35 ( 0.100 )

5 10 - ( - ) - ( - ) - ( - )

10 20 25.32 ( 0.497 ) 16.04 ( 0.185 ) 15.47 ( 0.166 )

20 40 16.77 ( 0.221 ) 13.69 ( 0.110 ) 13.51 ( 0.105 )

40 80 14.79 ( 0.148 ) 13.44 ( 0.102 ) 13.35 ( 0.100 )

10 5 26.53 ( 0.542 ) 15.04 ( 0.153 ) 14.74 ( 0.143 )

20 10 17.30 ( 0.242 ) 13.55 ( 0.106 ) 13.45 ( 0.103 )

40 20 15.03 ( 0.157 ) 13.40 ( 0.101 ) 13.36 ( 0.100 )

80 40 14.13 ( 0.125 ) 13.37 ( 0.100 ) 13.35 ( 0.100 )

Note : χ2
4,0.1 = 7.78, χ2

6,0.1 = 10.64, χ2
8,0.1 = 13.36
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Table 2: Upper percentiles and type I errors (α = 0.05)

N
(i)
1 N

(i)
2 −2 log λ (αL) −2ρ log λ (αML) Q∗ (αQ)

(p1, p2, p3) = (2, 2, 2) 10 10 12.79 ( 0.132 ) 9.75 ( 0.056 ) 9.59 ( 0.052 )

20 20 10.82 ( 0.081 ) 9.54 ( 0.051 ) 9.48 ( 0.050 )

40 40 10.10 ( 0.063 ) 9.50 ( 0.050 ) 9.47 ( 0.050 )

200 200 9.60 ( 0.052 ) 9.49 ( 0.050 ) 9.48 ( 0.050 )

5 10 22.94 ( 0.365 ) 13.00 ( 0.126 ) 12.23 ( 0.108 )

10 20 12.57 ( 0.126 ) 9.85 ( 0.058 ) 9.64 ( 0.053 )

20 40 10.71 ( 0.078 ) 9.55 ( 0.051 ) 9.46 ( 0.049 )

40 80 10.04 ( 0.062 ) 9.50 ( 0.050 ) 9.46 ( 0.049 )

10 5 13.07 ( 0.140 ) 9.69 ( 0.054 ) 9.58 ( 0.052 )

20 10 10.93 ( 0.083 ) 9.52 ( 0.051 ) 9.47 ( 0.050 )

40 20 10.15 ( 0.064 ) 9.49 ( 0.050 ) 9.48 ( 0.050 )

80 40 9.80 ( 0.057 ) 9.48 ( 0.050 ) 9.48 ( 0.050 )

(p1, p2, p3) = (2, 2, 4) 10 10 19.07 ( 0.211 ) 13.19 ( 0.061 ) 14.07 ( 0.079 )

20 20 15.00 ( 0.102 ) 12.69 ( 0.052 ) 13.03 ( 0.058 )

40 40 13.67 ( 0.072 ) 12.62 ( 0.050 ) 12.77 ( 0.053 )

200 200 12.80 ( 0.054 ) 12.60 ( 0.050 ) 12.63 ( 0.051 )

5 10 70.66 ( 0.790 ) 29.05 ( 0.360 ) 37.68 ( 0.500 )

10 20 18.91 ( 0.206 ) 13.34 ( 0.064 ) 14.49 ( 0.089 )

20 40 14.93 ( 0.100 ) 12.73 ( 0.053 ) 13.19 ( 0.061 )

40 80 13.60 ( 0.070 ) 12.60 ( 0.050 ) 12.81 ( 0.054 )

10 5 19.28 ( 0.218 ) 13.07 ( 0.059 ) 13.65 ( 0.071 )

20 10 15.10 ( 0.105 ) 12.67 ( 0.051 ) 12.90 ( 0.056 )

40 20 13.69 ( 0.072 ) 12.59 ( 0.050 ) 12.70 ( 0.052 )

80 40 13.13 ( 0.060 ) 12.60 ( 0.050 ) 12.65 ( 0.051 )

(p1, p2, p3) = (4, 2, 2) 10 10 14.24 ( 0.170 ) 10.20 ( 0.065 ) 9.49 ( 0.050 )

