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Abstract

Modeling and analysis of survival rate has proved a fruitful aspect of statistical work
in many fields of science. This paper aims at using Bayesian approach to fit general-
ized DUS Exponential distribution (GDUSED). Kumar, Singh, and Singh (2015) proposed
a renovation and called it DUS transformation. A Bayesian approach has been assumed
to fit this model as a survival model. A real survival data set is utilized for illustration.
Implementation is done using LaplaceApproximation and JAGS. Some graphical repre-
sentations related to the probability density function and hazard function of the (GDUSED)
are provided. LaplaceApproximation and JAGS codes have been provided to implement
censoring mechanism using both optimization and simulation tools.

Keywords: GDUSED, LaplaceApproximation, LaplacesDemon, posterior, survival function,
hazard function, simulation, Bayesian inference, JAGS, R.

1. Introduction

There is a variety of models, available in the literature, to examine the lifetime data. At
first, exponential distribution was broadly used to investigate lifetime information because
of its straightforwardness and systematic tractability. Albeit, a one-parameter exponential
distribution, has a number of fascinating properties; however, its utilization is improper, all
these things are taken into consideration in circumstances where related risk rate is not steady.
To suit the circumstance of non steady danger rate, analysts tried relentlessly to grow new
lifetime distribution with the aim that these turn out to be more adaptable than the ones
used currently with regards to the state of their probability density function (pdf) and their
related hazard rate. Kumar et al. (2015) proposed a change and called it a DUS change to
get another distribution. In this case, the off chance that G(x) is the baseline cumulative
distribution function (cdf), DUS transformation yields new cdf F(x) as given beneath:

F (x) =
eG(x) − 1

e− 1
.

Maurya, Kaushik, Singh, and Singh (2017) proposed another class of distribution which com-
prises a wide range of hazard rates for fitting decision of shape parameter and proposed the
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use of DUS transformation on the exponentiated cdf , henceforth referred to as generalized
DUS (GDUS) transformation. This new distribution is of important interest to the researcher
who aims to utilize it in applied operations by using Bayesian analysis. Survival analysis has
numerous applications in various science fields, for example, in biological science, medicine,
engineering, management, and public health. These statistical distributions are essentially
utilized to show the life of an item with the end goal to think about its important features. In
this way, suitable and proper distribution may yield valuable data that give good results and
help settle on right choices. In this paper, the researcher goes for examining how Bayesian
approach fits the (GDUSED) model by using LaplaceApproximation and JAGS (Just Another
Gibbs Sampler). The tools and techniques which are used in this paper are implemented by
using LaplacesDemon and r2jags packages of R, and hence they are in the Bayesian field.
In light of the Bayes rule, Bayesian inference can give a balanced strategy to invigorate our
belief in the light of new and upcoming data. Since researchers face difficulty in finding so-
lutions for high dimension, in this article, the researcher uses a package to help in solving
the problem, one package is LaplacesDemon (Statisticat (2015)) which helps and facilitates
high dimensional Bayeisan inference, mainly characterized by its own intellect and beneficial
analysis and the other package is R2jags in which there is the function JAGS (Just Another
Gibbs Sampler) can be run directly from R by using R2jags package. Also, R2jags package
used for simulation from posterior density. The JAGS function takes data and starting values
as an input. The JAGS function writes automatically a jags script, calls the model, and saves
the simulations for easy access in R. A real survival data set is used to explain LaplaceAp-

proximation and JAGS.
Therefore, Bayesian analysis of (GDUSED) model has been initiated to achieve the following
aims:

• To describe a Bayesian model, that is, specification of likelihood and prior distribution.

• To write down the R code for approximating posterior densities and simulation tools
with, LaplaceApproximation and JAGS.

• To illustrate numeric as well as graphic summaries of the posterior densities.