20 20 11.34 ( 0.094 ) 9.57 ( 0.052 ) 9.36 ( 0.047 )

40 40 10.31 ( 0.068 ) 9.51 ( 0.050 ) 9.41 ( 0.048 )

200 200 9.63 ( 0.053 ) 9.48 ( 0.050 ) 9.46 ( 0.049 )

5 10 62.68 ( 0.711 ) 27.16 ( 0.384 ) 20.89 ( 0.277 )

10 20 14.24 ( 0.170 ) 10.21 ( 0.065 ) 9.50 ( 0.050 )

20 40 11.20 ( 0.090 ) 9.61 ( 0.053 ) 9.33 ( 0.047 )

40 80 10.25 ( 0.067 ) 9.52 ( 0.051 ) 9.39 ( 0.048 )

10 5 14.92 ( 0.193 ) 9.83 ( 0.057 ) 9.47 ( 0.050 )

20 10 11.51 ( 0.098 ) 9.54 ( 0.051 ) 9.40 ( 0.048 )

40 20 10.38 ( 0.070 ) 9.49 ( 0.050 ) 9.44 ( 0.049 )

80 40 9.90 ( 0.059 ) 9.48 ( 0.050 ) 9.45 ( 0.049 )

(p1, p2, p3) = (4, 4, 4) 10 10 30.41 ( 0.407 ) 18.25 ( 0.101 ) 17.74 ( 0.090 )

20 20 19.77 ( 0.143 ) 15.82 ( 0.055 ) 15.65 ( 0.052 )

40 40 17.34 ( 0.085 ) 15.61 ( 0.052 ) 15.53 ( 0.050 )

200 200 15.82 ( 0.055 ) 15.51 ( 0.050 ) 15.49 ( 0.050 )

5 10 - ( - ) - ( - ) - ( - )

10 20 29.85 ( 0.387 ) 18.90 ( 0.113 ) 18.24 ( 0.099 )

20 40 19.51 ( 0.136 ) 15.93 ( 0.057 ) 15.71 ( 0.053 )

40 80 17.17 ( 0.082 ) 15.60 ( 0.052 ) 15.50 ( 0.050 )

10 5 31.07 ( 0.431 ) 17.61 ( 0.088 ) 17.26 ( 0.081 )

20 10 20.09 ( 0.152 ) 15.74 ( 0.054 ) 15.63 ( 0.052 )

40 20 17.46 ( 0.087 ) 15.57 ( 0.051 ) 15.52 ( 0.050 )

80 40 16.39 ( 0.066 ) 15.50 ( 0.050 ) 15.48 ( 0.050 )

Note : χ2
4,0.05 = 9.49, χ2

6,0.05 = 12.59, χ2
8,0.05 = 15.51
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Table 3: Upper percentiles and type I errors (α = 0.01)

N
(i)
1 N

(i)
2 −2 log λ (αL) −2ρ log λ (αML) Q∗ (αQ)

(p1, p2, p3) = (2, 2, 2) 10 10 18.03 ( 0.043 ) 13.75 ( 0.012 ) 13.53 ( 0.011 )

20 20 15.18 ( 0.020 ) 13.38 ( 0.010 ) 13.28 ( 0.010 )

40 40 14.13 ( 0.014 ) 13.29 ( 0.010 ) 13.27 ( 0.010 )

200 200 13.43 ( 0.011 ) 13.27 ( 0.010 ) 13.26 ( 0.010 )

5 10 33.54 ( 0.210 ) 19.01 ( 0.046 ) 17.89 ( 0.037 )

10 20 17.75 ( 0.040 ) 13.90 ( 0.013 ) 13.61 ( 0.011 )

20 40 15.04 ( 0.019 ) 13.41 ( 0.011 ) 13.28 ( 0.010 )

40 80 14.06 ( 0.014 ) 13.29 ( 0.010 ) 13.24 ( 0.010 )

10 5 18.35 ( 0.047 ) 13.61 ( 0.011 ) 13.45 ( 0.011 )

20 10 15.34 ( 0.021 ) 13.36 ( 0.010 ) 13.29 ( 0.010 )