2. The generalized DUS exponential distribution

Maurya et al. (2017) projected another class of distribution which comprises a wide range of
hazard rates for proper choice of the shape parameter. Also, they proposed the use of DUS

transformation on the exponentiated cdf , henceforth referred to as generalized DUS (GDUS)

transformation. The distribution obtained by GDUS transformation is needed to have both
monotone and bathtub-shaped hazard rates depending upon the decision of the values of the
parameters. To illustrate the perspective, we consider exponential distribution as the base
distribution because of its effortlessness and prominence in life testing problems, despite the
fact that its use is limited to those phenomena where hazard rate is steady.

The new distribution through GDUS transformation introduced by Maurya et al. (2017) as
follows :

f(t) =
αg(t)Gα−1(t)exp(Gα(t))

e− 1
. (1)

F (t) =
exp(Gα(t))− 1

e− 1
. (2)

Now, we consider that the distribution in Equations (1&2) is an exponential distribution with
parameter λ, also, we recall the probability density function (pdf), cumulative distribution
function (cdf), survival function S(t) and hazard function h(t) generalized DUS Exponential
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distribution GDUSED(θ, λ) which can be in (3), (4), (5) and (6), respectively, as in Figure
1.

f(t;α, λ) =
α
λe
− t
λ (1− e−

t
λ )α−1exp(1− e−

t
λ )α

e− 1
; λ, α, t > 0. (3)

F (t;α, λ) =
exp(1− e−

t
λ )α − 1

e− 1
; λ, α, t > 0. (4)

S(t;α, λ) = 1− F (t) = 1− exp(1− e−
t
λ )α − 1

e− 1
; λ, α, t > 0. (5)

h(t;α, λ) =
f(t)

S(t)
=

α
λe
− t
λ (1− e−

t
λ )α−1exp(1− e−

t
λ )α

e− exp(1− e−
t
λ )α

λ, α, t > 0. (6)
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Figure 1: Probability density plots f(x), cdf F(x), survival s(x) and hazard curves h(x) of the
Generalized DUS Exponential Distribution for different values of, α and λ.

3. Bayesian inference

Gelman, Stern, Carlin, Dunson, Vehtari, and Rubin (2013) applied Bayesian modeling into
the following three steps:

1. Establishing a full probability model for all observable and unobservable quantities.
This model should be consistent with obtainable knowledge of the data being modeled
and how it was collected.

2. Computing the posterior probability of unknown quantities conditioned on observed
quantities. The unknown quantities may admit unobservable quantities such as param-
eters and potentially observable quantities such as predictions for outlook observations.

3. Estimating the model fit to the data. This includes evaluating the implications of the
posterior.
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At this point, we pinpoint the very important three points in Bayesian inferences which are
as follows:

• prior distribution p(θ): The parameter θ can set a prior distribution element using
probability as a means of quantifying uncertainty about θ before taking the data into a
count.

• Likelihood p(y|θ): likelihood function for variables is related in full to a probability
model.

• Posterior distribution p(θ|y): is the joint posterior distribution that expresses uncer-
tainty about parameter θ after considering the prior and the data as in the following
equation:

P (θ|y) = p(y|θ)× p(θ). (7)

4. The prior distributions

Having the prior distribution, the Bayesian inference can provide the information concerning
an uncertain parameter θ connected through the probability distribution of data. This uncer-
tain parameter can help to obtain the posterior distribution p(θ|y). In the case of the Bayesian
inference, it is very important for prior information to be identified through the value of the
specified parameter. The information which is gathered before analyzing the experimental
data by using a probability distribution function is referred to as the prior probability distri-
bution (or the prior). In this article, we use two types of priors, the half-Cauchy prior and
the Normal prior. The simplest type of priors is a conjugate prior which facilitates posterior
calculations. In addition, a conjugate prior distribution is intended for an unknown parameter
which leads to a posterior distribution for which there is a simple formula for posterior means
and variances. (AbuJarad and Khan (2018a)) applied the half-Cauchy distribution by setting
scale parameter α = 25.