40 20 14.22 ( 0.015 ) 13.30 ( 0.010 ) 13.27 ( 0.010 )

80 40 13.72 ( 0.012 ) 13.27 ( 0.010 ) 13.26 ( 0.010 )

(p1, p2, p3) = (2, 2, 4) 10 10 25.71 ( 0.084 ) 17.78 ( 0.014 ) 18.96 ( 0.021 )

20 20 20.11 ( 0.029 ) 17.01 ( 0.011 ) 17.47 ( 0.013 )

40 40 18.23 ( 0.017 ) 16.82 ( 0.010 ) 17.03 ( 0.011 )

200 200 17.06 ( 0.011 ) 16.80 ( 0.010 ) 16.84 ( 0.010 )

5 10 102.82 ( 0.672 ) 42.27 ( 0.218 ) 54.84 ( 0.345 )

10 20 25.49 ( 0.082 ) 17.99 ( 0.015 ) 19.54 ( 0.024 )

20 40 19.96 ( 0.028 ) 17.02 ( 0.011 ) 17.63 ( 0.014 )

40 80 18.20 ( 0.016 ) 16.86 ( 0.010 ) 17.14 ( 0.011 )

10 5 25.96 ( 0.088 ) 17.59 ( 0.013 ) 18.38 ( 0.017 )

20 10 20.21 ( 0.030 ) 16.95 ( 0.011 ) 17.26 ( 0.012 )

40 20 18.33 ( 0.017 ) 16.86 ( 0.010 ) 17.00 ( 0.011 )

80 40 17.52 ( 0.013 ) 16.82 ( 0.010 ) 16.88 ( 0.010 )

(p1, p2, p3) = (4, 2, 2) 10 10 20.60 ( 0.070 ) 14.16 ( 0.014 ) 13.39 ( 0.010 )

20 20 15.94 ( 0.026 ) 13.45 ( 0.011 ) 13.15 ( 0.009 )

40 40 14.44 ( 0.016 ) 13.31 ( 0.010 ) 13.18 ( 0.010 )

200 200 13.48 ( 0.011 ) 13.27 ( 0.010 ) 13. 25 ( 0.010 )

5 10 94.70 ( 0.590 ) 41.04 ( 0.248 ) 31.57 ( 0.156 )

10 20 20.24 ( 0.064 ) 14.51 ( 0.016 ) 13.50 ( 0.011 )

20 40 15.72 ( 0.024 ) 13.49 ( 0.011 ) 13.10 ( 0.009 )

40 80 14.37 ( 0.015 ) 13.36 ( 0.010 ) 13.18 ( 0.010 )

10 5 21.06 ( 0.076 ) 13.86 ( 0.013 ) 13.33 ( 0.010 )

20 10 16.13 ( 0.027 ) 13.38 ( 0.010 ) 13.17 ( 0.010 )

40 20 14.52 ( 0.016 ) 13.28 ( 0.010 ) 13.23 ( 0.010 )

80 40 13.87 ( 0.013 ) 13.27 ( 0.010 ) 13.23 ( 0.010 )

(p1, p2, p3) = (4, 4, 4) 10 10 40.43 ( 0.228 ) 24.26 ( 0.031 ) 23.59 ( 0.027 )

20 20 25.73 ( 0.046 ) 20.58 ( 0.012 ) 20.37 ( 0.011 )

40 40 22.48 ( 0.021 ) 20.23 ( 0.011 ) 20.14 ( 0.010 )

200 200 20.46 ( 0.011 ) 20.05 ( 0.010 ) 20.03 ( 0.010 )

5 10 - ( - ) - ( - ) - ( - )

10 20 39.89 ( 0.213 ) 25.27 ( 0.037 ) 24.38 ( 0.031 )

20 40 25.41 ( 0.043 ) 20.75 ( 0.012 ) 20.47 ( 0.011 )

40 80 22.26 ( 0.020 ) 20.22 ( 0.010 ) 20.09 ( 0.010 )

10 5 41.10 ( 0.246 ) 23.29 ( 0.025 ) 22.83 ( 0.022 )

20 10 26.15 ( 0.050 ) 20.49 ( 0.011 ) 20.34 ( 0.011 )