First, the probability density function of half-Cauchy distribution by scale parameter α is
defined as

f(x) =
2α

π(x2 + α2)
, x > 0, α > 0.

The mean and variance of the Half-Cauchy distribution dose not exist but its mode is equal to
0. The half-Cauchy distribution with scale α = 25 is a suggested, default, weakly informative
prior distribution used for a scale parameter. On this scale α = 25, the density of half-Cauchy
is almost flat but not completely see Figure 2. Thus, the prior distributions which are not
completely flat provide sufficient information for the numerical approximation algorithm to
continue to look at the target density (posterior distribution). The inverse-gamma distribution
is often used as a non-informative prior distribution for scale parameter, but generates a
trouble in the model fitting process (Gelman and Hill (2006)). Otherwise if more information
is needed, the half-Cauchy is a favorable option. Consequently, in this article, the half-Cauchy
distribution with scale parameter α = 25 is used as a weakly informative prior distribution.

Next, in the normal (or Gaussian), every parameters are assigned a weak information Gaussian
prior probability distribution. Our aims in this work is to use the parameters βi independently
in the normal distribution with mean=0 and standard deviation=1000, i.e., βj ∼ N(0, 1000),
therefore, we get a flat prior, as we see in Figure 2. We see that the large variance indicates
a lot of uncertainty about each parameter and hence a weak informative distribution.

5. Laplace approximation

Laplace Approximation is a technique first known in De Laplace (1774). For this technique,
it is important to specify and decide information prior to data analysis. For example, many
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Figure 2: If we set the scale 25, then the half-Cauchy prior distribution will be a uniform
distribution. Also, the Normal prior distribution will be flat with (0,1000).

simple Bayesian analyses give the similar results to standard non-Bayesian approaches when
built on non-informative prior distribution, for example, the posterior t-interval for the normal
mean with unknown variance. An objective validation of a non-informative prior distribution
depends on the amount of information existing in the data, in the simple cases as the sam-
ple size n increases, the influence of the prior distribution on posterior inference decreases.
These thoughts are sometimes referred to as asymptotic approximation theory because they
refer to properties that hold in the limit as n becomes large. Thus, a special method of
asymptotic approximation is the Laplace Approximation which accurately approximates the
unimodal posterior moments and marginal posterior densities in many cases. In this section,
we introduce a concise, informal description of Laplace Approximation method.

Suppose −h(θ) is a smooth, bounded unimodal function with a maximum at θ̂ and θ is a
scalar. By using Laplace Approximation (e.g., Tierney and Kadane (1986)) the following
integral

I =

∫
f(θ)exp[−nh(θ)]dθ,

can be approximated by

Î = f(θ̂)

√
2π

n
σexp[−nh(θ̂)].

As presented in Mosteller and Wallace (1964), Laplace Approximation is used to expand θ̂
and to find the following integral:

I =

∫
f(θ̂)exp

(
− n

[
h(θ̂) + (θ − θ̂)h′(θ̂) +

(θ − θ̂)2

2
h′′(θ̂)

])
dθ,

by setting h′(θ̂) = 0, we get

I =
∫
f(θ̂)exp

(
− n

[
h(θ̂) + (θ−θ̂)2

2 h′′(θ̂)

])
dθ

= f(θ̂)exp[−nh(θ̂)]
∫
exp

(
−n(θ−θ̂)2

2σ2

)
dθ
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= f(θ̂)
√

2π
n σexp[−nh(θ̂)].

Spontaneously, if exp[−nh(θ)] is exceptionally topped about θ̂, then the integral is able to be
well approximated by the performance of the integrand near θ, which can be expressed in the
following equation:

I = Î
[
1 +O

( 1

n

)]
.

To evaluate moments of posterior distributions, we have to estimate expressions as follows
(Tanner (2012)):

E[g(θ)] =

∫
g(θ)exp[−nh(θ)]dθ∫
exp[−nh(θ)]dθ

,

where exp[−nh(θ)] = L(θ|y)p(θ).

6. Bayesian analysis of the generalized DUS exponential

Bayesian analysis is the best method to get the marginal posterior distribution of the specific
parameters of interest. Basically, the best approach to meet this point is self-evident. First,
we calculate and obtain the joint posterior distribution of all unknown parameters, at that
point, we integrate this distribution over the unknown parameters that are not of immediate
interest to obtain the needed marginal distribution. Also, at the same level, we draw samples
from the joint posterior distribution by using simulation, this will lead to the ultimatum goal
of treating the parameters of interest and ignoring the values of the other unknown parameters
(see, e.g., AbuJarad and Khan (2018b)).

6.1. The generalized DUS exponential

The probability density function (pdf) of the generalized DUS exponential model is defined
as:

f(t;α, λ) =
α
λe
− t
λ (1− e−

t
λ )α−1exp(1− e−

t
λ )α

e− 1
.

Also, the survival function S(t) of the generalized DUS exponential model is defined as:

S(t;α, λ) = 1− F (t) = 1− exp(1− e−
t
λ )α − 1

e− 1
.

Now, we have the capacity to condition the likelihood function for right censored (in the
meantime similar to our case the data are right censored) as follows:

L =

n∏
i=0

Pr(ti, δi)

=
n∏
i=0

[f(ti)]
δi [S(ti)]

1−δi ,

where δi is an indicator variable which takes the value 0 if observation is censored and the
value 1 if observation is uncensored.

The likelihood function of the generalized DUS exponential model in terms of the f(t;α, λ)
and S(t;α, λ), is defined as:

L =

n∏
i=0

[ α
λe
− t
λ (1− e−

t
λ )α−1exp(1− e−

t
λ )α

e− 1

]δi[
1− exp(1− e−

t
λ )α − 1

e− 1

]1−δi
. (8)
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The posterior distribution of our convictions about the basic inclination is determined in the
standard way by applying Bayes’ rule (Statisticat (2015)), the joint posterior density is given
by AbuJarad and Khan (2018a) and defined as follows:

p(β, α|t,X) ∝ L(t|X,β, α)× p(β)× p(α)

∝
n∏
i=0

[ α
eXβ

e
− t

eXβ (1− e−
t

eXβ )α−1exp(1− e−
t

eXβ )α

e− 1

]δi[
1− exp(1− e−

t

eXβ )α − 1

e− 1

]1−δi
×

J∏
i=0

1√
2π × 103

exp

(
− 1

2

β2j
103

)
× 2× 25

π(α2 + 252)
. (9)

To complete Bayesian inference in the generalized DUS Exponential model, we choose a
prior distribution for α and β′s. Also, we discuss the issue related to deciding prior distri-
butions in section 4. Now, we expect that the prior distribution for α is half-Cauchy on the
interval [0, 25] and for β is Normal with [0, 1000]. Basic application of Bayes rule as showed in
equation (7) which is applied toward the condition (8) to gives the back thickness for α and β
as illustrated in condition (9). The result proposed for this negligible back appropriation gets
high-dimensional fundamental over every single model parameter βj . To solve this integral,
we use the approximated by means of Markov Chain Monte Carlo methods. In any case, due
to the availability of software package similar to LaplacesDemon, this model can be effectively
fitted in Bayesian paradigm through Laplaceapproximation in addition to MCMC techniques
as well as JAGS.