40 20 22.61 ( 0.022 ) 20.16 ( 0.010 ) 20.10 ( 0.010 )

80 40 21.26 ( 0.015 ) 20.11 ( 0.010 ) 20.08 ( 0.010 )

Note : χ2
4,0.01 = 13.28, χ2

6,0.01 = 16.81, χ2
8,0.01 = 20.09
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5. Numerical example

We illustrate the results of this study using an example given in Wei and Lachin (1984). This
data consist of serum cholesterol values that were measured under treatment at five different
time points, baseline and months 6, 12, 20, and 24 in the placebo and high dose groups. The
original data consists of 31 and 36 complete data and 17 and 29 missing data, respectively. In
this article, we selected 8 observations randomly for complete data from each groups. And we
use 4 observations which the data for the 24th month was not observed from the missing data
of the two groups to create two-step monotone missing data. In this example, the first variable
baseline seems to be equal between two groups, so we assume “given” in the hypothesis. Thus,

we have the two-step monotone missing data of N
(i)
1 = 8, N

(i)
2 = 4 and p1 = 1, p2 = 3, p3 = 1

for i = 1, 2.

For the above example, we obtained −2 log λ = 17.46 with a p-value of 0.00036. Since
−2 log λ4,0.01 = 18.13 from the simulation value, the null hypothesis is not rejected at the
significance level of 0.01. When we use χ2

4,0.01 = 13.28, the null hypothesis is rejected. Thus,
using χ2 percentile gave an incorrect test result. In contrast, we obtained −2ρ log λ = 13.23
(p-value 0.00758) and Q∗ = 12.36 (p-value 0.01325) from the above example. Since the simu-
lation value are −2ρ log λ4,0.01 = 13.74 and Q∗4,0.01 = 12.84, the null hypothesis is not rejected
in either case. When we use χ2

4,0.01, the null hypothesis is also not rejected and the test results
are the same as when using simulated values. We also performed 10 times on data obtained
from the same sampling procedure, and confirmed that similar results were obtained.

6. Conclusion

We considered the two-sample problem of testing for sub-mean vectors with two-step mono-
tone missing data. We derived the LRT statistic by deriving MLEs and provided the null
distribution of the LRT statistic. Then, we proposed two modified LRT statistics. In addi-
tion, we showed the upper 100α percentiles of the LRT statistic and modified LRT statistics,
as well as the type I errors, when the null hypothesis was rejected using χ2

p2+p3 under their
simulated statistic. In order to explain this result, we verified whether it can be used with
numerical examples. In conclusion, simulation results showed that the modified LRT statistics
provided a better approximation than the LRT statistic in all cases.

As an issue for the future, expansion of the general m population problem can be considered.
In the other hand, k-step monotone missing data, even the discussion on one population
problem remains.
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Appendix

Proof of Theorem 1.

Let the LR criterion λ can be written as

λ =

(∣∣∣∣ 1

N
{(WT22 +BT22)− (WT21 +BT21)(WT11 +BT11)

−1(WT12 +BT12)}
∣∣∣∣

·
∣∣∣∣ 1

N1
{(WF33 +BF33)− (WF3(12) +BF3(12))(WF (12)(12) +BF (12)(12))

−1
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(WF (12)3 +BF (12)3)}
∣∣∣∣/

{
∣∣∣∣ 1

N
(WT22 −WT21W

−1
T11WT12)

∣∣∣∣ · ∣∣∣∣ 1

N1
(WF33 −WF3(12)W
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T (12)(12)WF (12)3)

∣∣∣∣}
)−N1/2

×
(∣∣∣∣ 1

N
{(WT22 +BT22)− (WT21 +BT21)(WT11 +BT11)

−1(WT12 +BT12)}
∣∣∣∣/

∣∣∣∣ 1

N
(WT22 −WT21W

−1
T11WT12)

∣∣∣∣
)−N2/2

.

Then, we can write

WF = (N1 − 2)SF = (N1 − 2)

(
Ip +

1√
N1 − 2
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√
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Then, λ can be expanded as
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Therefore, −2 log λ can be described as
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The characteristic function of −2 log λ is given as
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Therefore, by inverting the characteristic function, the proof of Theorem 1 is complete.
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