7. IUD data set

In an attempt to investigate and analyze menstrual bleeding data from women using contra-
ceptives trials to prevent pregnancy, the World Health Organization (WHO 1987) has made
available clinical data of 18 women aged between 18 and 35 years by using intrauterine de-
vice (IUD), known as the Multi-load 250 until discontinuation because of menstrual bleeding
problems. The time origin starts with the first day in which women use the IUD, and it is
finished with discontinuation because of bleeding problems. It was also mentioned that some
women in the study stopped using the IUD because of the desire for pregnancy, or because of
no need for a contraceptive, or just simply losing follow up. The study aimed at documenting
those women for two years from the time origin. For some practical reasons those women
could not be examined for two years to see if they were still using the IUD. This explains why
there are three times of discontinuation of more than 104 weeks that are right-censored. The
table below illustrates the number of weeks of using IUD (Collett (2015)).

Table 1: Times in weeks to discontinuation of the use of an IUD (Collett (2015)).

10 13* 18* 19 23* 30 36 38* 54*
56* 59 75 93 97 104* 107 107* 107*

8. Implementation using with Laplace approximation

Bayesian fitting of generalized DUS Exponential model for this data can be done in R by
utilizing capacity LaplaceApproximation for analytic approximation and then with Laplaces-

Demon for MCMC simulations. In this manner, usage has been made by using LaplacesDemon

package.
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8.1. Creation of IUD data

Despite the fact that most R functions utilize data as a frame, Laplace’s Demon utilizes at
least one numeric matrices in a list. It is much faster to process a numeric matrix than
to process a data frame in iterative estimation. The above data of 18 menstrual bleeding
from women (IUD), have given the survival times. The data and related codes are given in
Appendix A2.

8.2. Specification of the generalized DUS exponential

At that moment, we are motivated to look at the posterior estimates of the parameters as soon
as the generalized DUS Exponential model (GDUSED) is fitted to the above mentioned
information (data). Therefore, the meaning of the probability (likelihood) becomes the
topmost necessity for the Bayesian fitting. At this point, the likelihood function can be written
as:

L(θ|t) =
∏n
i=1 f(ti)

δiS(ti)
1−δi

=
∏n
i=1

(
f(ti)
S(ti)

δi
S(ti)

)
=
∏n
i=1 h(ti)

δiS(ti),

by taking the logarithm of the above likelihood function, we obtain

logL =
n∑
i=i

(
log

[
h(ti)

]δi
+ log(St)

)
.

t ∼ GDUSED(α, λ),

where λ = exp(Xβ) is a linear combination of explanatory variables and log is the natural
log used for the time to failure event. The Bayesian system requires the determination and
specification of prior distributions for the parameters. At this point, we stick to subjectivity
and we introduce weakly informative priors for the parameters. Priors for the β and α are in
use to be normal and half-Cauchy at the same time as follows (see, e.g., AbuJarad and Khan
(2018a)):

βj ∼ N(0, 1000); j = 1, 2, 3, ...J

α ∼ HC(0, 25).

In this methodology, we acquire the log posterior of the (GDUSED). The model specification
and related codes are given in Appendix A3.

8.3. Fitting of generalized DUS exponential with Laplace approximation

Now, we use Laplace’s method with the function LaplaceApproximation to facilitate approx-
imating the joint posterior density. For the idea of optimization, several algorithms have been
implemented in this function. Among all the algorithms, we have discovered that the BFGS,
LBFGS and TR perform well in a large portion of the cases. However, for this specific case,
Trust region TR algorithm of Nocedal and Wright (1999) is protected due to its proficiency of
convergence in the least number of iteration. To start the optimization, some initial values

for the parameters must be defined and in this way zero is set to the regression coefficients.
Currently, the time has come to call the function LaplaceApproximation to approximate
the posterior densities of (GDUSE) model for the data using Laplaceapproximation. This
method is implemented in LaplaceApproximation function with TR as a method. An object
GDUSEDLA has been created as a result of using LapalceApproximation function. The fitting
of model with Laplace Approximation and related codes are given in Appendix A4.



88 Bayesian Survival Analysis of GDUSED

Table 2: Summary of the Trust region TR algorithm with Mode and SD for standard deviation.
LB, UB are 2.5%, 97.5% quantiles, respectively.

Mode SD LB UB
beta 4.1697286 0.4006627 3.368403 4.971054
log.alpha -0.6592323 0.3724867 -1.404206 0.085741

Table 3: Simulated results using sampling importance resampling (SIR) method, Mode, SD
for standard deviation and ESS for number effective sample size. LB, Median, UB are 2.5%,
50%, 97.5% quantiles, respectively.

Mode SD MCSE ESS LB Median UB
beta 4.3236620 0.4132184 0.013067114 1000 3.605601 4.3064117 5.1240133
log.alpha -0.8052070 0.3717694 0.011756380 1000 -1.512526 -0.7700861 -0.1521542
Deviance 100.6451801 1.5835276 0.050075538 1000 98.829493 100.2342456 104.6335808
LP -61.8201652 0.7917613 0.025037690 1000 -63.814008 -61.6148299 -60.9124145
alpha 0.4778718 0.1734020 0.005483452 1000 0.220353 0.4629733 0.8588574

8.4. Summarizing output

The analytic results by using LaplaceApproximation function are shown in Table 2. It may
be noted that the posterior mode of parameters beta and log.alpha are 4.160.40,−0.650.37,
respectively. According to 95% credible intervals, beta is found to be statistically significant
and log.alpha is found to be statistically non-significant. Hence, they are appropriate vari-
ables for modeling survival data. The simulated results using sampling importance resampling
(SIR) method are shown in Table 3, which represents the posterior mode (Mode), posterior
standard deviation (SD), Monte Carlo standard error (MCSC), effective sample size (ESS) and
respective credible intervals LB (2.5%), Median (50%) and UB (97.5%).

8.5. Simulation study of IUD data of GDUSED

In this section, the simulation will be performed by utilizing random walk Metropolis algo-
rithm. With the end goal of outline IUD data has been utilized. The R commands for the usage
of IM are given underneath with protest name GDUSEDLD by utilizing function LaplacesDemon

and the outcomes are outlined in Table 4, alongside the Posterior density plot is presented
in Figure 3. The simulation study of IUD data of GDUSED and related codes is given in
Appendix A5.

Table 4: Simulated posterior summary obtained by independent Metropolis (IM) algorithm.

Mean SD MCSE ESS LB Median UB
beta 4.1859020 0.2344156 0.003308514 4765.90 3.7279120 4.1841940 4.6573480
log.alpha -0.6738969 0.2203885 0.003108755 5000.00 -1.1109668 -0.6721282 -0.2402241
Deviance 99.4684210 0.7273085 0.010679895 4946.49 98.7853611 99.2393235 101.4355342
LP -61.2318293 0.3637238 0.005340583 4946.98 -62.2161453 -61.1173321 -60.8902876
alpha 0.5221997 0.1158907 0.001643958 5000.00 0.3292405 0.5106207 0.7864516

9. Fitting Bayesian generalized DUS exponential in JAGS

JAGS (Martyn (2011)) is Just Another Gibbs Sampler that was mainly written by Martyn
Plummer in order to provide a BUGS. It is a program for the analysis of Bayesian models
using Markov Chain Monte Carlo (MCMC). R2jags (Su and Yajima (2012)) is an R package
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Figure 3: Posterior density plots for GDUSED(β, α) model, LA stands for LaplaceApprox-

imation and LD for LaplacesDemon.

that allows fitting JAGS models from within R (Gelman et al. (2013)). This program is based
on a version of numerical library (Rmath) used for R. Many of the functions in base R for
mathematical and statistical calculations are also available in the JAGS (Lunn, Jackson, Best,
Spiegelhalter, and Thomas (2012)). Let we consider the Bayesian analysis of IUD data with
JAGS using its interface of R that is, R2jags package of R. R2jags which is designed for
inference on Bayesian models using Markov chain Monte Carlo (MCMC) simulation, which
is also used for simulation from the posterior density. The JAGS function takes data and
starting values as input. It automatically writes a jags script, calls the model, and saves the
simulations for easy access in R.

9.1. Creation of data

In order to fit the model with JAGS, the data is required to be listed containing the name of
each vector. This can be done by R related codes that are given in Appendix A6.

9.2. Definition of the generalized DUS exponential

The GDUSED is used for modeling the IUD data, as presented in the following formula:

ti ∼ GDUSED(α, λ)

with log-link function
logλ = Xβ,

where X is model matrix and β is the vector of regression coefficients.

Moreover, the prior probabilities for the parameters β and α are specified, respectively, as
follows:

β ∼ N(0, 0.001)

α ∼ U(0, 100).

Thus, the JAGS codes of the this model are given in Appendix A7.
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9.3. Summarizing output

The summary of JAGS simulations after being fitted to the GDUSED(α, λ) model for the IUD
data JAGS simulates the data from posterior density using Metropolis within Gibbs algorithm
and approximates the results which are reported in Table 5. Rhats are very close to 1.0,
which is indicated to a good convergence. A plot of the posterior densities can be seen in
Figure 4.

Table 5: Posterior mean, posterior SD, quantiles, Rhat and effective sample size (n.eff)

Mean SD 2.5% 50% 97.5% Rhat n.eff
beta 4.353 0.432 3.632 4.304 5.372 1.003 2500
alpha 0.483 0.154 0.213 0.474 0.797 1.001 1800
deviance 100.001 2.054 98.193 100.101 104.381 1.000 1
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Figure 4: Posterior density plots for GDUSED(β, α) model, LA stands for LaplaceApprox-

imation, LD for LaplacesDemon and JAGS.

10. Conclusion

In this paper, GDUSED has been used for the analysis of IUD data in Bayesian paradigm. For
illustration of data, a real survival data set is used. The analytic approximation and simulation
methods are implemented using LaplacesDemon and R2jags packages of R. As indicated by
the findings, it is clear that simulation tools provide better results when compared with those
obtained by asymptotic approximation.



Austrian Journal of Statistics 91

Appendix

A1

Functions Generalized DUS Exponential Distribution in R
The Probability Density Function Using R

dGDUSED<-function(x,shape,scale){

a1<-(shape/scale)

a2<-(exp(-(x/scale)))

a3<-(1-exp(-(t/scale)))^(shape-1)

a4<-exp(1-exp(-(t/scale)))^(shape)

a5<-exp(1)-1

a<- ((a1*a2*a3*a4)/a5)

return(a)

}

The Cumulative Distribution Function Using R

pGDUSED<-function(x,shape,scale){

p<- exp(1-exp(-(t/scale)))^(shape) -1

return(p)

}

The Survival Function Using R

survGDUSED<-function(x,shape,scale){

surv<-1-pGDUSED(x,shape,scale)

return(surv)

}

The Hazard Function Using R

hexp<-function(x,shape,scale){

haz<-dGDUSED(x,shape,scale)/survGDUSED(x,shape,scale)

return(haz)

}

A2

Creation of IUD Data

library(LaplacesDemon)

IUD <- c(10,13,18,19,23,30,36,38,54,56,59,75,93,97,104,107,107,107)

N <- 18

J <- 1

X <- matrix(1, nrow=N, ncol=J)

y <- IUD

censor <- c(1,0,0,1,0,1,1,rep(0,3),1,1,1,1,0,1,0,0)

mon.names <-c ("LP", "alpha")

parm.names <- as.parm.names(list(beta=rep(0,J), log.alpha=0))

MyData<-list(J=J,X=X,mon.names=mon.names,censor=censor,parm.names=parm.names,y=y)
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y is the vector of survival time containing both groups in it, censor is a binary vector of
censoring using 1 for uncensored and 0 for censored observation.

A3

Model Specification

Model <- function(parm, Data)

{

### Parameters

beta<-parm[1:Data$J]

alpha<-exp(parm[Data$J+1])

### Log-Prior

beta.prior<-sum(dnorm(beta,0,1000, log=TRUE))

alpha.prior<-dhalfcauchy(alpha,25,log=TRUE)

## Log-Likelihood

mu <- tcrossprod(beta, Data$X)

lambda <- exp(mu)

lf <- log(alpha)-log(lambda)-(y/lambda)+(alpha-1)*

log(1-exp(-(y/lambda)))+alpha*log(1-exp(-(y/lambda)))-log(exp(1)-1)

ls <- (1-(((exp(1-exp(-(y/lambda)))^(alpha)) -1)/(exp(1)-1)))

LL <- censor * lf + (1-censor) * ls

LL <- sum(LL)

## Log-Posterior

LP <- LL + beta.prior + alpha.prior

Modelout <- list(LP=LP, Dev=-2*LL, Monitor=c(LP,alpha),

yhat=lambda, parm=parm)

return(Modelout)

}

A4

Fitting of Model with Laplace Approximation

Initial.Values <- c(coef(lm(log(y)~1)), log(1))

GDUSEDLA <- LaplaceApproximation(Model, Initial.Values, Data=MyData,

Iterations=5000, Method="TR")

print(GDUSEDLA)

A5

Simulation Study of IUD Data of GDUSED

## Fitting with LaplacesDemon

Initial.Value<-as.initial.values(GDUSEDLA)

GDUSEDLD<-LaplacesDemon(Model, Data=MyData,Initial.Values, Covar=GDUSEDLA$Covar,

Iterations=50000,Status=100,Thinning=10,Algorithm="IM",

Specs=list(mu=GDUSEDLA$Summary1[1:length(Initial.Values),1]))

print(GDUSEDLD)

A6

Creation of Data in JAGS
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IUD <- data.frame(time = c(10,13,18,19,23,30,36,38,54,56,59,75,93,97,

104,107,107,107), censor = c(1,0,0,1,0,1,1,rep(0,3),1,1,1,1,0,1,0,0))

censor <- IUD$censor

y <- IUD$time

n <- length(y)

J <- 1

X <- matrix(1,nrow=n,ncol=J)

zeros <- rep(0,n)

C <- 10000

data <- list(n=n, J=J, y=y, X=X, zeros=zeros, censor=censor, C=C)

where n is number of observations, J number of predictors, X is the model matrix, zeros

is a vector of zero values equal to the number of observations, censor indicates the censor-
ing status, and C is sufficiently large positive value. Poisson zeros trick used for modelling
Generalized DUS Exponential distribution GDUSED in JAGS.

A7

Model Definition

library(R2jags)

cat("model{

for (i in 1:n){

zeros[i] ~ dpois(phi[i])

phi[i] <- - l[i] + C

l[i] <- censor[i] * (log(alpha)-log(lambda[i])-(y[i]/lambda[i])+(alpha-1)

*log(1-exp(-(y[i]/lambda[i])))+alpha*log(1-exp(-(y[i]/lambda[i])))-log(exp(1)-

1))

+ (1-censor[i]) * log(1-((((exp(1-exp(-(y[i]/lambda[i])))^(alpha)) -1))/(exp(1)-

1)))

log(lambda[i]) <- inprod(X[i,], beta[])

}

## Priors

for (j in 1:J){

beta[j] ~ dnorm(0, 0.001)

}

alpha ~ dunif(0, 100)

}", file="GDUSED.txt")

To Start the MCMC simulation, the initial values for the parameters are

inits <- list(list(alpha=0.78, beta=4.7), list(alpha=1.17, beta=1.5*4.7))

The above defined model is fitted with JAGS function

GDUSED.jags <- jags(data=data, inits=inits, param=c("beta","alpha"),

n.chains=2, n.iter=5000, model.file="GDUSED.txt")

print(GDUSED.jags)
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